
 

 

  
 
Abstract—The weight constrained shortest path problem 

(WCSPP) is one of most several known basic problems in 
combinatorial optimization. Because of its importance in many areas 
of applications such as computer science, engineering and operations 
research, many researchers have extensively studied the WCSPP. 
This paper mainly concentrates on the reduction of total search space 
for finding WCSP using some existing Genetic Algorithm (GA). For 
this purpose, some controlled schemes of genetic operators are 
adopted on list chromosome representation. This approach gives a 
near optimum solution with smaller elapsed generation than classical 
GA technique. From further analysis on the matter, a new 
generalized schema theorem is also developed from the philosophy 
of Holland’s theorem. 
 

Keywords—Genetic Algorithm, Evolutionary Optimization, 
Multi Objective Optimization, Non-linear Schema Theorem, 
WCSPP.  

I. INTRODUCTION 
EIGHT constrained shortest path problem (WCSPP) is 
a superset of the shortest path problem. WCSPP has an 

extra characteristic that deals with some multi-objective 
constraints. WCSPP is defined by the following input and 
output requirements [1], Input: n node undirected graph G = 
(V,E) for each edge (vi,vj) ∈ E, it has a positive integer length 
l(vi,vj) and a positive integer weight w(vi,vj); specified node 
{s,t} ⊆ V and positive integer K and L. Output: Is there any 
path p from s to t in G, p = {s, v0, v1…. vk, t} that has both total 
weight at most W that is, w(p) < K and total length at most L 
that is, l(p) < L. WCSPP is not an NP-Hard problem if it has  
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same weights around each weight and same length. In this 
case, there exist many efficient algorithms that can take over 
the problem.  

II. OVERVIEW OF METHODS IN THE LITERATURE 
Methods appearing in the literature that apply to the 

WCSPP can be divided into those based on k shortest paths, 
node labeling methods derived from dynamic programming 
equations, Lagrangean relaxation, and approximation 
algorithms, although some work combines these approaches. 
Preprocessing can also be important. It was observed early 
that k shortest path methods could solve the WCSPP, paths are 
generated in increasing order of cost, and the method stopped 
as soon as a weight feasible path is found. Handler and Zang 
[2] implement the k shortest path method of Yen [3], and 
compare it with their Lagrangean relaxation approach. A 
number of early papers gave dynamic programming 
formulations, for example Joksch [4] and Lawler [5]. A 
variety of algorithms based on these dynamic programming 
formulations, all used some kind of node labeling approach, 
have been developed since. Examples are the methods of 
Aneja et al [6], Desrosiers, Pelletier and Soumis, Desrochers 
and Soumis [7] and more recently Jaumard, Semet and Vovor. 
Another attempt with integer programming approach is also 
extensively studied by Dumitrescu and Boland [8]. However, 
so far it is known, this is the first attempt to solve the WCSPP 
using GA. Due to lack of sufficient reference; controlled GA 
approach is only compared with classical GA approach, other 
than previously devised non-heuristic techniques.  

III. PROBLEM SPECIFICATION FOR CLASSICAL GA BASED 
TECHNIQUE 

In the case of classical GA, the encoding scheme is done 
using vector chromosome. Each chromosome defines a path in 
the graph G. Each gene corresponds to the vertices along the 
path. The representation should not contain information 
beyond that needed to represent a solution to the problem. 
Whichever representation to choose, operators should be 
picked in such way that are appropriate for the concerning 
representation. So the main problems to consider: 1. 
Constraints for chromosome representation, 2.Approximation 
of chromosome length and 3. Devise operators to avoid those 
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solutions that are out of feasibility. 

IV. PROBLEM IN FIXED LENGTH CHROMOSOME 
For the solution of WCSPP, or similar problems, such as 

TSP [9]-[11], Maximal length path [9] etc. many types of 
representation are proposed [9]. They are Adjacency 
representation, Ordinal Representation, Path representation 
and Matrix representation. From the detailed study, these early 
proposed representation suffers from below noted problems in 
finding solution to the WCSPP, 
1) If an optimal path length is smaller than the chromosome 

length, the occurrence of repeating genes is not possible 
to avoid. 

2) If an optimal path length is smaller than the chromosome 
length, the occurrence of partial path or premature-cycle 
[9] is not possible to avoid. 

3) In order to avoid these anomalies, some extra repair 
algorithm [9] must be applied. 

V. FLOYD-WARSHALL’S ALGORITHM TO APPROXIMATE THE 
CHROMOSOME LENGTH 

Some detailed studies have revealed that if the dimension of 
the chromosome is just equal to the dimension of the optimal 
shortest path, the GA can escape from the occurrence of 
repeating and premature cycle. So in this case the objective 
would be to predict the length of the optimal solution or the 
path length of the shortest weight constrained path. So, for a 
given a graph G = (V, E), if a WCSP is to be found using GA 
with vector chromosome (path representation) and if the 
length of the chromosome is l and path length of the optimal 
WCSP is smaller then l, then there must be an occurrence of 
repetition or premature cycle. This proposition can be proved 
easily, suppose, the optimal solution has the chromosome of 
length lo and the vector chromosome has the fixed length of lf. 
Here, the case that we have to consider is lf > lo and excess of 
length is δ l = lf – lo. When crossover and other genetic 
operators are applied, somehow it must be filled δ l spaces 
with random vertices. So, when an optimal solution is 
reached, δl spaces will be filled by a series of same vertices 
and thus repeated path must occur in the solution. So, for the 
prediction of the most optimal chromosome length, the 
possible length of the chromosome should be found out 
somehow. This can be done by Floyd – Warshall’s algorithm 
[10]. Floyd – Warshall’s  algorithm find the length of a 
shortest path d(vi,vj) (the length of the shortest path between vi 
and vj) in a graph G, where, G = (V, E), V = {v0, v1, v2, …. vk } 
and weights w(vi,vj) with w(vi,vj) = ∝ if  (vi,vj)∉E. If s = v0 and 
t = vk then we can set up chromosome length as d(vi.vj) when 
w(vi,vj) = 1 for all (vi,vj) ∈ E. However, this leads to the 
aforementioned anomalies. To overcome this limitation vector 
representation will not be used. 

VI. VARIABLE LENGTH CHROMOSOME DEFINITION 
It becomes apparent that, list chromosome representation is 

most feasible way to explain each solution exactly. However 

in classical GA, first population is chosen randomly. This will 
results into many invalid tours in the graph. In the long run 
huge generation elapse is required to obtain the result. The 
objective of this thesis work is to minimize the iteration. So 
this approach is not wise to start with. Here a controlled 
genetic operation is applied to create each initial individual 
chromosome so that each of them represents a valid tour. In 
this context list chromosome representation is suitable for 
WCSPP. Though, it still suffers from some anomalies, such as 
blocked path creation. 

VII. CREATION OF INITIAL POPULATION 
 The initial population is created in a list chromosome and 
each node is chosen randomly so that every chromosome 
defines a valid tour. The overall process becomes clear form 
the below algorithm, Here, the problem will find a path from 
start point s to destination t. The algorithm, 
CONTROLLED_CHROMOSOMECREATION describes the 
creation of chromosome for initial population (population at 
time t is p (t)). Fig. 1 describes the proper illustration for 
CONTROLLED_CHROMOSOMECREATION. 

 
Fig. 1 Creation of an individual 

 
Procedure CONTROLLED_CHROMOSOMECREATION 
Begin 
  i := 0 
  Take first gene, ui := s 
  While (ui ≠ t) 
  Begin 
    K := {∅} 
    j := 0 
    While ( j ≤  |V|) 
    Begin 
      if ((ui,vj) ∈ E) 
      apply vj ∈ K 
      j := j+1 
    End 
    if ( K ≠ {∅}) 
    Choose randomly any vk from K 
    i := i + 1 
    Add to next gene ui := vk 
  End 
End 
Here, I0 = (s, u1, u2... uk, t) the first individual in p(t). 
I0 defines a valid path from s to t. 
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VIII. CREATION OF BLOCKED PATH 
 The technique that is used here for chromosome creation 
still suffers from some anomalies. This problem is the creation 
of chromosome defining partial valid tour or blocked path. 
The creation scenario of such kind of individual is given in 
Fig. 2. The creation of blocked path may lead to an invalid 
tour. However, this concern raises the possibility of discarding 
or preserving the blocked path in the initial population. 
However a blocked path may contain useful information for 
an optimal solution. So, in this experiment, blocked path 
chromosome is preserved in the initial population. 

 
Fig. 2 Creation of blocked path 

IX. CONTROLLING THE CROSSOVER 
 Here, the crossover technique is adopted in such a way that 
each offspring created from a pair of parent will define a valid 
tour. So, for this purpose the crossover point is chosen in a 
controlled manner. The overall process is described in the 
following algorithm CONTROLLED_CROSSOVER. Fig. 3 
describes the proper illustration of the algorithm 
CONTROLLED_CROSSOVER. 

 
 

Fig. 3 CONTROLLED_CROSSOVER in operation 
 
Procedure CONTROLLED_CROSSOVER 
Begin 

Take two parents Ii = {s, ui
1, ui

2 ... ui
k, t} and Ij = {s, 

uj
1,uj

2 ... uj
k, t}  randomly. 

From Ii, randomly chose a gene ui
x, the direction of 

choosing is forward (from s to t) 
From Ij, at inverse direction (from t to s), chose a gene 
uj

x 
  if( (ui

x,uj
x ) ∈ E and {ui

x-1, ui
x+1} ⊄ {uj

x+1, uj
x+2… t} ) 

   The crossover point is ui
x and uj

x. 
   Now Apply crossover and create new offspring Io

1 

Obviously, (ui
x-1, ui

x) ∈ E, (ui
x, ui

x+1) ∈ E and {uj
x+1, 

uj
x+2…t} ⊆ Ij. 

  else 
   Crossover failed 
 
  If ((ui

x+1, uj
x-1) ∈ E) 

   Another crossover point is ui
x+1and uj

x-1 
   Now Apply crossover and create another offspring Io

2. 
  else 
   Crossover failed 

Include Io
1 and Io

2 to new population p(t+1). Preserve Ii  
and Ij to old population p(t) 

End 
If the condition, (ui

x+1, uj
x-1)∈ E, is not satisfied, creation of Io

2 
will not occur since it is an invalid tour. So, after this genetic 
operation, offspring are Io

1 = {s, ui
1, ui

2 ... ui
x-1, ui

x, uj
x, uj

x+1 ... 
uj

k-1, uj
k, t} and Io

2 = {s, uj
1, uj

2 ... uj
x-2, uj

x-1, ui
x+1, ui

x+2 ... ui
k-1, 

ui
k-1, t}. Where parents are, Ii = {s, ui

1, ui
2 ... ui

x-1 ui
x, ui

x+1 ... 
ui

k-1, ui
k, t} and Ij = {s, uj

1, uj
2 ... uj

x-1 uj
x, uj

x+1 ... uj
k-1, uj

k, t}. 

X. CONTROLLING THE MUTATION 
 Like all other genetic optimization, mutation is also applied 
to find the optimal solution. However, in this experiment, the 
mutation technique is also done in controlled manner. The 
overall step is described in CONTROLLED_MUTATION; a 
path p is described by the chromosome, I = {s, u0, u1….ui-1, ui, 
ui+1….t}. Fig. 4 describes the proper illustrations for 
CONTROLLED_MUTATION. 

 
 

Fig. 4 CONTROLLED_MUTATION in operation 
 
Procedure CONTROLLED_MUTATION 
Begin 
  Take a chromosome Ii randomly. 
  Choose a gene ui from Ii randomly. 
  Take VM : = {∅} 
  While (all vertex uk, adjacent to ui are checked) 
  Begin 
    Take any vertex, uk 
    If ((uk, ui-1) ∈ E and {uk, ui+1} ∈ E) 
     apply uk ∈ VM 
  End 
  If( VM ≠ {∅} ) 
   Randomly choose any uj from VM. 
   Replace ui with uj. 
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  else 
   Mutation failed 
End 

XI. FEASIBILITY OF NEW SEARCH TECHNIQUE 
The main feasibility issue behind this new approach is to 

minimize the search space. In the consequence, an optimal 
solution may be obtained by smaller generation than 
conventional technique. The approximation of the search 
space can be deduced by easy mathematics. If the graph G = 
(V, E) has |V| number of vertices, let |V| = n and the length of 
the list chromosome may span from 0 to n – 2. So, first 0 
space of gene can be filled with n vertices in nP0 ways, 1 space 
of gene can be filled with n vertices in nP1 ways, 2 space of 
gene can be filled with n vertices in nP2 ways and in the same 
way, n – 2 space of gene can be filled with n vertices in nPn – 2   
ways. So total search space,  
   Sn =  nP1 +  nP2 +  nP3 + … + nPn – 2  

= n!/2! + n!/3! + ….. + n!/(n-2)! + n!/(n-1)! + n!/n! 
= n! (1 + 1/2! + 1/3! + …. + 1/n! ) – n! 

For general case, if the graph is very large, this can be 
assumed that n is also very large. So, Sn = n!(e – 1 ) In 
this case the graph is completely connected. However if 
the graph were not completely connected, the search 
space would change a little. Now, in new scheme, if the 
graph is not completely connected, the search space 
becomes,  

Sk = (nP0 – k1 ) + (nP1 – k2 )+ …. + (nPn – 2  – kn )      
= ( nP0 + nP1 + …. + nPn – 2  ) – ( k1 + k2 + …+ kn )  
= n!( e – 1 ) – K  =  Sn – K 

So, obviously Sk < Sn. Total number of search space is 
reduced. Here k1, k2… kn represents permutation by 
invalid tour. K equals to the grand total of all invalid 
tours in the graph.  So, this mathematical deduction 
proves that the search space is reduced if the controlled 
scheme of genetic operation is adopted. 

XII. MEASURING FITNESS 
The fitness each chromosome should be measured in terms 

of both weight w(Ii) and length l(Ii). So this multi-objective 
optimization problem [9] is solved in classical way. There are 
some classical methods for multi-objective optimization. This 
includes a method of objective weighting [9], where multiple 
objective functions fi are combined into one overall objective 
function F.  Another approach (method of distance functions) 
combines objective functions into one on the of demand level 
vector y as in (1).  
 
                       (1) 
 
Where, (usually) r = 2 (Euclidian Metric). In the case of 
WCSPP, F(I), (i.e. overall fitness of individual I ), is defined 
by (2).  
                       (2) 
 

Here, w(I) and l(I) is w(p) and l(p) respectively. Since, all 
Pareto-optimal solutions [1], [11], [12] might be of some 
interest; ideally, the system will report back the set of all 
Pareto-optimal points in future experiments. 

XIII. EXPERIMENTAL RESULTS 
 The experiments are done on 10 graphs that are generated 
randomly. In every case l(e) and w(e) does not exceed 20. 
Here in each experiment, pc = 0.8 and pm = 0.15. The first 
entry in each edge is the weight and next entry is the length. 
That is, in every case, (w(e),l(e)). Table 1 represents the 
comparative analysis of controlled genetic operation with 
classical genetic operations. In every case population size is 
200. From this data, it becomes clear that using controlled 
genetic operations; generations elapse is reduced up to 70% 
approximately. That is, the convergence speed is increased to 
3 times more than classical genetic algorithm approach. An 
instance of randomly generated graph, GRAPH – 2 is 
illustrated in Fig. 5. The starting node s is 0 and ending node t 
is 20. For example, curve plot of Generation vs. best 
individual fitness and Generation vs. Average fitness are also 
given in Fig.6 and Fig.7 respectively. 
 

  
 

Fig. 5 GRAPH – 2 

TABLE I 
COMPARATIVE ANALYSIS 

Generation Elapsed 
Example 
Graphs 

Total 
Number 
of Nodes 

K L Controlled 
Genetic 
Operator 

Classical 
GA 

% 
Re
duc
tio
n 

GRAPH-1 10 13 17 150 500 70 
GRAPH-2 21 18 11 1600 5000 68 
GRAPH-3 35 17 12 2200 6800 67 
GRAPH-4 28 7 8 2000 5800 62 
GRAPH-5 8 17 8 100 320 69 
GRAPH-6 5 12 6 100 300 70 
GRAPH-7 97 20 19 4000 13000 69 
GRAPH-8 56 13 11 3500 10540 66 
GRAPH-9 89 6 13 3800 11400 67 
GRAPH-
10 

6 14 17 100 300 70 

Percentage Reduction means the reduction of generation’s elapse for GA 
with Controlled Genetic operations. K and L refer to maximum weight and 
maximum length for each of the graphs respectively. 
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Fig. 6 Best Individual’s fitness vs. Generation (for GRAPH-2) 
 

 
 

Fig. 7 Average fitness vs. Generation (for GRAPH-2) 

XIV. NON-LINEAR SCHEMA THEROEM FOR WCSPP 
Generally Holland’s schema theorem [11] is designed for 

binary vector chromosome [9]. However, chromosome can be 
designed in many ways. Most general case is the graph 
representation of binary chromosome. The nonlinear schema 
theorem [13] for this type of cases is extensively discussed by 
W.A. Greene [13]. In the same way, schema theorem for 
WCSPP can be deduced easily from that idea. We need a 
notion analogous to a schema’s defining length. We have 
assumed there is a notion of distance between two nodes in 
graph G. If B is some subset of G-nodes, define the diameter 
of B to be the maximum distance between any two nodes in B. 
Since graph G is finite, the diameter of any G-subset, 
including G itself, is a well-defined (finite) positive real 
number. Given a schema H, define its relative diameter 

rel∆(H) = ∆fixed(H)/∆(G)         (3) 
Where, fixed (H) is the set of fixed nodes in H. Note that in 
the original Holland scenario, when L bits are arranged in a 
linear sequence, the relative diameter of a schema H is δ(H)/L 
– 1. The non linear schema equation [13] is defined as 

m[µ(H)/µ(P)][1 – pc rel(∆H)](1 – pm )order(H)   (4) 

where terms are identical to Holland’s theorem except 
rel∆(H). However in the case of WCSPP, the chromosome is 
variable length and every individual’s length in each 
generation is changed after every genetic operation. So some 
modification is still required at this context. During the whole 
iteration crossover and mutation may occur in three ways, 
these are, 1. Crossover occurs but not mutation, 2. Mutation 
occurs but not crossover and 3. Mutation and crossover both 
occurs. Mutation and crossover are independent event. So the 
total probability P is, P = pm + pc + pm.pc If the length of ith 
individual is Li then after each genetic operation, the change in 
length is δL (0<δL<Li). So finally length of each individual 
after every genetic operation is, Li ± PδL. Now transforming 
Li and δL to the notion analogous to graph, rel(∆H) can be 
rewritten as, rel(∆H) = δ(H)/(Li ± PδL). Now equation (4) can 
be written as 
 
                         (5) 

                
δ(H) is the short defining length [9],[11] of schema [9],[11] H. 
As long as the genetic iteration occurs, the length term (Li ± 
PδL) converges to the length of the fittest chromosome. 

XV. CONCLUSION AND FUTURE EXPLORATION 
 In this paper, we have proposed a computationally fast 
method to find WCSP in a graph. Our next target is to 
simultaneously find Multiple Pareto-optimal solutions in a 
population. A GA is unique optimization algorithm in solving 
multi-objective optimization problems in this respect. In one 
implementation, non-domination concept [12] will be used 
next time with all objective functions to determine a fitness 
measure for each solution. Thereafter, the GA operators 
described here will be used as usual. On a number of multi 
objective optimization problems, this non-dominated sorting 
GA [12] has been able to find multiple Pareto-optimal 
solutions in one single run. 
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