On the Central Limit Theorems for Forward and Backward Martingales
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
On the Central Limit Theorems for Forward and Backward Martingales

Authors: Yilun Shang

Abstract:

Let {Xi}i≥1 be a martingale difference sequence with Xi = Si - Si-1. Under some regularity conditions, we show that (X2 1+· · ·+X2N n)-1/2SNn is asymptotically normal, where {Ni}i≥1 is a sequence of positive integer-valued random variables tending to infinity. In a similar manner, a backward (or reverse) martingale central limit theorem with random indices is provided.

Keywords: central limit theorem, martingale difference sequence, backward martingale.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1084554

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2786

References:


[1] N. Alon and J. H. Spencer, The Probabilistic Method. Wiley-Interscience, 2008.
[2] F. J. Anscombe, Large-sample theory of sequential estimation. Proc. Cambridge Philos. Soc., 48(1952) 600-607.
[3] S. Bernstein, Quelques remarques sur le theoreme limite Liapounoff. Dokl. Akad. Nauk. SSSR, 24(1939) 3-8.
[4] P. Billingsley, Probability and Measure. Wiley-Interscience, 1995.
[5] J. R. Blum, D. L. Hanson and J. I. Rosenblatt, On the central limit thoerem for the sum of a random number of independent random variables. Probability Theory and Related Fields, 1(1963) 389-393.
[6] I. V. Borovskikh, V. S. Korolyuk and Y. V. Borovskikh, Martingale Approximation. Brill Academic Publishers, 1997.
[7] B. M. Brown, Martingale central limit theorems. Annals of Mathematical Statistics, 42(1971) 59-66.
[8] A. Dvoretzky, Asymptotic normality for sums of dependent random variables. Proc. 6th Berkeley Symp. Math. Statist. Probab., 2(1970) 513- 535.
[9] I. Fakhre-Zakeri and J. Farshidi, A central limit theorem with random indices for stationary linear processes. Statistics & Probability Letters, 17(1993) 91-95.
[10] P. Hall and C. Heyde, Martingale Limit Theory and Its Application. Academic Press, New York, 1980.
[11] T. L. Hung and T. T. Thanh, Some results on asymptotic behaviors of random sums of independent identically distributed random variables. Commun. Korean Math. Soc., 25(2010) 119-128.
[12] V. Y. Korolev, The asymptotics of randomly indexed random sequences: independent indices. Journal of Mathematical Sciences, 59(1992) 926- 938.
[13] K. S. Kubacki, On the convergence of moments in a martingale central limit theorem. Theor. Prob. Appl., 40(1995) 373-386.
[14] R. M. Loynes, The central limit theorem for backwards martingales. Probability Theory and Related Fields, 13(1969) 1-8.
[15] M. El Machkouri and L. Ouchti, Exact convergence rates in the central limit theorem for a class of martingales. Bernoulli, 13(2007) 981-999.
[16] M. El Machkouri and D. Volny, On the local and central limit theorems for martingale difference sequences. Stochastics and Dynamics, 4(2004) 1-21.
[17] D. L. McLeish, Dependent central limit theorems and invariance principles. Ann. Probability, 2(1974) 620-628.
[18] L. Ouchti, On the rate of convergence in the central limit theorem for martingale difference sequences. Ann. Inst. H. Poincar Probab. Statist., 41(2005) 35-43.
[19] M. Przystalski, Asymptotics for products of a random number of partial sums. Bull. Polish Acad. Sci. Math., 57(2009) 163-167.
[20] A. R'enyi, On the asymptotic distribution of the sum of a random number of independent random variables. Acta. Math. Acad. Sci. Hung., 8(1957) 193-199.
[21] D. J. Scott, Central limit theorems for martingales and for processes with stationary increments using a Skorokhod representation approach. Advances in Appl. Probability, 5(1973) 119-137.