Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
PI Control for Second Order Delay System with Tuning Parameter Optimization

Authors: R. Farkh, K. Laabidi, M. Ksouri

Abstract:

In this paper, we consider the control of time delay system by Proportional-Integral (PI) controller. By Using the Hermite- Biehler theorem, which is applicable to quasi-polynomials, we seek a stability region of the controller for first order delay systems. The essence of this work resides in the extension of this approach to second order delay system, in the determination of its stability region and the computation of the PI optimum parameters. We have used the genetic algorithms to lead the complexity of the optimization problem.

Keywords: Genetic algorithm, Hermit-Biehler theorem, optimization, PI controller, second order delay system, stability region.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1078623

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1438

References:


[1] S. P. Bhattacharyya, H. Chapellat, and L. H. Keel, Robust Control:The Parametric Approach, Upper Saddle River, NJ: Prentice-Hall, 1995.
[2] L. Cedric, Pontryagin revisit: implication sur la stabilit des PID retards, Confrence Internationale Francophone d-Automatique CIFA-02
[3] M. Dambrine, Contribution l-tude de la stabilit des systmes retards, Thse de doctorat, Universit de Lille, 1994.
[4] D.E. Godelberg, Genetic Algorithms in search, optimization and machine learning, Addison-Wesley, Massachusetts, 1991.
[5] O.Lequin, M. Gevers, M. Mossberg, E. Bosmans, L. Triest, Iterative feedback tuning of PID parameters: comparison with classical tuning rules, Control Engineering Practice, N11, pp. 1023-1033, 2003.
[6] G.P. Liu, S.Daley, Optimal-tuning PID control for industrial systems, Control Engineering Practice, N 9, pp. 1185-1194, 2001.
[7] S.-I. Niculescu, Delay effects on stability, Springer, London, 2001.
[8] R.Padma Sree, M.N. Sirinivas, M. Chidambaram, A simple method of tuning PID controllers for stable and unstable FOPTD systems, Comp. Chem. Eng, pp. 2201-2218, 2004.
[9] Z. Shafiei, A.T Shenton, tuning of PID-type controllers for stable and unstable delay systems with time delay Automatica, pp. 1609-1615, 1994.
[10] G. J. Silva, A. Datta and S. P. Bhattacharyya, Stabilization of Time Delay Systems, Proceedings of the American Control Conference, pp. 963-970, 2000.
[11] G. J. Silva, A. Datta and S. P. Bhattacharyya, Stabilization of First-order Systems with Time Delay using the PID controller, Proceedings of the American Control Conference, pp. 4650-4655, 2001.
[12] G. J. Silva, A. Datta and S. P. Bhattacharyya, New synthesis of PID controller, IEEE transactions on automatic control, vol.47,No.2, 2002.
[13] G.J. Silva, A. Datta, S.P. Bhattacharyya, PID controllers for time delay systems, Springer, London, 2005.
[14] M. Villain, Systmes asservis linaires, ellipses/ dition marketing S.A., 1996.
[15] Q.C. Zhong, Robust control of time delay system, Springer, London, 2006.
[16] A. Roy, K. Iqbal, PID controller tuning for the first-order-plus-deadtime process model via Hermite-Biehler theorem, ISA Transaction, pp. 362-378, 2005.
[17] G. J. Silva, A. Datta and S. P. Bhattacharyya, Determination of Stabilizing gains for Second-order Systems with Time Delay, Proceedings of the American Control Conference, pp. 25-27, 2001.
[18] C. S. Jung, H. K. Song, J. C. Hyun, A direct synthesis tuning method of unstable first-order-plus-time-delay processes, Journal of process control, pp. 265-269, 1999.
[19] C. Xiang, Q.G. Wang; X. Lu, L.A. Nguyen, T.H. Lee, Stabilization of second-order unstable delay system, Journal of process control, pp. 675- 682, 2007.
[20] R. Toscano, A simple robust PI/PID controller design via numerical optimization approach, Journal of process control, pp. 81-88, 2005.