Fermat’s Last Theorem a Simple Demonstration
Authors: Jose William Porras Ferreira
Abstract:
This paper presents two solutions to the Fermat’s Last Theorem (FLT). The first one using some algebraic basis related to the Pythagorean theorem, expression of equations, an analysis of their behavior, when compared with power and power and using " the “Well Ordering Principle” of natural numbers it is demonstrated that in Fermat equation . The second one solution is using the connection between and power through the Pascal’s triangle or Newton’s binomial coefficients, where de Fermat equation do not fulfill the first coefficient, then it is impossible that:
zn=xn+yn for n>2 and (x, y, z) E Z+ - {0}
Keywords: Fermat’s Last Theorem, Pythagorean Theorem, Newton Binomial Coefficients, Pascal’s Triangle, Well Ordering Principle.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1335726
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3008References:
[1] Carmichael, R. D. The Theory of numbers and Diophantine Analysis. Dover N.Y., 1959
[2] Dantzig, Tobias. The Bequest of the Greeks. London: Allen &Unwin. ISBN0837101602. 1955
[3] Durán Guardeño, Antonio José. I. Matemáticas y matemáticos en el mundo griego. El legado de las matemáticas. De Euclides a Newton: los genios a través de sus libros. Sevilla. ISBN9788492381821.
[4] Leveque, W. J. Elementary Theory of numbers.. Addison-Wesley Publishing Company, 1962
[5] Plaza, Sergio. Aritmética Elemental una introducción (otra más). Depto de Matemática, Facultad de Ciencias, Universidad Santiago de Chile. Casilla 307-Correo 2.
[6] Singh, Simon. El enigma de Fermat. Tercera Edición Planeta ISBN9788408065722 2010
[7] Wiles, Andrew. Modular elliptic curves and Fermat’s Last Theorem (PDF). Annals of Mathematics 141 (3): pp. 443-531. Doi: 10.2307/211855, May 1995.
[8] WEB1: http://www.mathworld.wolfram.com/Fermatlasttheorem.html. Accessed: January 4, 2011.