Search results for: Recognition of driving scene.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1188

Search results for: Recognition of driving scene.

1188 Gender Differences in Spatial Navigation

Authors: Bia Kim, Sewon Lee, Jaesik Lee

Abstract:

This study aims to investigate the gender differences in spatial navigation using the tasks of 2-D matrix navigation and recognition of real driving scene. The results can be summarized as followings. First, female subjects responded faster in 2-D matrix navigation task than male subjects when landmark instructions were provided. Second, in recognition task, male subjects recognized the key elements involved in the past driving scene more accurately than female subjects. In particular, female subjects tended to miss peripheral information. These results suggest the possibility of gender differences in spatial navigation.

Keywords: Gender differences, Spatial navigation, 2-D matrixnavigation, Recognition of driving scene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737
1187 ADABeV: Automatic Detection of Abnormal Behavior in Video-surveillance

Authors: Nour Charara, Iman Jarkass, Maria Sokhn, Elena Mugellini, Omar Abou Khaled

Abstract:

Intelligent Video-Surveillance (IVS) systems are being more and more popular in security applications. The analysis and recognition of abnormal behaviours in a video sequence has gradually drawn the attention in the field of IVS, since it allows filtering out a large number of useless information, which guarantees the high efficiency in the security protection, and save a lot of human and material resources. We present in this paper ADABeV, an intelligent video-surveillance framework for event recognition in crowded scene to detect the abnormal human behaviour. This framework is attended to be able to achieve real-time alarming, reducing the lags in traditional monitoring systems. This architecture proposal addresses four main challenges: behaviour understanding in crowded scenes, hard lighting conditions, multiple input kinds of sensors and contextual-based adaptability to recognize the active context of the scene.

Keywords: Behavior recognition, Crowded scene, Data fusion, Pattern recognition, Video-surveillance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3634
1186 The Role of Driving Experience in Hazard Perception and Categorization: A Traffic-Scene Paradigm

Authors: Avinoam Borowsky, Tal Oron-Gilad, Yisrael Parmet

Abstract:

This study examined the role of driving experience in hazard perception and categorization using traffic scene pictures. Specifically, young-inexperienced, moderately experienced and very experienced (taxi) drivers observed traffic scene pictures while connected to an eye tracking system and were asked to rate the level of hazardousness of each picture and to mention the three most prominent hazards in it. Target pictures included nine, nearly identical, pairs of pictures where one picture in each pair included an actual hazard as an additional element. Altogether, 22 areas of interest (AOIs) were predefined and included 13 potential hazards and 9 actual hazards. Data analysis included both verbal reports and eye scanning patterns of these AOIs. Generally, both experienced and taxi drivers noted a relatively larger number of potential hazards than young inexperienced drivers Thus, by relating to less salient potential hazards, experienced drivers have demonstrated a better situation model of the traffic environment.

Keywords: Concept Construction, Hazard Perception, EyeMovements, Driving Experience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
1185 Effect of Increasing Road Light Luminance on Night Driving Performance of Older Adults

Authors: Said M. Easa, Maureen J. Reed, Frank Russo, Essam Dabbour, Atif Mehmood, Kathryn Curtis

Abstract:

The main objective of this study was to determine if a minimal increase in road light level (luminance) could lead to improved driving performance among older adults. Older, middleaged and younger adults were tested in a driving simulator following vision and cognitive screening. Comparisons were made for the performance of simulated night driving under two road light conditions (0.6 and 2.5 cd/m2). At each light level, the effects of self reported night driving avoidance were examined along with the vision/cognitive performance. It was found that increasing road light level from 0.6 cd/m2 to 2.5 cd/m2 resulted in improved recognition of signage on straight highway segments. The improvement depends on different driver-related factors such as vision and cognitive abilities, and confidence. On curved road sections, the results showed that driver-s performance worsened. It is concluded that while increasing road lighting may be helpful to older adults especially for sign recognition, it may also result in increased driving confidence and thus reduced attention in some driving situations.

Keywords: Driving, older adults, night-time, road lighting, attention, simulation, curves, signs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
1184 Cognition of Driving Context for Driving Assistance

Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif

Abstract:

In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.

Keywords: Cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
1183 Understanding Europe’s Role in the Area of Liberty, Security and Justice as an International Actor

Authors: Sarah Barrere

Abstract:

The area of liberty, security and justice within the European Union is still a work in progress. No one can deny that the EU struggles between a monistic and a dualist approach. The aim of our essay is to first review how the European law is perceived by the rest of the international scene. It will then discuss two main mechanisms at play: the interpretation of larger international treaties and the penal mechanisms of European law. Finally, it will help us understand the role of a penal Europe on the international scene with concrete examples. Special attention will be paid to cases that deal with fundamental rights as they represent an interesting case study in Europe and in the rest of the World. It could illustrate the aforementioned duality currently present in the Union’s interpretation of international public law. On the other hand, it will explore some specific European penal mechanism through mutual recognition and the European arrest warrant in the transnational criminality frame. Concerning the interpretation of the treaties, it will first, underline the ambiguity and the general nature of some treaties that leave the EU exposed to tension and misunderstanding then it will review the validity of an EU act (whether or not it is compatible with the rules of International law). Finally, it will focus on the most complete manifestation of liberty, security and justice through the principle of mutual recognition. Used initially in commercial matters, it has become “the cornerstone” of European construction. It will see how it is applied in judicial decisions (its main event and achieving success is via the European arrest warrant) and how European member states have managed to develop this cooperation.

Keywords: European penal law, International scene, Liberty security and justice area, mutual recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
1182 A Fast Sign Localization System Using Discriminative Color Invariant Segmentation

Authors: G.P. Nguyen, H.J. Andersen

Abstract:

Building intelligent traffic guide systems has been an interesting subject recently. A good system should be able to observe all important visual information to be able to analyze the context of the scene. To do so, signs in general, and traffic signs in particular, are usually taken into account as they contain rich information to these systems. Therefore, many researchers have put an effort on sign recognition field. Sign localization or sign detection is the most important step in the sign recognition process. This step filters out non informative area in the scene, and locates candidates in later steps. In this paper, we apply a new approach in detecting sign locations using a new color invariant model. Experiments are carried out with different datasets introduced in other works where authors claimed the difficulty in detecting signs under unfavorable imaging conditions. Our method is simple, fast and most importantly it gives a high detection rate in locating signs.

Keywords: Sign localization, color-based segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
1181 An Effective Method of Head Lamp and Tail Lamp Recognition for Night Time Vehicle Detection

Authors: Hyun-Koo Kim, Sagong Kuk, MinKwan Kim, Ho-Youl Jung

Abstract:

This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, to effectively extract spotlight of interest, a segmentation process based on automatic multi-level threshold method is applied on the road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process based on light tracking and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with near infrared mono-camera and tested it in the urban and rural roads. Through the test, classification performances are above 97% of true positive rate evaluated on real-time environment. Our method also has good performance in the case of clear, fog and rain weather.

Keywords: Assistance Driving System, Multi-level Threshold Method, Near Infrared Mono Camera, Nighttime Vehicle Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2937
1180 Real-Time Recognition of the Terrain Configuration to Improve Driving Stability for Unmanned Robots

Authors: Bongsoo Jeon, Jayoung Kim, Jihong Lee

Abstract:

Methods for measuring or estimating ground shape by a laser range finder and a vision sensor (Exteroceptive sensors) have critical weaknesses in terms that these methods need a prior database built to distinguish acquired data as unique surface conditions for driving. Also, ground information by Exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Therefore, this paper proposes a method of recognizing exact and precise ground shape using an Inertial Measurement Unit (IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes the attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.

Keywords: Inertial Measurement Unit, Laser Range Finder, Real-time recognition of the ground shape.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1695
1179 Face Recognition: A Literature Review

Authors: A. S. Tolba, A.H. El-Baz, A.A. El-Harby

Abstract:

The task of face recognition has been actively researched in recent years. This paper provides an up-to-date review of major human face recognition research. We first present an overview of face recognition and its applications. Then, a literature review of the most recent face recognition techniques is presented. Description and limitations of face databases which are used to test the performance of these face recognition algorithms are given. A brief summary of the face recognition vendor test (FRVT) 2002, a large scale evaluation of automatic face recognition technology, and its conclusions are also given. Finally, we give a summary of the research results.

Keywords: Combined classifiers, face recognition, graph matching, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7721
1178 Gesture Recognition by Data Fusion of Time-of-Flight and Color Cameras

Authors: Piercarlo Dondi, Luca Lombardi, Marco Porta

Abstract:

In the last years numerous applications of Human- Computer Interaction have exploited the capabilities of Time-of- Flight cameras for achieving more and more comfortable and precise interactions. In particular, gesture recognition is one of the most active fields. This work presents a new method for interacting with a virtual object in a 3D space. Our approach is based on the fusion of depth data, supplied by a ToF camera, with color information, supplied by a HD webcam. The hand detection procedure does not require any learning phase and is able to concurrently manage gestures of two hands. The system is robust to the presence in the scene of other objects or people, thanks to the use of the Kalman filter for maintaining the tracking of the hands.

Keywords: Gesture recognition, human-computer interaction, Time-of-Flight camera.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
1177 Partial 3D Reconstruction using Evolutionary Algorithms

Authors: Mónica Pérez-Meza, Rodrigo Montúfar-Chaveznava

Abstract:

When reconstructing a scenario, it is necessary to know the structure of the elements present on the scene to have an interpretation. In this work we link 3D scenes reconstruction to evolutionary algorithms through the vision stereo theory. We consider vision stereo as a method that provides the reconstruction of a scene using only a couple of images of the scene and performing some computation. Through several images of a scene, captured from different positions, vision stereo can give us an idea about the threedimensional characteristics of the world. Vision stereo usually requires of two cameras, making an analogy to the mammalian vision system. In this work we employ only a camera, which is translated along a path, capturing images every certain distance. As we can not perform all computations required for an exhaustive reconstruction, we employ an evolutionary algorithm to partially reconstruct the scene in real time. The algorithm employed is the fly algorithm, which employ “flies" to reconstruct the principal characteristics of the world following certain evolutionary rules.

Keywords: 3D Reconstruction, Computer Vision, EvolutionaryAlgorithms, Vision Stereo.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
1176 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform

Authors: Jie Zhao, Meng Su

Abstract:

Image recognition enables machine-like robotics to understand a scene and plays an important role in computer vision applications. Computer vision platforms as physical infrastructure, supporting Neural Networks for image recognition, are deterministic to leverage the performance of different Neural Networks. In this paper, three different computer vision platforms – edge AI (Jetson Nano, with 4GB), a standalone laptop (with RTX 3000s, using CUDA), and a web-based device (Google Colab, using GPU) are investigated. In the case study, four prominent neural network architectures (including AlexNet, VGG16, GoogleNet, and ResNet (34/50)), are deployed. By using public ImageNets (Cifar-10), our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.

Keywords: AlexNet, VGG, GoogleNet, ResNet, ImageNet, Cifar-10, Edge AI, Jetson Nano, CUDA, GPU.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220
1175 Improving Topic Quality of Scripts by Using Scene Similarity Based Word Co-Occurrence

Authors: Yunseok Noh, Chang-Uk Kwak, Sun-Joong Kim, Seong-Bae Park

Abstract:

Scripts are one of the basic text resources to understand broadcasting contents. Topic modeling is the method to get the summary of the broadcasting contents from its scripts. Generally, scripts represent contents descriptively with directions and speeches, and provide scene segments that can be seen as semantic units. Therefore, a script can be topic modeled by treating a scene segment as a document. Because scene segments consist of speeches mainly, however, relatively small co-occurrences among words in the scene segments are observed. This causes inevitably the bad quality of topics by statistical learning method. To tackle this problem, we propose a method to improve topic quality with additional word co-occurrence information obtained using scene similarities. The main idea of improving topic quality is that the information that two or more texts are topically related can be useful to learn high quality of topics. In addition, more accurate topical representations lead to get information more accurate whether two texts are related or not. In this paper, we regard two scene segments are related if their topical similarity is high enough. We also consider that words are co-occurred if they are in topically related scene segments together. By iteratively inferring topics and determining semantically neighborhood scene segments, we draw a topic space represents broadcasting contents well. In the experiments, we showed the proposed method generates a higher quality of topics from Korean drama scripts than the baselines.

Keywords: Broadcasting contents, generalized P´olya urn model, scripts, text similarity, topic model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
1174 Player Number Localization and Recognition in Soccer Video using HSV Color Space and Internal Contours

Authors: Matko Šaric, Hrvoje Dujmic, Vladan Papic, Nikola Rožic

Abstract:

Detection of player identity is challenging task in sport video content analysis. In case of soccer video player number recognition is effective and precise solution. Jersey numbers can be considered as scene text and difficulties in localization and recognition appear due to variations in orientation, size, illumination, motion etc. This paper proposed new method for player number localization and recognition. By observing hue, saturation and value for 50 different jersey examples we noticed that most often combination of low and high saturated pixels is used to separate number and jersey region. Image segmentation method based on this observation is introduced. Then, novel method for player number localization based on internal contours is proposed. False number candidates are filtered using area and aspect ratio. Before OCR processing extracted numbers are enhanced using image smoothing and rotation normalization.

Keywords: player number, soccer video, HSV color space

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
1173 A Bionic Approach to Dynamic, Multimodal Scene Perception and Interpretation in Buildings

Authors: Rosemarie Velik, Dietmar Bruckner

Abstract:

Today, building automation is advancing from simple monitoring and control tasks of lightning and heating towards more and more complex applications that require a dynamic perception and interpretation of different scenes occurring in a building. Current approaches cannot handle these newly upcoming demands. In this article, a bionically inspired approach for multimodal, dynamic scene perception and interpretation is presented, which is based on neuroscientific and neuro-psychological research findings about the perceptual system of the human brain. This approach bases on data from diverse sensory modalities being processed in a so-called neuro-symbolic network. With its parallel structure and with its basic elements being information processing and storing units at the same time, a very efficient method for scene perception is provided overcoming the problems and bottlenecks of classical dynamic scene interpretation systems.

Keywords: building automation, biomimetrics, dynamic scene interpretation, human-like perception, neuro-symbolic networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
1172 Aggressive Driving in Young Motorists

Authors: Suneel M. Agerwala, Ashley Votta, Briana Hogan, John Yannocone, Steven Samuels, SheilaChiffriller

Abstract:

Road rage is an increasingly prevalent expression of aggression in our society. Its dangers are apparent and understanding its causes may shed light on preventative measures. This study involved a fifteen-minute survey administered to 147 undergraduate students at a North Eastern suburban university. The survey consisted of a demographics section, questions regarding financial investment in respondents- vehicles, experience driving, habits of driving, experiences witnessing role models driving, and an evaluation of road rage behavior using the Driving Vengeance Questionnaire. The study found no significant differences in driving aggression between respondents who were financially invested in their vehicle compared to those who were not, or between respondents who drove in heavy traffic hours compared to those who did not, suggesting internal factors correlate with aggressive driving habits. The study also found significant differences in driving aggression between males versus females, those with more points on their license versus fewer points, and those who witnessed parents driving aggressively very often versus rarely or never. Additional studies can investigate how witnessing parents driving aggressively is related to future driving behaviors.

Keywords: Aggression, college, driving, road rage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
1171 Expert-Driving-Criteria Based on Fuzzy Logic Approach for Intelligent Driving Diagnosis

Authors: Andrés C. Cuervo Pinilla, Christian G. Quintero M., Chinthaka Premachandra

Abstract:

This paper considers people’s driving skills diagnosis under real driving conditions. In that sense, this research presents an approach that uses GPS signals which have a direct correlation with driving maneuvers. Besides, it is presented a novel expert-driving-criteria approximation using fuzzy logic which seeks to analyze GPS signals in order to issue an intelligent driving diagnosis. Based on above, this works presents in the first section the intelligent driving diagnosis system approach in terms of its own characteristics properties, explaining in detail significant considerations about how an expert-driving-criteria approximation must be developed. In the next section, the implementation of our developed system based on the proposed fuzzy logic approach is explained. Here, a proposed set of rules which corresponds to a quantitative abstraction of some traffics laws and driving secure techniques seeking to approach an expert-driving- criteria approximation is presented. Experimental testing has been performed in real driving conditions. The testing results show that the intelligent driving diagnosis system qualifies driver’s performance quantitatively with a high degree of reliability.

Keywords: Driver support systems, intelligent transportation systems, fuzzy logic, real time data processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201
1170 Object Detection Based on Plane Segmentation and Features Matching for a Service Robot

Authors: António J. R. Neves, Rui Garcia, Paulo Dias, Alina Trifan

Abstract:

With the aging of the world population and the continuous growth in technology, service robots are more and more explored nowadays as alternatives to healthcare givers or personal assistants for the elderly or disabled people. Any service robot should be capable of interacting with the human companion, receive commands, navigate through the environment, either known or unknown, and recognize objects. This paper proposes an approach for object recognition based on the use of depth information and color images for a service robot. We present a study on two of the most used methods for object detection, where 3D data is used to detect the position of objects to classify that are found on horizontal surfaces. Since most of the objects of interest accessible for service robots are on these surfaces, the proposed 3D segmentation reduces the processing time and simplifies the scene for object recognition. The first approach for object recognition is based on color histograms, while the second is based on the use of the SIFT and SURF feature descriptors. We present comparative experimental results obtained with a real service robot.

Keywords: Service Robot, Object Recognition, 3D Sensors, Plane Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
1169 Comparing Arabic and Latin Handwritten Digits Recognition Problems

Authors: Sherif Abdelazeem

Abstract:

A comparison between the performance of Latin and Arabic handwritten digits recognition problems is presented. The performance of ten different classifiers is tested on two similar Arabic and Latin handwritten digits databases. The analysis shows that Arabic handwritten digits recognition problem is easier than that of Latin digits. This is because the interclass difference in case of Latin digits is smaller than in Arabic digits and variances in writing Latin digits are larger. Consequently, weaker yet fast classifiers are expected to play more prominent role in Arabic handwritten digits recognition.

Keywords: Handwritten recognition, Arabic recognition, Digits recognition, Document recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
1168 Effect of Scene Changing on Image Sequences Compression Using Zero Tree Coding

Authors: Mbainaibeye Jérôme, Noureddine Ellouze

Abstract:

We study in this paper the effect of the scene changing on image sequences coding system using Embedded Zerotree Wavelet (EZW). The scene changing considered here is the full motion which may occurs. A special image sequence is generated where the scene changing occurs randomly. Two scenarios are considered: In the first scenario, the system must provide the reconstruction quality as best as possible by the management of the bit rate (BR) while the scene changing occurs. In the second scenario, the system must keep the bit rate as constant as possible by the management of the reconstruction quality. The first scenario may be motivated by the availability of a large band pass transmission channel where an increase of the bit rate may be possible to keep the reconstruction quality up to a given threshold. The second scenario may be concerned by the narrow band pass transmission channel where an increase of the bit rate is not possible. In this last case, applications for which the reconstruction quality is not a constraint may be considered. The simulations are performed with five scales wavelet decomposition using the 9/7-tap filter bank biorthogonal wavelet. The entropy coding is performed using a specific defined binary code book and EZW algorithm. Experimental results are presented and compared to LEAD H263 EVAL. It is shown that if the reconstruction quality is the constraint, the system increases the bit rate to obtain the required quality. In the case where the bit rate must be constant, the system is unable to provide the required quality if the scene change occurs; however, the system is able to improve the quality while the scene changing disappears.

Keywords: Image Sequence Compression, Wavelet Transform, Scene Changing, Zero Tree, Bit Rate, Quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
1167 OCR/ICR Text Recognition Using ABBYY FineReader as an Example Text

Authors: A. R. Bagirzade, A. Sh. Najafova, S. M. Yessirkepova, E. S. Albert

Abstract:

This article describes a text recognition method based on Optical Character Recognition (OCR). The features of the OCR method were examined using the ABBYY FineReader program. It describes automatic text recognition in images. OCR is necessary because optical input devices can only transmit raster graphics as a result. Text recognition describes the task of recognizing letters shown as such, to identify and assign them an assigned numerical value in accordance with the usual text encoding (ASCII, Unicode). The peculiarity of this study conducted by the authors using the example of the ABBYY FineReader, was confirmed and shown in practice, the improvement of digital text recognition platforms developed by Electronic Publication.

Keywords: ABBYY FineReader system, algorithm symbol recognition, OCR/ICR techniques, recognition technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
1166 Intention Recognition using a Graph Representation

Authors: So-Jeong Youn, Kyung-Whan Oh

Abstract:

The human friendly interaction is the key function of a human-centered system. Over the years, it has received much attention to develop the convenient interaction through intention recognition. Intention recognition processes multimodal inputs including speech, face images, and body gestures. In this paper, we suggest a novel approach of intention recognition using a graph representation called Intention Graph. A concept of valid intention is proposed, as a target of intention recognition. Our approach has two phases: goal recognition phase and intention recognition phase. In the goal recognition phase, we generate an action graph based on the observed actions, and then the candidate goals and their plans are recognized. In the intention recognition phase, the intention is recognized with relevant goals and user profile. We show that the algorithm has polynomial time complexity. The intention graph is applied to a simple briefcase domain to test our model.

Keywords: Intention recognition, intention, graph, HCI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3396
1165 Effective Traffic Lights Recognition Method for Real Time Driving Assistance Systemin the Daytime

Authors: Hyun-Koo Kim, Ju H. Park, Ho-Youl Jung

Abstract:

This paper presents an effective traffic lights recognition method at the daytime. First, Potential Traffic Lights Detector (PTLD) use whole color source of YCbCr channel image and make each binary image of green and red traffic lights. After PTLD step, Shape Filter (SF) use to remove noise such as traffic sign, street tree, vehicle, and building. At this time, noise removal properties consist of information of blobs of binary image; length, area, area of boundary box, etc. Finally, after an intermediate association step witch goal is to define relevant candidates region from the previously detected traffic lights, Adaptive Multi-class Classifier (AMC) is executed. The classification method uses Haar-like feature and Adaboost algorithm. For simulation, we are implemented through Intel Core CPU with 2.80 GHz and 4 GB RAM and tested in the urban and rural roads. Through the test, we are compared with our method and standard object-recognition learning processes and proved that it reached up to 94 % of detection rate which is better than the results achieved with cascade classifiers. Computation time of our proposed method is 15 ms.

Keywords: Traffic Light Detection, Multi-class Classification, Driving Assistance System, Haar-like Feature, Color SegmentationMethod, Shape Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
1164 A New Biologically Inspired Pattern Recognition Spproach for Face Recognition

Authors: V. Kabeer, N.K.Narayanan

Abstract:

This paper reports a new pattern recognition approach for face recognition. The biological model of light receptors - cones and rods in human eyes and the way they are associated with pattern vision in human vision forms the basis of this approach. The functional model is simulated using CWD and WPD. The paper also discusses the experiments performed for face recognition using the features extracted from images in the AT & T face database. Artificial Neural Network and k- Nearest Neighbour classifier algorithms are employed for the recognition purpose. A feature vector is formed for each of the face images in the database and recognition accuracies are computed and compared using the classifiers. Simulation results show that the proposed method outperforms traditional way of feature extraction methods prevailing for pattern recognition in terms of recognition accuracy for face images with pose and illumination variations.

Keywords: Face recognition, Image analysis, Wavelet feature extraction, Pattern recognition, Classifier algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
1163 Head-Mounted Displays for HCI Validations While Driving

Authors: D. Reich, R. Stark

Abstract:

To provide reliable and valid findings when evaluating innovative in-car devices in the automotive context highly realistic driving environments are recommended. Nowadays, in-car devices are mostly evaluated due to driving simulator studies followed by real car driving experiments. Driving simulators are characterized by high internal validity, but weak regarding ecological validity. Real car driving experiments are ecologically valid, but difficult to standardize, more time-robbing and costly. One economizing suggestion is to implement more immersive driving environments when applying driving simulator studies. This paper presents research comparing non-immersive standard PC conditions with mobile and highly immersive Oculus Rift conditions while performing the Lane Change Task (LCT). Subjective data with twenty participants show advantages regarding presence and immersion experience when performing the LCT with the Oculus Rift, but affect adversely cognitive workload and simulator sickness, compared to non-immersive PC condition.

Keywords: LCT, immersion, oculus rift, presence, situation awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1346
1162 An Effective Decision-Making Strategy Based on Multi-Objective Optimization for Commercial Vehicles in Highway Scenarios

Authors: Weiming Hu, Xu Li, Xiaonan Li, Zhong Xu, Li Yuan, Xuan Dong

Abstract:

Maneuver decision-making plays a critical role in high-performance intelligent driving. This paper proposes a risk assessment-based decision-making network (RADMN) to address the problem of driving strategy for the commercial vehicle. RADMN integrates two networks, aiming at identifying the risk degree of collision and rollover and providing decisions to ensure the effectiveness and reliability of driving strategy. In the risk assessment module, risk degrees of the backward collision, forward collision and rollover are quantified for hazard recognition. In the decision module, a deep reinforcement learning based on multi-objective optimization (DRL-MOO) algorithm is designed, which comprehensively considers the risk degree and motion states of each traffic participant. To evaluate the performance of the proposed framework, Prescan/Simulink joint simulation was conducted in highway scenarios. Experimental results validate the effectiveness and reliability of the proposed RADMN. The output driving strategy can guarantee the safety and provide key technical support for the realization of autonomous driving of commercial vehicles.

Keywords: Decision-making strategy, risk assessment, multi-objective optimization, commercial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 592
1161 Emissions of Euro 3-5 Passenger Cars Measured Over Different Driving Cycles

Authors: C. A. Alves, A. I. Calvo, D. J. Lopes, T. Nunes, A. Charron, M. Goriaux, P. Tassel, P. Perret

Abstract:

The reduction in vehicle exhaust emissions achieved in the last two decades is offset by the growth in traffic, as well as by changes in the composition of emitted pollutants. The present investigation illustrates the emissions of in-use gasoline and diesel passenger cars using the official European driving cycle and the ARTEMIS real-world driving cycle. It was observed that some of the vehicles do not comply with the corresponding regulations. Significant differences in emissions were observed between driving cycles. Not all pollutants showed a tendency to decrease from Euro 3 to Euro 5.

Keywords: Chassis dynamometer, driving cycles, emission factors, exhaust emissions, light-duty vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
1160 A Robust Visual SLAM for Indoor Dynamic Environment

Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to gather information in unknown environments to achieve simultaneous localization and mapping of the environment. This technology has a wide range of applications in autonomous driving, virtual reality, and other related fields. Currently, the research advancements related to VSLAM can maintain high accuracy in static environments. But in dynamic environments, the presence of moving objects in the scene can reduce the stability of the VSLAM system, leading to inaccurate localization and mapping, or even system failure. In this paper, a robust VSLAM method was proposed to effectively address the challenges in dynamic environments. We proposed a dynamic region removal scheme based on a semantic segmentation neural network and geometric constraints. Firstly, a semantic segmentation neural network is used to extract the prior active motion region, prior static region, and prior passive motion region in the environment. Then, the lightweight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static regions and dynamic regions. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under a high dynamic environment.

Keywords: Dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179
1159 Persian Printed Numeral Characters Recognition Using Geometrical Central Moments and Fuzzy Min-Max Neural Network

Authors: Hamid Reza Boveiri

Abstract:

In this paper, a new proposed system for Persian printed numeral characters recognition with emphasis on representation and recognition stages is introduced. For the first time, in Persian optical character recognition, geometrical central moments as character image descriptor and fuzzy min-max neural network for Persian numeral character recognition has been used. Set of different experiments on binary images of regular, translated, rotated and scaled Persian numeral characters has been done and variety of results has been presented. The best result was 99.16% correct recognition demonstrating geometrical central moments and fuzzy min-max neural network are adequate for Persian printed numeral character recognition.

Keywords: Fuzzy min-max neural network, geometrical centralmoments, optical character recognition, Persian digits recognition, Persian printed numeral characters recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724