
 
Abstract—Image recognition enables machine-like robotics to 

understand a scene and plays an important role in computer vision 
applications. Computer vision platforms as physical infrastructure, 
supporting Neural Networks for image recognition, are deterministic 
to leverage the performance of different Neural Networks. In this paper, 
three different computer vision platforms – edge AI (Jetson Nano, with 
4GB), a standalone laptop (with RTX 3000s, using CUDA), and a web-
based device (Google Colab, using GPU) are investigated. In the case 
study, four prominent neural network architectures (including AlexNet, 
VGG16, GoogleNet, and ResNet (34/50)), are deployed. By using 
public ImageNets (Cifar-10), our findings provide a nuanced 
perspective on optimizing image recognition tasks across Edge-AI 
platforms, offering guidance on selecting appropriate neural network 
structures to maximize performance under hardware constraints. 

 
Keywords—AlexNet, VGG, GoogleNet, ResNet, ImageNet, Cifar-

10, Edge AI, Jetson Nano, CUDA, GPU. 

I. INTRODUCTION 

A. Overview of Image Recognition 

MAGE recognition stands as one of the most dynamic and 
integral components of computer vision, a field that imparts 

machines with the ability to interpret and understand visual 
information from the world. As a cornerstone of computer 
vision, image recognition involves the identification and 
analysis of objects, features, and patterns within images to 
emulate human vision using digital systems. The pursuit of 
image recognition began as an endeavor to mimic human visual 
perception, a complex process where the brain interprets visual 
stimuli conveyed by the eyes. Early efforts in the field involved 
simple pattern recognition, which evolved with the advent of 
machine learning algorithms, paving the way for more 
advanced image analysis. Advancements in machine learning, 
particularly deep learning, have propelled image recognition 
forward. Neural Networks, throughout Artificial Neural 
Networks (ANNs), especially Convolutional Neural Networks 
(CNNs), have become standard tools for tackling image 
recognition tasks due to their architecture, which mirrors the 
hierarchical pattern recognition of the human visual cortex. 
With the unprecedented development of AI technologies, 
computer vision applications using image recognition will 
trigger the revolution in remote sensing and industry 
automation [1]-[5]. 
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B. Hardware Platforms in Computer Vision 

Computer vision applications are widely recognized for their 
transformative role in various technological advancements, 
such as self-driving cars, facial recognition, and diagnostic 
systems. These innovations are deeply dependent on the 
underlying computer vision hardware support since they 
necessitate several key components. Firstly, image sensors, 
including technologies like lidar, radar, and cameras, are 
essential for acquiring information and reading data. Secondly, 
controlling systems are imperative for facilitating 
communication with peripheral parts or ports. For instance, 
external devices such as servos are often utilized to maneuver a 
mounted camera to track mobile objects. Lastly, the 
incorporation of flexible machine-learning libraries is 
fundamental for the training of learning algorithms, enabling 
them to interpret and learn from visual data [6]-[9]. 

In the realm of computer vision infrastructure, edge AI 
represents a cutting-edge innovation that has been extensively 
incorporated into numerous computer vision projects. The 
widespread adoption of edge AI is attributed to its significant 
benefits. It is portable and versatile, allowing for easy 
integration with other devices. Moreover, it offers an on-device 
vision system that operates independently from cluster 
computing, eliminating reliance on external computing clusters. 
This autonomy enhances the efficiency of data processing, 
enabling faster responses compared to systems that depend on 
cluster computing [7]-[9]. 

Therefore, it is imperative to recognize that computer vision 
platforms, serving as hardware that supports Neural Networks 
for image recognition, are as vital as the neural network 
technologies themselves. Consequently, there is a pressing need 
for these platforms to be more coherently and extensively 
addressed within the research community, given their crucial 
role in advancing computer vision applications. 

C. Studying Both Neural Networks and Edge-AI 

On the other hand, as an important factor of image 
recognition, constructing Neural Networks is critical for 
training smart vision machines. Therefore, Neural Networks 
and edge AI need to be considered together to develop smart 
vision systems. 

This paper tends to answer the following two questions: 
1) Are the cross-computer vision platforms' Neural Networks 

credible for computer vision applications? 
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2) How do different computer vision platforms influence 
image recognition? 

The structure of the paper is systematically outlined in the 
following chapters: Section II delves into the various 
constructions of Neural Networks and ImageNets. Section III 
presents case studies of image recognition across different 
computer vision systems. Methodologies are comprehensively 
detailed in Section IV. Key observations derived from 
experiments are discussed in Section V. The paper culminates 
with Section VI, which provides the conclusion. 

II. BACKGROUND AND RELATED WORK 

A. Architectures of Neural Networks 

As LeCun et al. had advanced lenet5 in the late 1990s [10], 
[11], which excelled in handwritten recognition, the 
development of Neural Networks has been turned into brand-
new pages. The new technologies in Neural Networks focus on 
the construction of architectures with varying depths and 
numbers of hidden layers to act as feature maps. In particular, 
in 2012, AlexNet was proposed with five convolutional hidden 
layers and three fully connected layers [12]. In 2015, VGG16 
was advanced as a representative of successfully studying the 
depth Neural Networks because VGG16, as self-explanatory, 
has 16 convolution hidden layers [13]. The significance of 
VGG16 is that it overcomes the gradient vanish issue, which is 
the side effect brought by the requirement of pursuing almost 
no difference between the prediction and targets by 
constructing very deep Networks. Afterward, research on the 
depth of Neural Networks has become unprecedented. In the 
same year, GoogleNet was introduced as an effective tool for 
image recognition [14]. The evolution narrative concludes with 
a mention of Resnet [15], which, in its 34- or 50-layer 
configurations, demonstrated superior efficiency in operation in 
2016. Each of these milestones reflects the rapid and substantial 
progress in the field of deep learning and computer vision. 

B. ImageNet and Cifar-10 

To leverage different Neural Networks for image 
recognition, it is necessary to collect image data sets. With the 
growth of Neural Network developments, massive public image 
data sets or image databases are accessible [16]. Typically, 
there are MNIST as handwritten images [17]. There are also 
large-scale and comprehensive image databases that enable to 
meet the requirements for different applications in image 
recognition. The Kaggle as ImageNet is a striking example, 
where developers can find different human being's faces from 
different races and apply for facial recognition [18].  

In principle, ImageNet is to categorize the images regarding 
topic-specific class labels, such as traffic, animals, vegetables, 
and fruits. Therefore, the ImageNet provides both images and 
class labels in the format of the image’s name [16].  

Cifar-10 is a public and charge-free ImageNet, with 50K 
images of training sets and 10K as testing sets. As self-
explanatory, Cifar-10 has ten labors, which are: 1). airplane, 2). 
automobile, 3). bird, 4). cat, 5). deer, 6). dog, 7). frog, 8). horse, 
9). ship, 10). Truck. In Cifar-10, the training data sets have 5K 

sizes of images under each class and the testing sets have 1K 
size under each class [19].  

C. Image Recognition Merits 

In assessing the efficacy of various Neural Networks, it is 
essential to apply a standardized set of criteria. The Image 
Large Scale Visual Recognition Challenge (ILSVRC) suggests 
two primary benchmarks for this purpose. The first benchmark 
is the accuracy rate, which measures the precision of image 
recognition when utilizing Neural Networks in conjunction 
with individual computer vision platforms. The second 
benchmark is the efficiency of the computer vision platforms in 
executing Neural Networks specifically for the task of image 
recognition. These benchmarks are critical for understanding 
the performance and utility of Neural Networks in practical 
applications [20]-[22]. 

III. CASE STUDIES 

A. Three Different Computer Vision Platforms 

To find an optimized edge-AI device for image recognition, 
Jetson Nano is considered. Because Jetson Nano outperforms 
for the flexibility of AI library usage. In structure, Jetson Nano 
is constituted of two parts: hardware and software. The 
hardware contains a Jetson Nano 4 GB motherboard packaged 
in an acrylic case, Wi-Fi (with ethernet chip card), and the 
cameras (raspberry Pi cam). The software is Jetpack SDK_4.6 
and ML-related libraries [23]. 

The second computer vision system is the NVIDIA GeForce 
RTX 3000 laptop. To use GPU resources, it is necessary to set 
up CUDA. The configuration of CUDA takes steps, for the 
installation in the laptop. Step One is to install the CUDA 
toolkit. As the GeForce RTX 3000 is the pattern in the laptop, 
the installation version of the CUDA toolkit is selected as 11.5. 
Step Two is to download the CuDNN library with version 8.3, 
due to the GeForce RTX 3000 laptop. Step Three is to add 
related files from the CuDNN to the installed CUDA toolkit 
V11.5. Step Four is to pip-install PyTorch in the GeForce RTX 
3000 laptop. 

The third computer vision system is Google Colab, which is 
web-based. Google Colab has characteristics, that are listed 
below [24]: 
 Executing the code on Google Colab does not require any 

Python configuration on the local machine. 
 Google Colab has its own built-in and ML-related libraries, 

which is convenient for ML-related applications. 
 It has cloud-based running time for ML-related models and 

gets GPU support. 
As a free resource, Google Colab was used for the 

experiment containing one GPU.  

B. Experiment Process 

In the experiment, four prominent neural networks—
AlexNet, VGG16, GoogLeNet, and ResNet (34/50), have been 
implemented and evaluated their performance for image 
recognition. Meanwhile, three different computer vision 
platforms - the Jetson Nano, a standalone laptop with RTX 
3000s using CUDA, and Google Colab with GPU support, are 
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alternatively used for image recognition. This research aims to 
understand how these Neural Networks' accuracy and time 
efficiency for image recognition tasks are influenced by the 
hardware capabilities of the platforms on which they are 
implemented.  

On the other hand, for the employment of Cifar-10, training 
sets with the size of 50,000 are used for image recognition 
running in NVIDIA GeForth3000 Laptop and Google Colab. 
Testing sets with the size of 10,000 in Cifar-10 are used for 
image recognition on the Jetson Nano platform.  

IV. METHODOLOGY 

The experiments are to focus on the performance evaluation 
of different four Neural Networks (AlexNet, VGG, GoogleNet, 
and Resnet). Parameterizations are manipulated to testify to real 
performance in a neural network. The structure of Neural 
Networks, size of testing sets in Cifar-10, and confidence level 
are considered in the experiments [24]-[26]. The second 
manipulation in the experiment is to obtain the prediction 
results regarding each class label. Typically, the fed data in the 
machine learning model are of two types: X (images) and Y 
(Class labels). In the Jetson Nano experiments, the overall data 
are one type, which is images. As images in Cifar-10 are 
categorized and saved in each class label’s folder, reading the 
same folder’s files means getting the images under the same 
class label. In this way, the class labels can be obtained by 
reading the folder’s name [25]-[27]. 

To specify the data process in experiments, the pseudo codes 
are shown in Table I. 
 

TABLE I 
PSEUDOCODE FOR IMAGE RECOGNITION ON JETSON NANO 

Algorithm: Image Recognition on Jetson Nano 
Input: File path of the image, class label, size of testing set 
Output: Classification result, running time, accuracy of testing set 
 
BEGIN 
    IMPORT Jetson PyTorch libraries 
    IMPORT time library 
    INITIALIZE timestamp 
    DEFINE class label and size of testing set 
     
    FOR each image in the testing set DO 
        READ the file using the file path 
        LOAD the image using the file name 
        INITIALIZE the neural network using Jetson libraries 
        CLASSIFY the image 
        RECORD the time taken for the process 
        COMPUTE the accuracy for the testing set 
    ENDFOR 
     
    DISPLAY running time 
    DISPLAY accuracy of the size-specific testing set 
END 
 

V. KEY OBSERVATIONS AND EXPERIMENT RESULTS 

After the experiments are conducted, the results of the 
comparison between the two CV platforms of the GeForce 
RTX3060 Laptop and Google Colab are shown in Tables II-IV.  

In Table II, except for training time, when training accuracy 
is compared, the pair-wise data in each network are similar 

between the GeForce RTX3060 Laptop and Google Colab. For 
example, when the network of VGG16 is focused if rounded 
into an integer, both the training accuracy and testing accuracy 
are the same in the computer vision platforms of Google Colab 
and GeForce RTX 3000 Laptop. The same is true in the network 
of AlexNet. Even though the network of Resnet34 has different 
testing accuracy almost by 1 between the two computer vision 
platforms of Google Colab and GeForce RTX3000 Laptop, the 
training accuracy is the same between the two CV platforms. 
 

TABLE II 
THE RESULTS UNDER BOTH GOOGLE COLAB AND GEFORCE RTX3000 

LAPTOP WITH BATCH SIZE OF 64 AND EPOCH SIZE OF 10 

Network Resnet34 VGG16 Alexnet 

CV 
Platform 

Google
Colab 

GeFroce
RTX3060 

Laptop

Google 
Colab 

GeFroce 
RTX3060  

Laptop 

Google
Colab 

GeFroce
RTX3060 

Laptop
Training

time 
(Minutes)

22.3 17.92 18.1 18.03 180.15 6.23 

Training
set 

accuracy
(%)

(83.31 83.97) (90.48 90.48) (10.02 10.02) 

Testing
set 

accuracy
(%)

(77.06 78.17) (82.51 82.35) (10 10) 

 
TABLE III 

THE RESULTS UNDER BOTH GOOGLE COLAB AND GEFORCE RTX3000 

LAPTOP WITH BATCH SIZE OF 256 AND EPOCH SIZE OF 10 

Network Resnet34 VGG16 AlexNet 

CV 
platform 

GeoForce
RTX3000

Laptop

Google
Colab 

GeoForce 
RTX3000 

Laptop 

Google 
Colab 

GeoForce
RTX3000

Laptop

Google
Colab 

Training
time 

(Minutes)
17.16 20.69 16.36 16.71 5.25 135.66 

Training
set 

accuracy
(%)

(76.55 79.74) (84.27 84.16) (72.94 68.43) 

Testing
set 

accuracy
(%)

(70.23 73.55) (78.72 78.94) (68.94 65.53) 

 
TABLE IV 

THE RESULTS UNDER BOTH GOOGLE COLAB AND GEFORCE RTX3000 LAPTOP 

WITH A BATCH SIZE OF 256 AND EPOCH SIZE OF 50 

Network Resnet34 VGG16 AlexNet 

CV  
Platforms

GeoForce
RTX 3000

Laptop

Google
Colab 

GeoForce 
RTX 3000 

Laptop 

Google 
Colab 

GeoForce
RTX 3000

Laptop

Google
Colab 

Training
time 

(Minutes)
80.44 104.24 94.87 83.56 27.31 663.3 

Training
set 

accuracy 
(%)

(99.29 99.4) (99.4 99.45) (94.75 94.52) 

Testing
set 

accuracy
(%)

(82.21 79.13) (84.23 84.36) (76.07 76.18) 

 

In Table III, even though with little difference between pair-
wise comparisons of different CV platforms running the same 
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Neural Network, the increasing size of fed data has similar 
observations as well as those from Table II.  

In Table IV, training accuracy and testing accuracy are high 
enough to indicate good performances for image recognition. 
Because the training accuracy in Resnet34 and VGG16 is over 
99% in the CV platforms of GeForce RTX3060 Laptop and 
Google Colab. Even though the shallow net is like AlexNet, the 
training accuracy is still high at 94% for image recognition. For 
the testing accuracy, although the difference between the two 
CV platforms is quite different by 3 in Resnet34, the rest of the 
testing accuracy is quite good because there are almost the same 
between pair-wise CV platforms’ comparison in each group of 

Neural Networks. Therefore, the hyperparameter with a batch 
size of 256 and epoch size of 50 is a very good pattern for image 
recognition.  

The results under Jetson platforms with four different Neural 
Networks are shown in Tables V-VIII.  

In Table V, from left to right, the network follows the 
ascendent order of running time. From this, GoogleNet is the 
most efficient because GoogleNet takes the least time for image 
recognition. However, the size of the testing data set by 1 is not 
a good choice, because the least class could be recognized 
regarding a lot of testing accuracy with their values by 0.  

 
TABLE V 

FOUR NETWORK RESULTS OF IMAGE RECOGNITION ON JETSON NANO WITH THE CIFAR-10 TESTING SIZE OF 1 

Networks 
GoogleNet Resnet50 AlexNet VGG16 

Running 
time (Seconds) 

Testing set  
accuracy (%) 

Running 
time (Seconds)

Testing set 
accuracy (%)

Running 
time (Seconds)

Testing set 
accuracy (%) 

Running 
time (Seconds) 

Testing set
accuracy (%)

airplane 5.724043 100 6.520989 0 7.77753 100 18.11255 0 

automobile 5.427471 100 6.875408 0 7.891306 0 15.53893 0 

bird 5.589767 0 6.015244 0 7.815665 100 13.97094 100 

cat 5.319031 100 6.099291 100 7.65399 0 14.26445 0 

deer 5.323715 100 6.337552 0 7.679433 100 13.19881 0 

dog 5.695685 100 5.999331 100 7.833215 0 12.8648 0 

frog 5.756029 0 6.012182 0 7.478314 100 13.81173 0 

horse 5.556313 0 6.146549 100 7.775621 0 13.80585 0 

ship 5.584796 0 6.089871 100 7.384751 0 12.74642 0 

truck 5.565146 100 6.095932 0 7.315367 100 11.99069 0 

 
TABLE VI 

FOUR NETWORK RESULTS OF IMAGE RECOGNITION ON JETSON NANO WITH THE CIFAR-10 TESTING SIZE OF 5 

Networks 
GoogleNet Resnet50 AlexNet VGG16 

Running 
time (Seconds) 

Testing set  
accuracy (%) 

Running 
time (Seconds)

Testing set 
accuracy (%)

Running 
time (Seconds)

Testing set 
accuracy (%) 

Running 
time (Seconds) 

Testing set 
accuracy (%)

airplane 10.89383 60 13.72396 0 20.32813 60 57.77033 0 

automobile 10.28322 80 13.08999 20 20.24906 0 65.11058 40 

bird 10.15842 60 13.06802 40 20.3465 60 66.35648 20 

cat 9.990562 80 13.04256 60 20.52468 60 67.5471 0 

deer 10.30233 60 13.46593 20 20.2298 100 62.55218 0 

dog 10.07325 80 13.22767 60 20.59694 40 65.97516 0 

frog 10.19674 40 13.2374 60 20.19881 60 65.94221 0 

horse 10.35573 0 13.11108 60 20.52874 80 64.95192 0 

ship 10.17637 60 13.47306 60 20.75798 80 66.49997 0 

truck 10.27983 100 13.40179 40 20.19967 60 67.37831 0 

 
TABLE VII 

FOUR NETWORK RESULTS OF IMAGE RECOGNITION ON JETSON NANO WITH THE CIFAR-10 TESTING SIZE OF 50 

Networks 
GoogleNet Resnet50 AlexNet VGG16 

Running 
time (Seconds) 

Testing set  
accuracy (%) 

Running 
time (Seconds)

Testing set 
accuracy (%)

Running 
time (Seconds)

Testing set 
accuracy (%) 

Running 
time (Seconds) 

Testing set 
accuracy (%)

airplane 61.97039 50 91.97914 48 164.083 46 510.7569 18 

automobile 61.88198 60 92.39085 38 164.6572 60 477.3398 20 

bird 61.87849 68 92.09842 56 163.8739 72 603.0666 8 

cat 62.13872 68 92.24445 42 164.4326 60 617.368 4 

deer 61.92081 62 92.25239 46 164.706 70 604.8188 0 

dog 62.25101 66 92.18049 50 164.4071 48 557.7404 2 

frog 62.09995 30 92.11525 52 165.0242 62 586.9518 4 

horse 62.06949 44 92.22779 48 164.6422 62 637.5138 4 

ship 61.90225 64 91.87517 54 164.2356 68 602.4838 12 

truck 61.92471 52 91.98725 38 164.9788 70 519.6955 8 
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TABLE VIII 
FOUR NETWORK RESULTS OF IMAGE RECOGNITION ON JETSON NANO WITH THE CIFAR-10 TESTING SIZE OF 100 

Networks GoogleNet Resnet50 AlexNet VGG16 

 
Running 

time 
(Seconds) 

Testing 
set 

accuracy (%) 

Running 
time 

(Seconds)

Testing 
set 

accuracy (%)

Running 
time 

(Seconds)

Testing 
set 

accuracy (%)

Running 
time 

(Seconds) 

Testing 
set 

accuracy (%)
airplane 127.1792 49 179.3506 49 324.9795 49 1142.905 16 

automobile 123.7433 54 179.2401 41 325.1481 59 888.5286 19 

bird 121.0072 54 179.1602 57 324.708 68 842.7982 7 

cat 120.5396 57 178.9847 39 324.6796 50 847.4688 4 

deer 121.3258 62 178.9692 41 324.8438 71 741.342 1 

dog 120.5887 66 179.1365 51 323.0592 43 808.4374 4 

frog 120.5712 28 179.1445 56 321.5237 65 782.5686 5 

horse 121.1093 45 179.2257 42 320.3662 53 761.6431 3 

ship 120.9289 56 179.0631 53 320.085 68 1175.652 7 

truck 121.3233 56 178.8052 33 319.0226 62 1030.62 11 

 

In Table VI, the performance of VGG16 is not good for 
image recognition because there are plenty of zeros as the 
testing accuracy in VGG16. In contrast, image recognition in 
the rest networks is non-zero. This illustrates that the structure 
of Neural Networks, either shallow or deep, is not an absolute 
index to determine the performance of image recognition.  

In Table VII, when the size of testing sets increased by 50, 
GoogleNet outperformed, compared with the rest of the 
networks. Because GoogleNet takes less time but has relatedly 
high testing accuracy. 

In Table VIII, GoogleNet is superior to the rest networks, for 
image recognition. Under the condition that testing accuracy in 
four networks is almost the same, the efficiency running for 
image recognition becomes critical to deciding the performance 
of the networks.  

To sum up, this study highlights four key observations: 
1. Both the GeForce RTX 3060 and Google Colab exhibit 

comparable training and testing accuracy, diverging mainly 
in the training time required. This reinforces the credibility 
of cross-platform Neural Networks for computer vision 
tasks. 

2. Batch size influences image recognition modestly when 
below 256. Specifically, a batch size of 256 coupled with 
50 epochs can yield a training accuracy of nearly 99%. 
Conversely, a smaller batch size of 64 suggests that batch 
and epoch sizes collectively affect training outcomes. 

3. In terms of quantitative output accuracy, the Jetson Nano 
falls short of the capabilities offered by the GeForce RTX 
3000 and Google Colab due to its limited capacity. 

4. GoogleNet and AlexNet strike an optimal balance between 
efficiency and testing accuracy for image recognition tasks, 
particularly when utilizing smaller subsets of ImageNet. 

VI. CONCLUSION 

The study presented offers two notable contributions: 
1. It facilitates the comparative evaluation of four Neural 

Networks for image recognition efficiency and accuracy 
using a consistent dataset, ImageNet - Cifar10. 

2. It examines the impact of various computer vision 
platforms on the performance of these Neural Networks, 
using the same dataset and evaluation metrics. 

Future research will delve further into image recognition, 
examining a broader range of data sizes from different 
computer vision platforms, exploring the architecture of Neural 
Networks, and adjusting hyperparameters to uncover deeper 
insights into the interplay among these elements.  
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