Search results for: Nature wind situation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2060

Search results for: Nature wind situation

1970 A Wind Farm Reduced Order Model Using Integral Manifold Theory

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Due to the increasing penetration of wind energy, it is necessary to possess design tools that are able to simulate the impact of these installations in utility grids. In order to provide a net contribution to this issue a detailed wind park model has been developed and is briefly presented. However, the computational costs associated with the performance of such a detailed model in describing the behavior of a wind park composed by a considerable number of units may render its practical application very difficult. To overcome this problem integral manifolds theory has been applied to reduce the order of the detailed wind park model, and therefore create the conditions for the development of a dynamic equivalent which is able to retain the relevant dynamics with respect to the existing a.c. system. In this paper integral manifold method has been introduced for order reduction. Simulation results of the proposed method represents that integral manifold method results fit the detailed model results with a higher precision than singular perturbation method.

Keywords: Wind, Reduced Order, Integral Manifold.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
1969 Necessary Condition to Utilize Adaptive Control in Wind Turbine Systems to Improve Power System Stability

Authors: Javad Taherahmadi, Mohammad Jafarian, Mohammad Naser Asefi

Abstract:

The global capacity of wind power has dramatically increased in recent years. Therefore, improving the technology of wind turbines to take different advantages of this enormous potential in the power grid, could be interesting subject for scientists. The doubly-fed induction generator (DFIG) wind turbine is a popular system due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. With an increase in wind power penetration in the network and with regard to the flexible control of wind turbines, the use of wind turbine systems to improve the dynamic stability of power systems has been of significance importance for researchers. Subsynchronous oscillations are one of the important issues in the stability of power systems. Damping subsynchronous oscillations by using wind turbines has been studied in various research efforts, mainly by adding an auxiliary control loop to the control structure of the wind turbine. In most of the studies, this control loop is composed of linear blocks. In this paper, simple adaptive control is used for this purpose. In order to use an adaptive controller, the convergence of the controller should be verified. Since adaptive control parameters tend to optimum values in order to obtain optimum control performance, using this controller will help the wind turbines to have positive contribution in damping the network subsynchronous oscillations at different wind speeds and system operating points. In this paper, the application of simple adaptive control in DFIG wind turbine systems to improve the dynamic stability of power systems is studied and the essential condition for using this controller is considered. It is also shown that this controller has an insignificant effect on the dynamic stability of the wind turbine, itself.

Keywords: Almost strictly positive real, doubly-fed induction generator, simple adaptive control, subsynchronous oscillations, wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085
1968 Aerodynamic Study of Vehicle Wind Tunnel and Water Tunnel for Analysis of Bodies

Authors: E. T. L. Cöuras Ford, V. A. C. Vale, J. U. L. Mendes

Abstract:

The simulation in wind tunnel is used thoroughly to model real situations of drainages of air. Besides the automotive industry, a great number of applications can be numbered: dispersion of pollutant, studies of pedestrians’ comfort, and dispersion of particles. This work had the objective of visualizing the characteristics aerodynamics of two automobiles in different ways. To accomplish that drainage of air a fan that generated a speed exists (measured with anemometer of hot thread) of 4,1m/s and 4,95m/s. To visualize the path of the air through the cars, in the wind tunnel, smoke was used, obtained with it burns of vegetable oil. For “to do smoke” vegetable oil was used, that was burned for a tension of 20V generated by a thread of 2,5mm. The cars were placed inside of the wind tunnel with the drainage of “air-smoke” and photographed, registering like this the path lines around them, in the 3 different speeds.

Keywords: Aerodynamics, Vehicle Drag, Wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
1967 Performance Characteristics of Some Small Scale Wind Turbines Fabricated in Tanzania

Authors: Talam K. E, Kainkwa R. M.

Abstract:

In this study, a field testing has been carried out to assess the power characteristics of some small scale wind turbines fabricated by one native technician from Tanzania. Two Horizontal Axis Wind Turbines (HAWTs), one with five and other with sixteen blades were installed at a height of 2.4m above the ground. The rotation speed of the rotor blade and wind speed approaching the turbines were measured simultaneously. The data obtained were used to determine how the power coefficient varies as a function of tip speed ratio and also the way in which the output power compares with available power in the wind for each turbine. For the sixteen-bladed wind turbine the maximum value of power coefficient of about 0.14 was found to occur at a tip speed ratio of around 0.65 while for the five bladed, these extreme values were respectively attained at approximately 0.2 and 1.7. The five bladed-wind turbine was found to have a higher power efficiency of about 37.5% which is higher compared to the sixteen bladed wind turbine whose corresponding value was 14.37%. This is what would be expected, as the smaller the number of blades of a wind turbine, the higher the electric power efficiency and vice versa. Some of the main reasons for the low efficiency of these machines may be due to the low aerodynamic efficiency of the turbine or low efficiency of the transmission mechanisms such as gearbox and generator which were not examined in this study. It is recommended that some other researches be done to investigate the power efficiency of such machines from different manufacturers in the country. The manufacturers should also be encouraged to use fewer blades in their designs so as to improve the efficiency and at the same time reduce materials used to fabricate the blades. The power efficiency of the electric generators used in the locally fabricated wind turbines should also be examined.

Keywords: Tip speed ratio, Power coefficients and power efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3028
1966 The Nexus between Wind Energy, Biodiversity Protection and Social Acceptance: Evidence of Good Practices from Greece, Latvia and Poland

Authors: Christos Bouras, Eirini Stergiou, Charitini Karakostaki, Vasileios Tzanos, Vasileios Kokkinos

Abstract:

Wind power represents a major pathway to curtailing greenhouse gas emissions and thus reducing the rate of climate change. A wind turbine runs practically emission-free for 20 years, representing one of the most environmentally sustainable sources of energy. Nevertheless, environmental and biodiversity concerns can often slow down or halt the deployment of wind farms due to local public opposition. This opposition is often fuelled by poor relationships between wind energy stakeholders and civil society, which in many cases led to conflictual protests and property damage. In this context, addressing these concerns is essential in order to facilitate the proliferation of wind farms in Europe and the phase-out of fossil fuels from the energy mix. The aim of this study is to identify a number of good practices and cases to avoid increasing biodiversity protection at all stages of wind farms’ lifecycle in three participating countries, namely Greece, Latvia, and Poland. The results indicate that although available technological solutions are already being exploited worldwide, in these countries, there is still room for improvement. To address this gap, a set of policy recommendations is proposed to accomplish the wind energy targets in the near future while simultaneously mitigating the pertinent biodiversity risks.

Keywords: Biodiversity protection, environmental impact, social acceptance, wind energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73
1965 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes

Authors: V. Churkin, M. Lopatin

Abstract:

The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second – 95,3%.

Keywords: Bass model, generalized Bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
1964 Wind Tunnel Investigation of the Turbulent Flow around the Panorama Giustinelli Building for VAWT Application

Authors: M. Raciti Castelli, S. Mogno, S. Giacometti, E. Benini

Abstract:

A boundary layer wind tunnel facility has been adopted in order to conduct experimental measurements of the flow field around a model of the Panorama Giustinelli Building, Trieste (Italy). Information on the main flow structures has been obtained by means of flow visualization techniques and has been compared to the numerical predictions of the vortical structures spread on top of the roof, in order to investigate the optimal positioning for a vertical-axis wind energy conversion system, registering a good agreement between experimental measurements and numerical predictions.

Keywords: Boundary layer wind tunnel, flow around buildings, atmospheric flow field, vertical-axis wind turbine (VAWT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
1963 Wind Energy Status in Turkey

Authors: Mustafa Engin Başoğlu, Bekir Çakir

Abstract:

Since large part of electricity is generated by using fossil based resources, energy is an important agenda for countries. In this context, renewable energy sources are alternative to conventional sources due to the depletion of fossil resources, increasing awareness of climate change and global warming concerns. Solar, wind and hydropower energy are the main renewable energy sources. Among of them, since installed capacity of wind power has increased approximately eight times between 2008 - November of 2014, wind energy is a promising source for Turkey. Furthermore, signing of Kyoto Protocol can be accepted as a milestone for Turkey's energy policy. Turkish Government has announced Vision 2023 (energy targets by 2023) in 2010-2014 Strategic Plan prepared by Ministry of Energy and Natural Resources (MENR). Energy targets in this plan can be summarized as follows: Share of renewable energy sources in electricity generation is 30% of total electricity generation by 2023. Installed capacity of wind energy will be 20 GW by 2023. Other renewable energy sources such as solar, hydropower and geothermal are encouraged with new incentive mechanisms. Dependence on foreign energy is reduced for sustainability and energy security. On the other hand, since Turkey is surrounded by three coastal areas, wind energy potential is convenient for wind power application. As of November of 2014, total installed capacity of wind power plants is 3.51 GW and a lot of wind power plants are under construction with capacity 1.16 GW. Turkish government also encourages the locally manufactured equipments. In this context, one of the projects funded by private sector, universities and TUBİTAK names as MILRES is an important project aimed to promote the use wind energy in electricity generation. Within this project, wind turbine with 500 kW power has been produced and will be installed at the beginning of the 2015. After that, by using the experience obtained from the first phase of the project, a wind turbine with 2.5 MW power will be manufactured in an industrial scale.

Keywords: Wind energy, wind speed, Vision 2023, MILRES (national wind energy system), wind energy potential, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3223
1962 Stability Analysis of a Low Power Wind Turbine for the Simultaneous Generation of Energy through Two Electric Generators

Authors: Daniel Icaza, Federico Córdova, Chiristian Castro, Fernando Icaza, Juan Portoviejo

Abstract:

In this article, the mathematical model is presented, and simulations were carried out using specialized software such as MATLAB before the construction of a 900-W wind turbine. The present study was conducted with the intention of taking advantage of the rotation of the blades of the wind generator after going through a process of amplification of speed by means of a system of gears to finally mechanically couple two electric generators of similar characteristics. This coupling allows generating a maximum voltage of 6 V in DC for each generator and putting in series the 12 V DC is achieved, which is later stored in batteries and used when the user requires it. Laboratory tests were made to verify the level of power generation produced based on the wind speed at the entrance of the blades.

Keywords: Smart grids, wind turbine, modeling, renewable energy, robust control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
1961 Power Generation Potential of Dynamic Architecture

Authors: Ben Richard Hughes, Hassam Nasarullah Chaudhry

Abstract:

The main aim of this work is to establish the capabilities of new green buildings to ascertain off-grid electricity generation based on the integration of wind turbines in the conceptual model of a rotating tower [2] in Dubai. An in depth performance analysis of the WinWind 3.0MW [3] wind turbine is performed. Data based on the Dubai Meteorological Services is collected and analyzed in conjunction with the performance analysis of this wind turbine. The mathematical model is compared with Computational Fluid Dynamics (CFD) results based on a conceptual rotating tower design model. The comparison results are further validated and verified for accuracy by conducting experiments on a scaled prototype of the tower design. The study concluded that integrating wind turbines inside a rotating tower can generate enough electricity to meet the required power consumption of the building, which equates to a wind farm containing 9 horizontal axis wind turbines located at an approximate area of 3,237,485 m2 [14].

Keywords: computational fluid dynamics, green building, horizontal axis wind turbine, rotating tower, velocity gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3228
1960 Backstepping Controller for a Variable Wind Speed Energy Conversion System Based on a DFIG

Authors: Sara Mensou, Ahmed Essadki, Issam Minka, Tamou Nasser, Badr Bououlid Idrissi

Abstract:

In this paper we present a contribution for the modeling and control of wind energy conversion system based on a Doubly Fed Induction Generator (DFIG). Since the wind speed is random the system has to produce an optimal electrical power to the Network and ensures important strength and stability. In this work, the Backstepping controller is used to control the generator via two converter witch placed a DC bus capacitor and connected to the grid by a Filter R-L, in order to optimize capture wind energy. All is simulated and presented under MATLAB/Simulink Software to show performance and robustness of the proposed controller.

Keywords: Wind turbine, doubly fed induction generator, MPPT control, backstepping controller, power converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 712
1959 Study of the Effectiveness of Outrigger System for High-Rise Composite Buildings for Cyclonic Region

Authors: S. Fawzia, A. Nasir, T. Fatima

Abstract:

The demands of taller structures are becoming imperative almost everywhere in the world in addition to the challenges of material and labor cost, project time line etc. This paper conducted a study keeping in view the challenging nature of high-rise construction with no generic rules for deflection minimizations and frequency control. The effects of cyclonic wind and provision of outriggers on 28-storey, 42-storey and 57-storey are examined in this paper and certain conclusions are made which would pave way for researchers to conduct further study in this particular area of civil engineering. The results show that plan dimensions have vital impacts on structural heights. Increase of height while keeping the plan dimensions same, leads to the reduction in the lateral rigidity. To achieve required stiffness increase of bracings sizes as well as introduction of additional lateral resisting system such as belt truss and outriggers is required.

Keywords: Cyclonic wind regions, dynamic wind loads, Alongwind effects, Crosswind response, Fundamental frequency of vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2890
1958 Sensorless Sliding Power Control of Doubly Fed Induction Wind Generator Based on MRAS Observer

Authors: Hicham Serhoud, Djilani Benattous

Abstract:

In this paper present a sensorless maximum wind power extraction for variable speed constant frequency (VSCF) wind power generation systems with a doubly-fed induction generators (DFIG), to ensure stability and to impose the ideal feedback control solution despite of model uncertainties , using the principles of an active and reactive power controller (DPC) a robust sliding mode power control has been proposed to guarantees fast response times and precise control actions for control the active and reactive power independently. The simulation results in MATLAB/Simulink platform confirmed the good dynamic performance of power control approach for DFIGbased variable speed wind turbines.

Keywords: Doubly fed induction generator , sliding modecontrol, maximal wind energy capture, MRAS estimator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
1957 Design and Performance Analysis of a Supersonic Diffuser for Plasma Wing Tunnel

Authors: R.S Pugazenthi, Andy C. McIntosh

Abstract:

Plasma Wind Tunnels (PWT) are extensively used for screening and qualification of re-entry Thermel Protection System (TPS) materials. Proper design of a supersonic diffuser for plasma wind tunnel is of importance for achieving good pressurerecovery (thereby reducing vacuum pumping requirement & run time costs) and isolating downstream stream fluctuations from propagating costs) and isolating downstream stream fluctuationnts the details of a rapid design methodology successfully employed for designing supersonic diffuser for high power (several megawatts)plasma wind tunnels and numerical performance analysis of a diffuser configuration designed for one megawatt power rated plasma wind tunnel(enthalpy ~ 30 MJ/kg) using FLUENT 6.3® solver for different diffuser operating sub-atmospheric back-pressures.

Keywords: Compressible flow, plasma wind tunnel, re-entry, supersonic diffuser

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3839
1956 The Stability Analysis and New Torque Control Strategy of Direct-Driven PMSG Wind Turbines

Authors: Jun Liu, Feihang Zhou, Gungyi Wang

Abstract:

This paper expounds on the direct-driven PMSG wind power system control strategy, and analyses the stability conditions of the system. The direct-driven PMSG wind power system may generate the intense mechanical vibration, when wind speed changes dramatically. This paper proposes a new type of torque control strategy, which increases the system damping effectively, mitigates mechanical vibration of the system, and enhances the stability conditions of the system. The simulation results verify the reliability of the new torque control strategy.

Keywords: Damping, direct-driven PMSG wind power system, mechanical vibration, torque control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344
1955 Performance Analysis of an Island Power System Including Wind Turbines Operating under Random Wind Speed

Authors: Meng-Jen Chen, Yu-Chi Wu, Guo-Tsai Liu, Sen-Feng Lin

Abstract:

With continuous rise of oil price, how to develop alternative energy source has become a hot topic around the world. This study discussed the dynamic characteristics of an island power system operating under random wind speed lower than nominal wind speeds of wind turbines. The system primarily consists of three diesel engine power generation systems, three constant-speed variable-pitch wind turbines, a small hydraulic induction generation system, and lumped static loads. Detailed models based on Matlab/Simulink were developed to cater for the dynamic behavior of the system. The results suggested this island power system can operate stably in this operational mode. This study can serve as an important reference for planning, operation, and further expansion of island power systems.

Keywords: Diesel engine power generation system, constant-speed variable-pitch wind turbine, small hydraulic induction generation system, penetration, Matlab/Simulink, SimPowerSystems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
1954 Renewable Energy System Eolic-Photovoltaic for the Touristic Center La Tranca-Chordeleg in Ecuador

Authors: Christian Castro Samaniego, Daniel Icaza Alvarez, Juan Portoviejo Brito

Abstract:

For this research work, hybrid wind-photovoltaic (SHEF) systems were considered as renewable energy sources that take advantage of wind energy and solar radiation to transform into electrical energy. In the present research work, the feasibility of a wind-photovoltaic hybrid generation system was analyzed for the La Tranca tourist viewpoint of the Chordeleg canton in Ecuador. The research process consisted of the collection of data on solar radiation, temperature, wind speed among others by means of a meteorological station. Simulations were carried out in MATLAB/Simulink based on a mathematical model. In the end, we compared the theoretical radiation-power curves and the measurements made at the site.

Keywords: Hybrid system, wind turbine, modeling, simulation, validation, experimental data, panel, Ecuador.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
1953 Revival of the Modern Wing Sails for the Propulsion of Commercial Ships

Authors: Pravesh Chandra Shukla, Kunal Ghosh

Abstract:

Over 90% of the world trade is carried by the international shipping industry. As most of the countries are developing, seaborne trade continues to expand to bring benefits for consumers across the world. Studies show that world trade will increase 70-80% through shipping in the next 15-20 years. Present global fleet of 70000 commercial ships consumes approximately 200 million tonnes of diesel fuel a year and it is expected that it will be around 350 million tonnes a year by 2020. It will increase the demand for fuel and also increase the concentration of CO2 in the atmosphere. So, it-s essential to control this massive fuel consumption and CO2 emission. The idea is to utilize a diesel-wind hybrid system for ship propulsion. Use of wind energy by installing modern wing-sails in ships can drastically reduce the consumption of diesel fuel. A huge amount of wind energy is available in oceans. Whenever wind is available the wing-sails would be deployed and the diesel engine would be throttled down and still the same forward speed would be maintained. Wind direction in a particular shipping route is not same throughout; it changes depending upon the global wind pattern which depends on the latitude. So, the wing-sail orientation should be such that it optimizes the use of wind energy. We have made a computer programme in which by feeding the data regarding wind velocity, wind direction, ship-motion direction; we can find out the best wing-sail position and fuel saving for commercial ships. We have calculated net fuel saving in certain international shipping routes, for instance, from Mumbai in India to Durban in South Africa. Our estimates show that about 8.3% diesel fuel can be saved by utilizing the wind. We are also developing an experimental model of the ship employing airfoils (small scale wingsail) and going to test it in National Wind Tunnel Facility in IIT Kanpur in order to develop a control mechanism for a system of airfoils.

Keywords: Commercial ships, Wind diesel hybrid system, Wing-sail, Wind direction, Wind velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3887
1952 Electricity Power Planning: the Role of Wind Energy

Authors: Paula Ferreira, Madalena Araújo, M.E.J. O’Kelly

Abstract:

Combining energy efficiency with renewable energy sources constitutes a key strategy for a sustainable future. The wind power sector stands out as a fundamental element for the achievement of the European renewable objectives and Portugal is no exception to the increase of the wind energy for the electricity generation. This work proposes an optimization model for the long range electricity power planning in a system similar to the Portuguese one, where the expected impacts of the increasing installed wind power on the operating performance of thermal power plants are taken into account. The main results indicate that the increasing penetration of wind power in the electricity system will have significant effects on the combined cycle gas power plants operation and on the theoretically expected cost reduction and environmental gains. This research demonstrated the need to address the impact that energy sources with variable output may have, not only on the short-term operational planning, but especially on the medium to long range planning activities, in order to meet the strategic objectives for the energy sector.

Keywords: Wind power, electricity planning model, cost, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1561
1951 Investigation of Corona wind Effect on Heat and Mass Transfer Enhancement

Authors: R.Karami, B.Kamkari, K.Kashefi

Abstract:

Applying corona wind as a novel technique can lead to a great level of heat and mass transfer augmentation by using very small amount of energy. Enhancement of forced flow evaporation rate by applying electric field (corona wind) has been experimentally evaluated in this study. Corona wind produced by a fine wire electrode which is charged with positive high DC voltage impinges to water surface and leads to evaporation enhancement by disturbing the saturated air layer over water surface. The study was focused on the effect of corona wind velocity, electrode spacing and air flow velocity on the level of evaporation enhancement. Two sets of experiments, i.e. with and without electric field, have been conducted. Data obtained from the first experiment were used as reference for evaluation of evaporation enhancement at the presence of electric field. Applied voltages ranged from corona threshold voltage to spark over voltage at 1 kV increments. The results showed that corona wind has great enhancement effect on water evaporation rate, but its effectiveness gradually diminishes by increasing air flow velocity. Maximum enhancements were 7.3 and 3.6 for air velocities of 0.125 and 1.75 m/s, respectively.

Keywords: Electrohydodynamics (EHD), corona wind, high electric field, Evaporation enhancement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
1950 Maximum Wind Power Extraction Strategy and Decoupled Control of DFIG Operating in Variable Speed Wind Generation Systems

Authors: Abdellatif Kasbi, Abderrafii Rahali

Abstract:

This paper appraises the performances of two control scenarios, for doubly fed induction generator (DFIG) operating in wind generation system (WGS), which are the direct decoupled control (DDC) and indirect decoupled control (IDC). Both control scenarios studied combines vector control and Maximum Power Point Tracking (MPPT) control theory so as to maximize the captured power through wind turbine. Modeling of DFIG based WGS and details of both control scenarios have been presented, a proportional integral controller is employed in the active and reactive power control loops for both control methods. The performance of the both control scenarios in terms of power reference tracking and robustness against machine parameters inconstancy has been shown, analyzed and compared, which can afford a reference to the operators and engineers of a wind farm. All simulations have been implemented via MATLAB/Simulink.

Keywords: DFIG, WGS, DDC, IDC, vector control, MPPT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
1949 Understanding and Designing Situation-Aware Mobile and Ubiquitous Computing Systems

Authors: Kai Häussermann, Christoph Hubig, Paul Levi, Frank Leymann, Oliver Siemoneit, Matthias Wieland, Oliver Zweigle

Abstract:

Using spatial models as a shared common basis of information about the environment for different kinds of contextaware systems has been a heavily researched topic in the last years. Thereby the research focused on how to create, to update, and to merge spatial models so as to enable highly dynamic, consistent and coherent spatial models at large scale. In this paper however, we want to concentrate on how context-aware applications could use this information so as to adapt their behavior according to the situation they are in. The main idea is to provide the spatial model infrastructure with a situation recognition component based on generic situation templates. A situation template is – as part of a much larger situation template library – an abstract, machinereadable description of a certain basic situation type, which could be used by different applications to evaluate their situation. In this paper, different theoretical and practical issues – technical, ethical and philosophical ones – are discussed important for understanding and developing situation dependent systems based on situation templates. A basic system design is presented which allows for the reasoning with uncertain data using an improved version of a learning algorithm for the automatic adaption of situation templates. Finally, for supporting the development of adaptive applications, we present a new situation-aware adaptation concept based on workflows.

Keywords: context-awareness, ethics, facilitation of system use through workflows, situation recognition and learning based on situation templates and situation ontology's, theory of situationaware systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
1948 The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand

Authors: Napat Watjanatepin, Wikorn Wong-SatieanNapat Watjanatepin, Wikorn Wong-Satiean

Abstract:

The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand.

Keywords: Central part of Thailand, fogging system, greenhouse plantation, PV-Wind hybrid autonomous system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
1947 A Numerical Investigation on the Dynamic Stall of a Wind Turbine Section Using Different Turbulent Models

Authors: S. A. Ahmadi, S. Sharif, R. Jamshidi

Abstract:

In this article, the flow behavior around a NACA 0012 airfoil which is oscillating with different Reynolds numbers and in various amplitudes has been investigated numerically. Numerical simulations have been performed with ANSYS software. First, the 2- D geometry has been studied in different Reynolds numbers and angles of attack with various numerical methods in its static condition. This analysis was to choose the best turbulent model and comparing the grids to have the optimum one for dynamic simulations. Because the analysis was to study the blades of wind turbines, the Reynolds numbers were not arbitrary. They were in the range of 9.71e5 to 22.65e5. The angle of attack was in the range of -41.81° to 41.81°. By choosing the forward wind speed as the independent parameter, the others like Reynolds and the amplitude of the oscillation would be known automatically. The results show that the SST turbulent model is the best choice that leads the least numerical error with respect the experimental ones. Also, a dynamic stall phenomenon is more probable at lower wind speeds in which the lift force is less.

Keywords: Dynamic stall, Numerical simulation, Wind turbine, Turbulent Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1964
1946 New Hybrid Method to Correct for Wind Tunnel Wall- and Support Interference On-line

Authors: B. J. C. Horsten, L. L. M. Veldhuis

Abstract:

Because support interference corrections are not properly understood, engineers mostly rely on expensive dummy measurements or CFD calculations. This paper presents a method based on uncorrected wind tunnel measurements and fast calculation techniques (it is a hybrid method) to calculate wall interference, support interference and residual interference (when e.g. a support member closely approaches the wind tunnel walls) for any type of wind tunnel and support configuration. The method provides with a simple formula for the calculation of the interference gradient. This gradient is based on the uncorrected measurements and a successive calculation of the slopes of the interference-free aerodynamic coefficients. For the latter purpose a new vortex-lattice routine is developed that corrects the slopes for viscous effects. A test case of a measurement on a wing proves the value of this hybrid method as trends and orders of magnitudes of the interference are correctly determined.

Keywords: Hybrid method, support interference, wall interference, wind tunnel corrections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
1945 Experimental Determination of Reactions of Wind-Resistant Support of Circular Stacks in Various Configurations

Authors: Debojyoti Mitra

Abstract:

Higher capacities of power plants together with increased awareness on environmental considerations have led to taller height of stacks. It is seen that strong wind can result in falling of stacks. So, aerodynamic consideration of stacks is very important in order to save the falling of stacks. One stack is not enough in industries and power sectors and two or three stacks are required for proper operation of the unit. It is very important to arrange the stacks in proper way to resist their downfall. The present experimental study concentrates on the mutual effect of three nearby stacks on each other at three different arrangements, viz. linear, side-by-side and triangular. The experiments find out the directions of resultant forces acting on the stacks in different configurations so that proper arrangement of supports can be made with respect to the wind directionality obtained from local meteorological data. One can also easily ascertain which stack is more vulnerable to wind in comparison to the others for a particular configuration. Thus, this study is important in studying the effect of wind force on three stacks in different arrangements and is very helpful in placing the supports in proper places in order to avoid failing of stack-like structures due to wind.

Keywords: Stacks, relative positioning, drag and lift forces, resultant forces and supports.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
1944 A Comparison between Hybrid and Experimental Extended Polars for the Numerical Prediction of Vertical-Axis Wind Turbine Performance using Blade Element-Momentum Algorithm

Authors: Gabriele Bedon, Marco Raciti Castelli, Ernesto Benini

Abstract:

A dynamic stall-corrected Blade Element-Momentum algorithm based on a hybrid polar is validated through the comparison with Sandia experimental measurements on a 5-m diameter wind turbine of Troposkien shape. Different dynamic stall models are evaluated. The numerical predictions obtained using the extended aerodynamic coefficients provided by both Sheldal and Klimas and Raciti Castelli et al. are compared to experimental data, determining the potential of the hybrid database for the numerical prediction of vertical-axis wind turbine performances.

Keywords: Darrieus wind turbine, Blade Element-Momentum Theory, extended airfoil database, hybrid database, Sandia 5-m wind turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2513
1943 Comparison of Wind Fragility for Window System in the Simplified 10 and 15-Story Building Considering Exposure Category

Authors: Viriyavudh Sim, WooYoung Jung

Abstract:

Window system in high rise building is occasionally subjected to an excessive wind intensity, particularly during typhoon. The failure of window system did not affect overall safety of structural performance; however, it could endanger the safety of the residents. In this paper, comparison of fragility curves for window system of two residential buildings was studied. The probability of failure for individual window was determined with Monte Carlo Simulation method. Then, lognormal cumulative distribution function was used to represent the fragility. The results showed that windows located on the edge of leeward wall were more susceptible to wind load and the probability of failure for each window panel increased at higher floors.

Keywords: Wind fragility, window system, high rise building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1249
1942 Robust Fault Diagnosis for Wind Turbine Systems Subjected to Multi-Faults

Authors: Sarah Odofin, Zhiwei Gao, Sun Kai

Abstract:

Operations, maintenance and reliability of wind turbines have received much attention over the years due to the rapid expansion of wind farms. This paper explores early fault diagnosis technique for a 5MW wind turbine system subjected to multiple faults, where genetic optimization algorithm is employed to make the residual sensitive to the faults, but robust against disturbances. The proposed technique has a potential to reduce the downtime mostly caused by the breakdown of components and exploit the productivity consistency by providing timely fault alarms. Simulation results show the effectiveness of the robust fault detection methods used under Matlab/Simulink/Gatool environment.

Keywords: Disturbance robustness, fault monitoring and detection, genetic algorithm and observer technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
1941 Enhanced Efficacy of Kinetic Power Transform for High-Speed Wind Field

Authors: Nan-Chyuan Tsai, Chao-Wen Chiang, Bai-Lu Wang

Abstract:

The three-time-scale plant model of a wind power generator, including a wind turbine, a flexible vertical shaft, a Variable Inertia Flywheel (VIF) module, an Active Magnetic Bearing (AMB) unit and the applied wind sequence, is constructed. In order to make the wind power generator be still able to operate as the spindle speed exceeds its rated speed, the VIF is equipped so that the spindle speed can be appropriately slowed down once any stronger wind field is exerted. To prevent any potential damage due to collision by shaft against conventional bearings, the AMB unit is proposed to regulate the shaft position deviation. By singular perturbation order-reduction technique, a lower-order plant model can be established for the synthesis of feedback controller. Two major system parameter uncertainties, an additive uncertainty and a multiplicative uncertainty, are constituted by the wind turbine and the VIF respectively. Frequency Shaping Sliding Mode Control (FSSMC) loop is proposed to account for these uncertainties and suppress the unmodeled higher-order plant dynamics. At last, the efficacy of the FSSMC is verified by intensive computer and experimental simulations for regulation on position deviation of the shaft and counter-balance of unpredictable wind disturbance.

Keywords: Sliding Mode Control, Singular Perturbation, Variable Inertia Flywheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413