Search results for: Micro pump
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 775

Search results for: Micro pump

685 Piezoelectric Micro-generator Characterization for Energy Harvesting Application

Authors: José E. Q. Souza, Marcio Fontana, Antonio C. C. Lima

Abstract:

This paper presents analysis and characterization of a piezoelectric micro-generator for energy harvesting application. A low-cost experimental prototype was designed to operate as piezoelectric micro-generator in the laboratory. An input acceleration of 9.8m/s2 using a sine signal (peak-to-peak voltage: 1V, offset voltage: 0V) at frequencies ranging from 10Hz to 160Hz generated a maximum average power of 432.4μW (linear mass position = 25mm) and an average power of 543.3μW (angular mass position = 35°). These promising results show that the prototype can be considered for low consumption load application as an energy harvesting micro-generator.

Keywords: Piezoelectric, microgenerator, energy harvesting, cantilever beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
684 A Feasibility-study of a Micro- Communications Sonobuoy Deployable by UAV Robots

Authors: B. Munro, D. Lim, A. Anvar

Abstract:

This paper describes a feasibility study that is included with the research, development and testing of a micro communications sonobuoy deployable by Maritime Fixed wing Unmanned Aerial Vehicles (M-UAV) and rotor wing Quad Copters which are both currently being developed by the University of Adelaide. The micro communications sonobuoy is developed to act as a seamless communication relay between an Autonomous Underwater Vehicle (AUV) and an above water human operator some distance away. Development of such a device would eliminate the requirement of physical communication tethers attached to submersible vehicles for control and data retrieval.

Keywords: Autonomous Underwater Vehicle, AUV, Maritime, Unmanned Aerial Vehicle, UAV, Micro Sonobuoy, Communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
683 Clean Sky 2 – Project PALACE: Aeration’s Experimental Sound Velocity Investigations for High-Speed Gerotor Simulations

Authors: Benoît Mary, Thibaut Gras, Gaëtan Fagot, Yvon Goth, Ilyes Mnassri-Cetim

Abstract:

A Gerotor pump is composed of an external and internal gear with conjugate cycloidal profiles. From suction to delivery ports, the fluid is transported inside cavities formed by teeth and driven by the shaft. From a geometric and conceptional side it is worth to note that the internal gear has one tooth less than the external one. Simcenter Amesim v.16 includes a new submodel for modelling the hydraulic Gerotor pumps behavior (THCDGP0). This submodel considers leakages between teeth tips using Poiseuille and Couette flows contributions. From the 3D CAD model of the studied pump, the “CAD import” tool takes out the main geometrical characteristics and the submodel THCDGP0 computes the evolution of each cavity volume and their relative position according to the suction or delivery areas. This module, based on international publications, presents robust results up to 6 000 rpm for pressure greater than atmospheric level. For higher rotational speeds or lower pressures, oil aeration and cavitation effects are significant and highly drop the pump’s performance. The liquid used in hydraulic systems always contains some gas, which is dissolved in the liquid at high pressure and tends to be released in a free form (i.e. undissolved as bubbles) when pressure drops. In addition to gas release and dissolution, the liquid itself may vaporize due to cavitation. To model the relative density of the equivalent fluid, modified Henry’s law is applied in Simcenter Amesim v.16 to predict the fraction of undissolved gas or vapor. Three parietal pressure sensors have been set up upstream from the pump to estimate the sound speed in the oil. Analytical models have been compared with the experimental sound speed to estimate the occluded gas content. Simcenter Amesim v.16 model was supplied by these previous analyses marks which have successfully improved the simulations results up to 14 000 rpm. This work provides a sound foundation for designing the next Gerotor pump generation reaching high rotation range more than 25 000 rpm. This improved module results will be compared to tests on this new pump demonstrator.

Keywords: Gerotor pump, high speed, simulations, aeronautic, aeration, cavitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 509
682 A Semi-Classical Signal Analysis Method for the Analysis of Turbomachinery Flow Unsteadiness

Authors: Fadi Eleiwi, Taous Meriem Laleg-Kirati, Sofiane Khelladi, Farid Bakir

Abstract:

This paper presents the use of a semi-classical signal analysis method that has been developed recently for the analysis of turbomachinery flow unsteadiness. We will focus on the correlation between theSemi-Classical Signal Analysis parameters and some physical parameters in relation with turbomachinery features. To demonstrate the potential of the proposed approach, a static pressure signal issued from a rotor/stator interaction of a centrifugal pump is studied. Several configurations of the pump are compared.

Keywords: Semi-classical signal analysis, turbomachines, newindices, physical parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
681 Micro-aerobic, Anaerobic and Two-stage Condition for Ethanol Production by enterobacter aerogenes from Biodiesel-derived Crude Glycerol

Authors: Kanokrat Saisaard, Irini Angelidaki, Poonsuk Prasertsan

Abstract:

The microbial production of ethanol from biodiesel¬derived crude glycerol by Enterobacter aerogenes TISTR1468, under micro-aerobic and anaerobic conditions, was investigated. The experimental results showed that micro-aerobic conditions were more favorable for cellular growth (4.0 g/L DCW), ethanol production (20.7 g/L) as well as the ethanol yield (0.47 g/g glycerol) than anaerobic conditions (1.2 g/L DCW, 6.3 g/L ethanol and 0.72 g/g glycerol, respectively). Crude glycerol (100 g/L) was consumed completely with the rate of 1.80 g/L/h. Two-stage fermentation (combination of micro-aerobic and anaerobic condition) exhibited higher ethanol production (24.5 g/L) than using one-stage fermentation (either micro-aerobic or anaerobic condition. The two- stage configuration, exhibited slightly higher crude glycerol consumption rate (1.81 g/L/h), as well as ethanol yield (0.56 g/g) than the one-stage configuration. Therefore, two-stage process was selected for ethanol production from E. aerogenes TISTR1468 in scale-up studies.

Keywords: crude glycerol, ethanol, micro-aerobic, two-stage, Enterobacter aerogenes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330
680 Intelligent Control and Modelling of a Micro Robot for In-pipe Application

Authors: Y. Sabzehmeidani, M. Mailah, M. Hussein, A. R. Tavakolpour

Abstract:

In this paper, a worm-like micro robot designed for inpipe application with intelligent active force control (AFC) capability is modelled and simulated. The motion of the micro robot is based on an impact drive mechanism (IDM) that is actuated using piezoelectric device. The trajectory tracking performance of the modelled micro robot is initially experimented via a conventional proportionalintegral- derivative (PID) controller in which the dynamic response of the robot system subjected to different input excitations is investigated. Subsequently, a robust intelligent method known as active force control with fuzzy logic (AFCFL) is later incorporated into the PID scheme to enhance the system performance by compensating the unwanted disturbances due to the interaction of the robot with its environment. Results show that the proposed AFCFL scheme is far superior than the PID control counterpart in terms of the system-s tracking capability in the wake of the disturbances.

Keywords: Active Force Control, Micro Robot, Fuzzy Logic, In-pipe Application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
679 FPGA Implementation of the “PYRAMIDS“ Block Cipher

Authors: A. AlKalbany, H. Al hassan, M. Saeb

Abstract:

The “PYRAMIDS" Block Cipher is a symmetric encryption algorithm of a 64, 128, 256-bit length, that accepts a variable key length of 128, 192, 256 bits. The algorithm is an iterated cipher consisting of repeated applications of a simple round transformation with different operations and different sequence in each round. The algorithm was previously software implemented in Cµ code. In this paper, a hardware implementation of the algorithm, using Field Programmable Gate Arrays (FPGA), is presented. In this work, we discuss the algorithm, the implemented micro-architecture, and the simulation and implementation results. Moreover, we present a detailed comparison with other implemented standard algorithms. In addition, we include the floor plan as well as the circuit diagrams of the various micro-architecture modules.

Keywords: FPGA, VHDL, micro-architecture, encryption, cryptography, algorithm, data communication security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
678 Effects of Mold Surface Roughness on Compressible Flow of Micro-Injection Molding

Authors: Nguyen Q. M. P., Chen X., Lam Y. C., Yue C. Y.

Abstract:

Polymer melt compressibility and mold surface roughness, which are generally ignored during the filling stage of the conventional injection molding, may become increasingly significant in micro injection molding where the parts become smaller. By employing the 2.5D generalized Hele-Shaw model, we presented here the effects of polymer compressibility and mold surface roughness on mold-filling in a micro-thickness cavity. To elucidate the effects of surface roughness, numerical investigations were conducted using a cavity flat plate which has two halves with different surface roughness. This allows the comparison of flow field on two different halves under identical processing conditions but with different roughness. Results show that polymer compressibility and mold surface roughness have effects on mold filling in micro injection molding. There is in shrinkage reduction as the density is increased due to polymer melt compressibility during the filling stage.

Keywords: Compressible flow, Micro-injection molding, Polymer, Surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2020
677 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line

Authors: K. Jahani, J. Razavi

Abstract:

Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.

Keywords: Computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1793
676 Effect of Oxygen and Micro-Cracking on the Flotation of Low Grade Nickel Sulphide Ore

Authors: Edison Muzenda, Ayo S Afolabi

Abstract:

This study investigated the effect of oxygen and micro-cracking on the flotation of low grade nickel sulphide ore. The ore treated contained serpentine minerals which have a history of being difficult to process efficiently. The use of oxygen as a bubbling gas has been noted to be effective because it increases the pulp potential. The desired effect of micro cracking the ore is that the nickel sulphide minerals will become activated and this activation will render these minerals more susceptible to react with potassium amyl xanthate collectors, resulting in a higher recovery of nickel and hinder the recovery of other undesired minerals contained in the ore. Higher nickel recoveries were obtained when pure oxygen was used as a bubbling gas rather than the conventional air. Microwave cracking favored the recovery of nickel.

Keywords: Flotation, Conventional air, Oven micro-cracking, Recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
675 Essential Micronutrient Biofortification of Sprouts Grown on Mineral Fortified Fiber Mats

Authors: Jacquelyn Nyenhuis, Jaroslaw W. Drelich

Abstract:

Diets high in processed foods have been found to lack essential micro-nutrients for optimum human development and overall health. Some micro-nutrients such as copper (Cu) have been found to enhance the inflammatory response through its oxidative functions, thereby having a role in cardiovascular disease, metabolic syndrome, diabetes and related complications. This research study was designed to determine if food crops could be bio-fortified with micro-nutrients by growing sprouts on mineral fortified fiber mats. In the feasibility study described in this contribution, recycled cellulose fibers and clay, saturated with either micro-nutrient copper ions or copper nanoparticles, were converted to a novel mineral-cellulose fiber carrier of essential micro-nutrient and of antimicrobial properties. Seeds of Medicago sativa (alfalfa), purchased from a commercial, organic supplier were germinated on engineered cellulose fiber mats. After the appearance of the first leaves, the sprouts were dehydrated and analyzed for Cu content. Nutrient analysis showed ~2 increase in Cu of the sprouts grown on the fiber mats with copper particles, and ~4 increase on mats with ionic copper as compared to the control samples. This study illustrates the potential for the use of engineered mats as a viable way to increase the micro-nutrient composition of locally-grown food crops and the need for additional research to determine the uptake, nutritional implications and risks of micro-nutrient bio-fortification.

Keywords: Bio-fortification, copper nutrient uptake, sprout, mineral-fortified mat, micro-nutrient uptake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
674 Design and Fabrication of Micro-Bubble Oxygenator

Authors: Chiang-Ho Cheng, An-Shik Yang, Hong-Yih Cheng

Abstract:

This paper applies the MEMS technology to design and fabricate a micro-bubble generator by a piezoelectric actuator. Coupled with a nickel nozzle plate, an annular piezoelectric ceramic was utilized as the primary structure of the generator. In operations, the piezoelectric element deforms transversely under an electric field applied across the thickness of the generator. The surface of the nozzle plate can expand or contract because of the induction of radial strain, resulting in the whole structure to bend, and successively transport oxygen micro-bubbles into the blood flow for enhancing the oxygen content in blood. In the tests, a high magnification microscope and a high speed CCD camera were employed to photograph the time evolution of meniscus shape of gaseous bubbles dispensed from the micro-bubble generator for flow visualization. This investigation thus explored the bubble formation process including the influences of inlet gas pressure along with driving voltage and resonance frequency on the formed bubble extent.

Keywords: Micro-bubble, nozzle, oxygenator, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
673 Study on Status and Development of Hydraulic System Protection: Pump Combined With Air Chamber

Authors: I. Abuiziah, A. Oulhaj, K. Sebari, D. Ouazar, A. A. Saber

Abstract:

Fluid transient analysis is one of the more challenging and complicated flow problems in the design and the operation of water pipeline systems (wps). When transient conditions "water hammer" exists, the life expectancy of the wps can be adversely impacted, resulting in pump and valve failures and catastrophic pipe ruptures. Transient control has become an essential requirement for ensuring safe operation of wps. An accurate analysis and suitable protection devices should be used to protect wps. This paper presents the problem of modeling and simulation of transient phenomena in wps based on the characteristics method. Also, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occur in the transient. The developed model applied for main wps: pump combined with closed surge tank connected to a reservoir. The results obtained provide that the model is an efficient tool for water hammer analysis. Moreover; using the closed surge tank reduces the unfavorable effects of transients.

Keywords: Flow Transient, Water hammer, Pipeline System, Closed Surge Tank, Simulation Model, Protection Devices, Characteristics Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
672 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump

Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado

Abstract:

Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.

Keywords: Water mass flow rate, R-744, heat pump, solar evaporator, water heater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
671 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design

Authors: Vahid Nademi

Abstract:

In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.

Keywords: Blood glucose monitoring, insulin pump, optimization, predictive control, diabetes disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 703
670 Fuzzy Modeling for Micro EDM Parameters Optimization in Drilling of Biomedical Implants Ti-6Al-4V Alloy for Higher Machining Performance

Authors: Ahmed A.D. Sarhan, Lim Siew Fen, Mum Wai Yip, M. Sayuti

Abstract:

Ti6Al4V alloy is highly used in the automotive and aerospace industry due to its good machining characteristics. Micro EDM drilling is commonly used to drill micro hole on extremely hard material with very high depth to diameter ratio. In this study, the parameters of micro-electrical discharge machining (EDM) in drilling of Ti6Al4V alloy is optimized for higher machining accuracy with less hole-dilation and hole taper ratio. The micro-EDM machining parameters includes, peak current and pulse on time. Fuzzy analysis was developed to evaluate the machining accuracy. The analysis shows that hole-dilation and hole-taper ratio are increased with the increasing of peak current and pulse on time. However, the surface quality deteriorates as the peak current and pulse on time increase. The combination that gives the optimum result for hole dilation is medium peak current and short pulse on time. Meanwhile, the optimum result for hole taper ratio is low peak current and short pulse on time.

Keywords: Micro EDM, Ti-6Al-4V alloy, fuzzy logic based analysis, optimization, machining accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692
669 The Experimental Study of the Effect of Flow Pattern Geometry on Performance of Micro Proton Exchange Membrane Fuel Cell

Authors: Tang Yuan Chen, Chang Hsin Chen, Chiun Hsun Chen

Abstract:

In this research, the flow pattern influence on performance of a micro PEMFC was investigated experimentally. The investigation focused on the impacts of bend angels and rib/channel dimensions of serpentine flow channel pattern on the performance and investigated how they improve the performance. The fuel cell employed for these experiments was a micro single PEMFC with a membrane of 1.44 cm2 Nafion NRE-212. The results show that 60° and 120° bend angles can provide the better performances at 20 and 40 sccm inlet flow rates comparing to that the conventional design. Additionally, wider channel with narrower rib spacing gives better performance. These results may be applied to develop universal heuristics for the design of flow pattern of micro PEMFC.

Keywords: Flow pattern, MEMS, PEMFC, Performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
668 An Experimental Study on the Effect of Operating Parameters during the Micro-Electro-Discharge Machining of Ni Based Alloy

Authors: Asma Perveen, M. P. Jahan

Abstract:

Ni alloys have managed to cover wide range of applications such as automotive industries, oil gas industries, and aerospace industries. However, these alloys impose challenges while using conventional machining technologies. On the other hand, Micro-Electro-Discharge machining (micro-EDM) is a non-conventional machining method that uses controlled sparks energy to remove material irrespective of the materials hardness. There has been always a huge interest from the industries for developing optimum methodology and parameters in order to enhance the productivity of micro-EDM in terms of reducing machining time and tool wear for different alloys. Therefore, the aims of this study are to investigate the effects of the micro-EDM process parameters, in order to find their optimal values. The input process parameters include voltage, capacitance, and electrode rotational speed, whereas the output parameters considered are machining time, entrance diameter of hole, overcut, tool wear, and crater size. The surface morphology and element characterization are also investigated with the use of SEM and EDX analysis. The experimental result indicates the reduction of machining time with the increment of discharge energy. Discharge energy also contributes to the enlargement of entrance diameter as well as overcut. In addition, tool wears show reduction with the increase of discharge energy. Moreover, crater size is found to be increased in size along with the increment of discharge energy.

Keywords: Micro EDM, Ni alloy, discharge energy, micro-holes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
667 Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow

Authors: Jae-Young Lee, Woo-Young Jung, Myeong-Jun Nam

Abstract:

Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer.

Keywords: Water hammer, hydraulic transient, pipe systems, characteristics method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981
666 Interaction Effect of Feed Rate and Cutting Speed in CNC-Turning on Chip Micro-Hardness of 304- Austenitic Stainless Steel

Authors: G. H. Senussi

Abstract:

The present work is concerned with the effect of turning process parameters (cutting speed, feed rate, and depth of cut) and distance from the center of work piece as input variables on the chip micro-hardness as response or output. Three experiments were conducted; they were used to investigate the chip micro-hardness behavior at diameter of work piece for 30[mm], 40[mm], and 50[mm]. Response surface methodology (R.S.M) is used to determine and present the cause and effect of the relationship between true mean response and input control variables influencing the response as a two or three dimensional hyper surface. R.S.M has been used for designing a three factor with five level central composite rotatable factors design in order to construct statistical models capable of accurate prediction of responses. The results obtained showed that the application of R.S.M can predict the effect of machining parameters on chip micro-hardness. The five level factorial designs can be employed easily for developing statistical models to predict chip micro-hardness by controllable machining parameters. Results obtained showed that the combined effect of cutting speed at it?s lower level, feed rate and depth of cut at their higher values, and larger work piece diameter can result increasing chi micro-hardness.

Keywords: Machining Parameters, Chip Micro-Hardness, CNCMachining, 304-Austenic Stainless Steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231
665 Bond Graph Modeling of Inter-Actuator Interactions in a Multi-Cylinder Hydraulic System

Authors: Mutuku Muvengei, John Kihiu

Abstract:

In this paper, a bond graph dynamic model for a valvecontrolled hydraulic cylinder has been developed. A simplified bond graph model of the inter-actuator interactions in a multi-cylinder hydraulic system has also been presented. The overall bond graph model of a valve-controlled hydraulic cylinder was developed by combining the bond graph sub-models of the pump, spool valve and the actuator using junction structures. Causality was then assigned in order to obtain a computational model which could be simulated. The causal bond graph model of the hydraulic cylinder was verified by comparing the open loop state responses to those of an ODE model which had been developed in literature based on the same assumptions. The results were found to correlate very well both in the shape of the curves, magnitude and the response times, thus indicating that the developed model represents the hydraulic dynamics of a valve-controlled cylinder. A simplified model for interactuator interaction was presented by connecting an effort source with constant pump pressure to the zero-junction from which the cylinders in a multi-cylinder system are supplied with a constant pressure from the pump. On simulating the state responses of the developed model under different situations of cylinder operations, indicated that such a simple model can be used to predict the inter-actuator interactions.

Keywords: Bond graphs, Inter-actuator interactions, Valvecontrolledhydraulic cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2998
664 Analysis of Pharmaceuticals in Influents of Municipal Wastewater Treatment Plants in Jordan

Authors: O. A. Al-Mashaqbeh, A. M. Ghrair, D. Alsafadi, S. S. Dalahmeh, S. L. Bartelt-Hunt, D. D. Snow

Abstract:

Grab samples were collected in the summer to characterize selected pharmaceuticals and personal care products (PPCPs) in the influent of two wastewater treatment plants (WWTPs) in Jordan. Liquid chromatography tandem mass spectrometry (LC–MS/MS) was utilized to determine the concentrations of 18 compounds of PPCPs. Among all of the PPCPs analyzed, eight compounds were detected in the influent samples (1,7-dimethylxanthine, acetaminophen, caffeine, carbamazepine, cotinine, morphine, sulfamethoxazole and trimethoprim). However, five compounds (amphetamine, cimetidine, diphenhydramine, methylenedioxyamphetamine (MDA) and sulfachloropyridazine) were not detected in collected samples (below the detection limits <0.005 ng/l). Moreover, the results indicated that the highest concentration levels detected in collected samples were caffeine, acetaminophen, 1,7-dimethylxanthine, cotinine and carbamazepine at concentration of 182.5 µg/L, 28.7 µg/l, 7.47 µg/l, 4.67 µg/l and 1.54 µg/L, respectively. In general, most of compounds concentrations measured in wastewater in Jordan are within the range for wastewater previously reported in India wastewater except caffeine.

Keywords: Pharmaceuticals and personal care products, wastewater, Jordan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201
663 Performance of Heat Pump Dryer for Kaffir Lime Leaves and Quality of Dried Products under Different Temperatures and Media

Authors: N. Poomsa-ad, K. Deejing, L. Wiset

Abstract:

This research is to study the performance of heat pump dryer for drying of kaffir lime leaves under different media and to compare the color values and essential oil content of final products after drying. In the experiments, kaffir lime leaves were dried in the closed-loop system at drying temperatures of 40, 50 and 60 oC. The drying media used in this study were hot air, CO2 and N2 gases. The velocity of drying media in the drying chamber was 0.4 m/s with bypass ratio of 30%. The initial moisture content of kaffir lime leaves was approximately 180-190 % d.b. It was dried until down to a final moisture content of 10% d.b. From the experiments, the results showed that drying rate, the coefficient of performance (COP) and specific energy consumption (SEC) depended on drying temperature. While drying media did not affect on drying rate. The time for kaffir lime leaves drying at 40, 50 and 60 oC was 10, 5 and 3 hours, respectively. The performance of the heat pump system decreased with drying temperature in the range of 2.20-3.51. In the aspect of final product color, the greenness and overall color had a great change under drying temperature at 60 oC rather than drying at 40 and 50 oC. When compared among drying media, the greenness and overall color of product dried with hot air at 60 oC had a great change rather than dried with CO2 and N2.

Keywords: airless drying, drying rate, essential oil content

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
662 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems

Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar

Abstract:

With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.

Keywords: Cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple-output systems, MIMO, orthogonal frequency division multiplexing, OFDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1053
661 Power Generation from Sewage by a Micro-Hydraulic Turbine

Authors: Tomomi Uchiyama, Tomoko Okayama, Yukio Ide

Abstract:

This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is easily blocked by the fibers, making the turbine lose the function.

Keywords: Generation of electricity, micro-hydraulic turbine, sewage, sewer pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506
660 Numerical Simulation of Wall Treatment Effects on the Micro-Scale Combustion

Authors: R. Kamali, A. R. Binesh, S. Hossainpour

Abstract:

To understand working features of a micro combustor, a computer code has been developed to study combustion of hydrogen–air mixture in a series of chambers with same shape aspect ratio but various dimensions from millimeter to micrometer level. The prepared algorithm and the computer code are capable of modeling mixture effects in different fluid flows including chemical reactions, viscous and mass diffusion effects. The effect of various heat transfer conditions at chamber wall, e.g. adiabatic wall, with heat loss and heat conduction within the wall, on the combustion is analyzed. These thermal conditions have strong effects on the combustion especially when the chamber dimension goes smaller and the ratio of surface area to volume becomes larger. Both factors, such as larger heat loss through the chamber wall and smaller chamber dimension size, may lead to the thermal quenching of micro-scale combustion. Through such systematic numerical analysis, a proper operation space for the micro-combustor is suggested, which may be used as the guideline for microcombustor design. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the micro-combustor design, optimization and performance analysis.

Keywords: Numerical simulation, Micro-combustion, MEMS, CFD, Chemical reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
659 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor

Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli

Abstract:

Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.

Keywords: Acoustic sensor, diaphragm based, lumped element modeling, natural frequency, piezoelectric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 971
658 The Impact of HIV/AIDS on Micro-enterprise Development in Kenya: A Study of Obunga Slum in Kisumu

Authors: C. A. Oloo, C. Ojwang

Abstract:

The performances of small and medium enterprises have stagnated in the last two decades. This has mainly been due to the emergence of HIV / Aids. The disease has had a detrimental effect on the general economy of the country leading to morbidity and mortality of the Kenyan workforce in their primary age. The present study sought to establish the economic impact of HIV / Aids on the micro-enterprise development in Obunga slum – Kisumu, in terms of production loss, increasing labor related cost and to establish possible strategies to address the impact of HIV / Aids on microenterprises. The study was necessitated by the observation that most micro-enterprises in the slum are facing severe economic and social crisis due to the impact of HIV / Aids, they get depleted and close down within a short time due to death of skilled and experience workforce. The study was carried out between June 2008 and June 2009 in Obunga slum. Data was subjected to computer aided statistical analysis that included descriptive statistic, chi-squared and ANOVA techniques. Chi-squared analysis on the micro-enterprise owners opinion on the impact of HIV / Aids on depletion of microenterprise compared to other diseases indicated high levels of the negative effects of the disease at significance levels of P<0.01. Analysis of variance on the impact of HIV / Aids on the performance and productivity of micro-enterprises also indicated a negative effect on the general performance of micro-enterprise at significance levels of P<0.01. Therefore reducing the negative impacts of HIV/Aids on micro-enterprise development, there is need to improve the socioeconomic environment, mobilize donors and stake holders in training and funding, and review the current strategies for addressing the disease. Further conclusive research should also be conducted on a bigger scale.

Keywords: Entrepreneurship, HIV-AIDS, Micro-enterprise, Poverty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
657 FWM Wavelength Conversion Analysis in a 3-Integrated Portion SOA and DFB Laser using Coupled Wave Approach and FD-BPM Method

Authors: M. K. Moazzam, A. Salmanpour, M. Nirouei

Abstract:

In this paper we have numerically analyzed terahertzrange wavelength conversion using nondegenerate four wave mixing (NDFWM) in a SOA integrated DFB laser (experiments reported both in MIT electronics and Fujitsu research laboratories). For analyzing semiconductor optical amplifier (SOA), we use finitedifference beam propagation method (FDBPM) based on modified nonlinear SchrÖdinger equation and for distributed feedback (DFB) laser we use coupled wave approach. We investigated wavelength conversion up to 4THz probe-pump detuning with conversion efficiency -5dB in 1THz probe-pump detuning for a SOA integrated quantum-well

Keywords: distributed feedback laser, nondegenerate fourwave mixing, semiconductor optical amplifier, wavelengthconversion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1471
656 Energy Savings in Pumps

Authors: N. Dizadji, P. Entezar, A. Shabani

Abstract:

This study presents energy saving in general-purpose pumps widely used in industrial applications. Such pumps are normally driven by a constant-speed electrical motor which in most applications must support varying load conditions. This is equivalent to saying the loading conditions mismatch the designed optimal energy consumption requirements of the intended application thus resulting in substantial energy losses. In the held experiments it was indicated that combination of mechanical and electrical speed drives can contribute to lower energy consumption in the pump without negatively distorting the required performance indices of a typical centrifugal pump at substantially lower energy consumption. The registered energy savings were recorded to be within the 15-40% margin. It was also indicated that although VSDs are installed at a cost, the financial burden is balanced against the earnings resulting from the associated energy savings.

Keywords: Industrial motors, Pumps, Energy consumption, Energy savings, Variable speed drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053