Search results for: Medium carbon steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2239

Search results for: Medium carbon steel

2089 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel

Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali

Abstract:

The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.

Keywords: Cold Formed Steel Shear Wall Panel, CFS-SWP, micro modeling, nonlinear analysis, strip method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
2088 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1382
2087 Microalgal Lipid Production by Microalgae Chlorella sp. KKU-S2

Authors: Ratanaporn Leesing, Supaporn Kookkhunthod, Ngarmnit Nontaso

Abstract:

The objective of this work is to produce heterotrophic microalgal lipid in flask-batch fermentation. Chlorella sp. KKU-S2 supported maximum values of 0.374 g/L/d, 0.478 g lipid/g cells, and 0.112 g/L/d for volumetric lipid production rate, and specific yield of lipid, and specific rate of lipid production, respectively when culture was performed on BG-11 medium supplemented with 50g/L glucose. Among the carbon sources tested, maximum cell yield coefficient (YX/S, g/L), maximum specific yield of lipid (YP/X, g lipid/g cells) and volumetric lipid production rate (QP, g/L/d) were found of 0.728, 0.237, and 0.619, respectively, using sugarcane molasses as carbon source. The main components of fatty acid from extracted lipid were palmitic acid, stearic acid, oleic acid and linoleic acid which similar to vegetable oils and suitable for biodiesel production.

Keywords: Microalgal lipid, Chlorella sp. KKU-S2, kineticparameters, biodiesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2665
2086 The Adsorption of Zinc Metal in Waste Water Using ZnCl2 Activated Pomegranate Peel

Authors: S. N. Turkmen, A. S. Kipcak, N. Tugrul, E. M. Derun, S. Piskin

Abstract:

Activated carbon is an amorphous carbon chain which has extremely extended surface area. High surface area of activated carbon is due to the porous structure. Activated carbon, using a variety of materials such as coal and cellulosic materials; can be obtained by both physical and chemical methods. The prepared activated carbon can be used for decolorize, deodorize and also can be used for removal of organic and non-organic pollution. In this study, pomegranate peel was subjected to 800W microwave power for 1 to 4 minutes. Also fresh pomegranate peel was used for the reference material. Then ZnCl2 was used for the chemical activation purpose. After the activation process, activated pomegranate peels were used for the adsorption of Zn metal (40 ppm) in the waste water. As a result of the adsorption experiments, removal of heavy metals ranged from 89% to 85%.

Keywords: Activated carbon, chemical activation, microwave, pomegranate peel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2767
2085 Chip Formation during Turning Multiphase Microalloyed Steel

Authors: V.Sivaraman, S. Sankaran, L. Vijayaraghavan

Abstract:

Machining through turning was carried out in a lathe to study the chip formation of Multiphase Ferrite (F-B-M) microalloyed steel. Taguchi orthogonal array was employed to perform the machining. Continuous and discontinuous chips were formed for different cutting parameters like speed, feed and depth of cut. Optical and scanning electron microscope was employed to identify the chip morphology.

Keywords: Multiphase microalloyed steel, chip formation, Taguchi technique, turning, cutting parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
2084 Experimental Study on Machinability of Laser- Sintered Material in Ball End Milling

Authors: Abdullah Yassin, Takashi Ueda, Syed Tarmizi Syed Shazali

Abstract:

This paper presents an experimental investigation on the machinability of laser-sintered material using small ball end mill focusing on wear mechanisms. Laser-sintered material was produced by irradiating a laser beam on a layer of loose fine SCM-Ni-Cu powder. Bulk carbon steel JIS S55C was selected as a reference steel. The effects of powder consolidation mechanisms and unsintered powder on the tool life and wear mechanisms were carried out. Results indicated that tool life in cutting laser-sintered material is lower than that in cutting JIS S55C. Adhesion of the work material and chipping were the main wear mechanisms of the ball end mill in cutting laser-sintered material. Cutting with the unsintered powder surrounding the tool and laser-sintered material had caused major fracture on the cutting edge.

Keywords: Laser-sintered material, tool life, wear mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
2083 Numerical Study of Steel Structures Responses to External Explosions

Authors: Mohammad Abdallah

Abstract:

Due to the constant increase in terrorist attacks, the research and engineering communities have given significant attention to building performance under explosions. This paper presents a methodology for studying and simulating the dynamic responses of steel structures during external detonations, particularly for accurately investigating the impact of incrementing charge weight on the members total behavior, resistance and failure. Prediction damage method was introduced to evaluate the damage level of the steel members based on five scenarios of explosions. Johnson–Cook strength and failure model have been used as well as ABAQUS finite element code to simulate the explicit dynamic analysis, and antecedent field tests were used to verify the acceptance and accuracy of the proposed material strength and failure model. Based on the structural response, evaluation criteria such as deflection, vertical displacement, drift index, and damage level; the obtained results show the vulnerability of steel columns and un-braced steel frames which are designed and optimized to carry dead and live load to resist and endure blast loading.

Keywords: Steel structure, blast load, terrorist attacks, charge weight, damage level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
2082 Carbothermic Reduction of Mechanically Activated Mixtures of Celestite and Carbon

Authors: N.Setoudeh, M. Ali Askari Zamani, N.J.Welham

Abstract:

The effect of dry milling on the carbothermic reduction of celestite was investigated. Mixtures of celestite concentrate (98% SrSO4) and activated carbon (99% carbon) was milled for 1 and 24 hours in a planetary ball mill. Un-milled and milled mixtures and their products after carbothermic reduction were studied by a combination of XRD and TGA/DTA experiments. The thermogravimetric analyses and XRD results showed that by milling celestite-carbon mixtures for one hour, the formation temperature of strontium sulfide decreased from about 720°C (in un-milled sample) to about 600°C, after 24 hours milling it decreased to 530°C. It was concluded that milling induces increasingly thorough mixing of the reactants to reduction occurring at lower temperatures

Keywords: Activated carbon, Celestite, Ball milling, Carbothermic reduction, Strontium sulfide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
2081 The Influence of Surface Roughness of Drawbead on Non-Symmetry Deep Drawing Cold Rolled Steel Sheet

Authors: A. Watanapa, S. Torsakul

Abstract:

This study was aimed to explain the influence of surface roughness of the drawbead on non-symmetry deep drawing cold rolled steel sheet to improve the drawability of cold rolled steel sheet. The variables used in this study included semi-circle drawbead with 3 levels of surface roughness which are 6.127 mm Ra, 0.963 mm Ra and 0.152 mm Ra and cold rolled steel sheet according to 3 grades of the JIS standards which are SPCC, SPCE and SPCD with the thickness of 1.0 mm and the blankholder force which is 50% of the drawing force and the depth of 50 mm. According to the test results, when there was the increase in the surface roughness of drawbead, there would be the increase in deep drawing force, especially the SPCC cold rolled steel sheet. This is similar to the increase in the equivalent strain and the wall thickness distribution when the surface roughness of the drawbead increased. It could be concluded that the surface roughness of drawbead has an influence on deep drawing cold rolled steel sheet, especially the drawing force, the equivalent strain and the wall thickness distribution.

Keywords: Drawbead, Deep Drawing, Drawing Force, Equivalent Strain, Surface roughness

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383
2080 Evaluation of Corrosion by Impedance Spectroscopy of Embedded Steel in an Alternative Concrete Exposed to the Chloride Ion

Authors: Erika J. Ruíz, Jairo R. Cortes, Willian A. Aperador

Abstract:

In this article was evaluated the protective effect of the alternative concrete obtained from the binary mixture of fly ash, and iron and steel slag. After mixing the cement with aggregates, structural steel was inserted in the matrix cementitious. The study was conducted comparatively with specimens exposed to natural conditions free of chloride ion. The chloride ion effect on the specimens accelerated under controlled conditions (3.5% NaCl and 25°C temperature). The impedance data were acquired in a range of 1 mHz to 100 kHz.

Keywords: Alternative concrete, corrosion, alkaline activation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
2079 Enhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection

Authors: Ehsan Amid, Sina Rezaei Aghdam, Hamidreza Amindavar

Abstract:

Steel surface defect detection is essentially one of pattern recognition problems. Support Vector Machines (SVMs) are known as one of the most proper classifiers in this application. In this paper, we introduce a more accurate classification method by using SVMs as our final classifier of the inspection system. In this scheme, multiclass classification task is performed based on the "one-againstone" method and different kernels are utilized for each pair of the classes in multiclass classification of the different defects. In the proposed system, a decision tree is employed in the first stage for two-class classification of the steel surfaces to "defect" and "non-defect", in order to decrease the time complexity. Based on the experimental results, generated from over one thousand images, the proposed multiclass classification scheme is more accurate than the conventional methods and the overall system yields a sufficient performance which can meet the requirements in steel manufacturing.

Keywords: Steel Surface Defect Detection, Support Vector Machines, Kernel Methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
2078 Challenges Facing Housing Developers to Deliver Zero Carbon Homes in England

Authors: M. Osmani, A. O'Reilly

Abstract:

Housebuilders in England have been the target of numerous government policies in recent years promoting increased productivity and affordability. As a result, the housebuilding industry is currently faced with objectives to improve the affordability and sustainability of new homes whilst also increasing production rates to 240,000 per year by 2016.Yet amidst a faltering economic climate, the UK Government is forging ahead with the 'Code for Sustainable Homes', which includes stringent sustainable standards for all new homes and sets ambitious targets for the housebuilding industry, the culmination of which is the production of zero carbon homes by 2016.Great uncertainty exists amongst housebuilders as to the costs, benefits and risks of building zero carbon homes. This paper examines the key barriers to zero carbon homes from housebuilders- perspective. A comprehensive opinion on the challenges to deliver zero carbon homes is gathered through a questionnaire survey issued to the major housing developers in England. The study found that a number of cultural, legislative, and financial barriers stand in the way of the widespread construction of zero carbon homes. The study concludes with several recommendations to both the Government and the housebuilding industry to address the barriers that hinder a successful delivery of zero carbon homes in England.

Keywords: Zero carbon homes, Code for Sustainable Homes, housebuilders, England

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
2077 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate

Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud

Abstract:

This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.

Keywords: Arc spray, coating, composite, erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3317
2076 Production of Milk Clotting Protease by Rhizopus Stolonifer through Optimization of Culture Conditions

Authors: S. Gais, F. Fazouane, A. Mechakra

Abstract:

The present study describes the biosynthesis of a milkclotting protease by solid state fermentation (SSF) of a locally isolated mould, Rhizopus stolonifer. The production medium was prepared using wheat bran at 50% (w/v). The production conditions are optimized by varying 7 parameters: carbon and nitrogen sources, medium moisture, temperature, pH, fermentation time and inoculum-s size. The maximum enzyme synthesis was measured after 96 h of incubation time at temperature of 28°C. The optimum pH determined was 6 and the inoculum size was 3.106spores/ml. The optimum initial moisture content is comprised between 50 to 70%. The formation of milk clotting protease is enhanced when galactose and peptone are used at 10% (w/v) and 1% (w/v) concentrations respectively. The maximum production of milk clotting protease is 120 US/ml.

Keywords: Milk clotting activity, protease production, Rhizopus stolonifer, Solid state fermentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
2075 Prediction of Bath Temperature Using Neural Networks

Authors: H. Meradi, S. Bouhouche, M. Lahreche

Abstract:

In this work, we consider an application of neural networks in LD converter. Application of this approach assumes a reliable prediction of steel temperature and reduces a reblow ratio in steel work. It has been applied a conventional model to charge calculation, the obtained results by this technique are not always good, this is due to the process complexity. Difficulties are mainly generated by the noisy measurement and the process non linearities. Artificial Neural Networks (ANNs) have become a powerful tool for these complex applications. It is used a backpropagation algorithm to learn the neural nets. (ANNs) is used to predict the steel bath temperature in oxygen converter process for the end condition. This model has 11 inputs process variables and one output. The model was tested in steel work, the obtained results by neural approach are better than the conventional model.

Keywords: LD converter, bath temperature, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
2074 A Comparative Study on the Impact of Global Warming of Applying Low Carbon Factor Concrete Products

Authors: Su-Hyun Cho, Chang-U Chae

Abstract:

Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in particular in the construction field. In this research, intended for concrete products for the construction materials, by using the LCA method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a results, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low carbon technologies of the future.

Keywords: CO2 Emissions, CO2 Reduction, Ready-mixed Concrete, Environmental Impact Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007
2073 Study of Structure and Properties of Polyester/Carbon Blends for Technical Applications

Authors: Manisha A. Hira, Arup Rakshit

Abstract:

Textile substrates are endowed with flexibility and ease of making–up, but are non-conductors of electricity. Conductive materials like carbon can be incorporated into textile structures to make flexible conductive materials. Such conductive textiles find applications as electrostatic discharge materials, electromagnetic shielding materials and flexible materials to carry current or signals. This work focuses on use of carbon fiber as conductor of electricity. Carbon fibers in staple or tow form can be incorporated in textile yarn structure to conduct electricity. The paper highlights the process for development of these conductive yarns of polyester/carbon using Friction spinning (DREF) as well as ring spinning. The optimized process parameters for processing hybrid structure of polyester with carbon tow on DREF spinning and polyester with carbon staple fiber using ring spinning have been presented. The studies have been linked to highlight the electrical conductivity of the developed yarns. Further, the developed yarns have been incorporated as weft in fabric and their electrical conductivity has been evaluated. The paper demonstrates the structure and properties of fabrics developed from such polyester/carbon blend yarns and their suitability as electrically dissipative fabrics.

Keywords: Carbon fiber, hybrid yarns, electrostatic dissipative fabrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
2072 Catalytical Effect of Fluka 05120 on Methane Decomposition

Authors: Vidyasagar Shilapuram, Nesrin Ozalp, Anam Waheed

Abstract:

Carboneous catalytical methane decomposition is an attractive process because it produces two valuable products: hydrogen and carbon. Furthermore, this reaction does not emit any green house or hazardous gases. In the present study, experiments were conducted in a thermo gravimetric analyzer using Fluka 05120 as carboneous catalyst to analyze its effectiveness in methane decomposition. Various temperatures and methane partial pressures were chosen and carbon mass gain was observed as a function of time. Results are presented in terms of carbon formation rate, hydrogen production and catalytical activity. It is observed that there is linearity in carbon deposition amount by time at lower reaction temperature (780 °C). On the other hand, it is observed that carbon and hydrogen formation rates are increased with increasing temperature. Finally, we observed that the carbon formation rate is highest at 950 °C within the range of temperatures studied.

Keywords: Catalysis, Fluka 05120, Hydrogen production, Methane decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
2071 Production of Natural Gas Hydrate by Using Air and Carbon Dioxide

Authors: Yun-Ho Ahn, Hyery Kang, Dong-Yeun Koh, Huen Lee

Abstract:

In this study, we demonstrate the production of natural gas hydrates from permeable marine sediments with simultaneous mechanisms for methane recovery and methane-air or methane-air/carbon dioxide replacement. The simultaneous melting happens until the chemical potentials become equal in both phases as natural gas hydrate depletion continues and self-regulated methane-air replacement occurs over an arbitrary point. We observed certain point between dissociation and replacement mechanisms in the natural gas hydrate reservoir, and we call this boundary as critical methane concentration. By the way, when carbon dioxide was added, the process of chemical exchange of methane by air/carbon dioxide was observed in the natural gas hydrate. The suggested process will operate well for most global natural gas hydrate reservoirs, regardless of the operating conditions or geometrical constraints.

Keywords: Air injection, Carbon dioxide sequestration, Hydrate production, Natural gas hydrate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2243
2070 Assessing the Effect of the Position of the Cavities on the Inner Plate of the Steel Shear Wall under Time History Dynamic Analysis

Authors: Masoud Mahdavi, Mojtaba Farzaneh Moghadam

Abstract:

The seismic forces caused by the waves created in the depths of the earth during the earthquake hit the structure and cause the building to vibrate. Creating large seismic forces will cause low-strength sections in the structure to suffer extensive surface damage. The use of new steel shear walls in steel structures has caused the strength of the building and its main members (columns) to increase due to the reduction and depreciation of seismic forces during earthquakes. In the present study, an attempt was made to evaluate a type of steel shear wall that has regular holes in the inner sheet by modeling the finite element model with Abacus software. The shear wall of the steel plate, measuring 6000 × 3000 mm (one floor) and 3 mm thickness, was modeled with four different pores with a cross-sectional area. The shear wall was dynamically subjected to a time history of 5 seconds by three accelerators, El Centro, Imperial Valley and Kobe. The results showed that increasing the distance between the geometric center of the hole and the geometric center of the inner plate in the steel shear wall (increasing the RCS index) caused the total maximum acceleration to be transferred from the perimeter of the hole to horizontal and vertical beams. The results also show that there is no direct relationship between RCS index and total acceleration in steel shear wall and RCS index is separate from the peak ground acceleration value of earthquake.

Keywords: Hollow Steel plate shear wall, time history analysis, finite element method, Abaqus Software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 514
2069 Fatigue Failure of Structural Steel – Analysis Using Fracture Mechanics

Authors: Shine U P, EMS Nair

Abstract:

Fatigue is the major threat in service of steel structure subjected to fluctuating loads. With the additional effect of corrosion and presence of weld joints the fatigue failure may become more critical in structural steel. One of the apt examples of such structural is the sailing ship. This is experiencing a constant stress due to floating and a pulsating bending load due to the waves. This paper describes an attempt to verify theory of fatigue in fracture mechanics approach with experimentation to determine the constants of crack growth curve. For this, specimen is prepared from the ship building steel and it is subjected to a pulsating bending load with a known defect. Fatigue crack and its nature is observed in this experiment. Application of fracture mechanics approach in fatigue with a simple practical experiment is conducted and constants of crack growth equation are investigated.

Keywords: fatigue, fracture mechanics, fatigue testing machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3320
2068 Effects of Particle Size Distribution of Binders on the Performance of Slag-Limestone Ternary Cement

Authors: Zhuomin Zou, Thijs Van Landeghem, Elke Gruyaert

Abstract:

Using supplementary cementitious materials, such as ground granulated blast-furnace slag (GGBFS) and limestone to replace Portland cement (PC) is a promising method to reduce the carbon emissions from cement production. To efficiently use GGBFS and limestone, it is necessary to carefully select the particle size distribution (PSD) of the binders. This study investigated the effects of the PSD of binders on the performance of slag-limestone ternary cement. Based on the PSD parameters of the binders, three types of ternary cements with a similar overall PSD were designed, i.e., No.1 fine GGBFS, medium PC, and coarse limestone; No.2 fine limestone, medium PC, and coarse GGBFS; No.3. fine PC, medium GGBFS, and coarse limestone. The binder contents in the ternary cements were 50% PC, 40% slag, and 10% limestone. The mortar performance of the three ternary cements was investigated in terms of flow table value, strength at 28 days, carbonation resistance and non-steady state chloride migration resistance at 28 days. Results show that ternary cement with fine limestone (No.2) has the weakest performance among the three ternary cements. Ternary cements with fine slag (No.1) show an overall comparable performance to ternary cement with fine PC (No.3). Moreover, the chloride migration coefficient of ternary cements with fine slag (No.1) is significantly lower than the other two ternary cements.

Keywords: Limestone, particle size distribution, slag, ternary cement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 268
2067 Multifunctional Bending and Straightening Machines for Shipbuilding

Authors: V. Yu. Shungin, A. V. Popov

Abstract:

The paper gives basic information on application of rotation bending for manufacturing ship hull parts from steel plates and on MGPS machines, employed for this purpose.

Keywords: Roller bending, steel plates, shipbuilding, ship repair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2478
2066 Microstructure Changes of Machined Surfaceson Austenitic 304 Stainless Steel

Authors: Lin. Yan, Wenyu. Yang, Hongping. Jin, Zhiguang Wang

Abstract:

This paper presents a experiment to estimate the influences of cutting conditions in microstructure changes of machining austenitic 304 stainless steel, especially for wear insert. The wear insert were prefabricated with a width of 0.5 mm. And the forces, temperature distribution, RS, and microstructure changes were measured by force dynamometer, infrared thermal camera, X-ray diffraction, XRD, SEM, respectively. The results told that the different combinations of machining condition have a significant influence on machined surface microstructure changes. In addition to that, the ANOVA and AOMwere used to tell the different influences of cutting speed, feed rate, and wear insert.

Keywords: Microstructure Changes, Wear width, Stainless steel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
2065 Nonlinear Stability of Convection in a Thermally Modulated Anisotropic Porous Medium

Authors: M. Meenasaranya, S. Saravanan

Abstract:

Conditions corresponding to the unconditional stability of convection in a mechanically anisotropic fluid saturated porous medium of infinite horizontal extent are determined. The medium is heated from below and its bounding surfaces are subjected to temperature modulation which consists of a steady part and a time periodic oscillating part. The Brinkman model is employed in the momentum equation with the Bousinessq approximation. The stability region is found for arbitrary values of modulational frequency and amplitude using the energy method. Higher order numerical computations are carried out to find critical boundaries and subcritical instability regions more accurately.

Keywords: Convection, porous medium, anisotropy, temperature modulation, nonlinear stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 835
2064 Seismic Behavior of Three-Dimensional Steel Buildings with Post-Tensioned Connections

Authors: M. E. Soto-López, I. Gaxiola-Avendaño, A. Reyes-Salazar, E. Bojórquez, S. E. Ruiz

Abstract:

The seismic responses of steel buildings with semirigid post-tensioned connections (PC) are estimated and compared with those of steel buildings with typical rigid (welded) connections (RC). The comparison is made in terms of global and local response parameters. The results indicate that the seismic responses in terms of interstory shears, roof displacements, axial load and bending moments are smaller for the buildings with PC connection. The difference is larger for global than for local parameters, which in turn varies from one column location to another. The reason for this improved behavior is that the buildings with PC dissipate more hysteretic energy than those with RC. In addition, unlike the case of buildings with WC, for the PC structures the hysteretic energy is mostly dissipated at the connections, which implies that structural damage in beams and columns is not significant. According to these results, steel buildings with PC are a viable option in high seismicity areas because of their smaller response and self-centering connection capacity as well as the fact that brittle failure is avoided.

Keywords: Inter-story drift, Nonlinear time-history analysis, Post-tensioned connections, Steel buildings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122
2063 Seismic Behavior and Loss Assessment of High-Rise Buildings with Light Gauge Steel-Concrete Hybrid Structure

Authors: Bing Lu, Shuang Li, Hongyuan Zhou

Abstract:

The steel-concrete hybrid structure has been extensively employed in high-rise buildings and super high-rise buildings. The light gauge steel-concrete hybrid structure, including light gauge steel structure and concrete hybrid structure, is a type of steel-concrete hybrid structure, which possesses some advantages of light gauge steel structure and concrete hybrid structure. The seismic behavior and loss assessment of three high-rise buildings with three different concrete hybrid structures were investigated through finite element software. The three concrete hybrid structures are reinforced concrete column-steel beam (RC-S) hybrid structure, concrete-filled steel tube column-steel beam (CFST-S) hybrid structure, and tubed concrete column-steel beam (TC-S) hybrid structure. The nonlinear time-history analysis of three high-rise buildings under 80 earthquakes was carried out. After simulation, it indicated that the seismic performances of three high-rise buildings were superior. Under extremely rare earthquakes, the maximum inter-story drifts of three high-rise buildings are significantly lower than 1/50. The inter-story drift and floor acceleration of high-rise building with CFST-S hybrid structure were bigger than those of high-rise buildings with RC-S hybrid structure, and smaller than those of high-rise building with TC-S hybrid structure. Then, based on the time-history analysis results, the post-earthquake repair cost ratio and repair time of three high-rise buildings were predicted through an economic performance analysis method proposed in FEMA-P58 report. Under frequent earthquakes, basic earthquakes and rare earthquakes, the repair cost ratio and repair time of three high-rise buildings were less than 5% and 15 days, respectively. Under extremely rare earthquakes, the repair cost ratio and repair time of high-rise buildings with TC-S hybrid structure were the most among three high rise buildings. Due to the advantages of CFST-S hybrid structure, it could be extensively employed in high-rise buildings subjected to earthquake excitations.

Keywords: seismic behavior, loss assessment, light gauge steel, concrete hybrid structure, high-rise building, time-history analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 424
2062 Failure Cases Analysis in Petrochemical Industry

Authors: S. W. Liu, J. H. Lv, W. Z. Wang

Abstract:

In recent years, the failure accidents in petrochemical industry have been frequent, and have posed great security problems in personnel and property. The improvement of petrochemical safety is highly requested in order to prevent re-occurrence of severe accident. This study focuses on surveying the failure cases occurred in petrochemical field, which were extracted from journals of engineering failure, including engineering failure analysis and case studies in engineering failure analysis. The relation of failure mode, failure mechanism, type of components, and type of materials was analyzed in this study. And the analytical results showed that failures occurred more frequently in vessels and piping among the petrochemical equipment. Moreover, equipment made of carbon steel and stainless steel accounts for the majority of failures compared to other materials. This may be related to the application of the equipment and the performance of the material. In addition, corrosion failures were the largest in number of occurrence in the failure of petrochemical equipment, in which stress corrosion cracking accounts for a large proportion. This may have a lot to do with the service environment of the petrochemical equipment. Therefore, it can be concluded that the corrosion prevention of petrochemical equipment is particularly important.

Keywords: Cases analysis, corrosion, failure, petrochemical industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1347
2061 Volume Fraction Law for Stainless Steel on Inner Surface and Nickel on Outer Surface For FGM Cylindrical Shell

Authors: M.Hosseinjani Zamenjani, A.R.Tahmasebi Birgani, M.R.Isvandzibaei

Abstract:

Vibration of thin cylindrical shells made of a functionally gradient material composed of stainless steel and nickel is presented. The effects of the FGM configuration are studied by studying the frequencies of FG cylindrical shells. In this case FG cylindrical shell has Nickel on its outer surface and stainless steel on its inner surface. The study is carried out based on third order shear deformation shell theory. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of configurations of the constituent materials on the frequencies. The properties are graded in the thickness direction according to the volume fraction power-law distribution. Results are presented on the frequency characteristics, the influence of the constituent various volume fractions on the frequencies.

Keywords: Nickel, Stainless Steel, Cylindrical shell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
2060 Performance of Stiffened Slender Built up Steel I-Columns

Authors: M. E. Abou-Hashem El Dib, M. K. Swailem, M. M. Metwally, A. I. El Awady

Abstract:

The present work illustrates a parametric study for the effect of stiffeners on the performance of slender built up steel I-columns. To achieve the desired analysis, finite element technique is used to develop nonlinear three-dimensional models representing the investigated columns. The finite element program (ANSYS 13.0) is used as a calculation tool for the necessary nonlinear analysis. A validation of the obtained numerical results is achieved. The considered parameters in the study are the column slenderness ratio and the horizontal stiffener's dimensions as well as the number of stiffeners. The dimensions of the stiffeners considered in the analysis are the stiffener width and the stiffener thickness. Numerical results signify a considerable effect of stiffeners on the performance and failure load of slender built up steel I-columns.

Keywords: Steel I-columns, local buckling, slender, stiffener, thin walled section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210