Search results for: Learning Algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3254

Search results for: Learning Algorithms

3194 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
3193 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: Artificial Intelligence, machine learning, deep learning, convolutional neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181
3192 A General Framework for Knowledge Discovery Using High Performance Machine Learning Algorithms

Authors: S. Nandagopalan, N. Pradeep

Abstract:

The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.

Keywords: Active Contour, Bayesian, Echocardiographic image, Feature vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
3191 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms

Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary

Abstract:

Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.

Keywords: ADHD, autism, epilepsy, EEG, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 923
3190 New Algorithms for Finding Short Reset Sequences in Synchronizing Automata

Authors: Adam Roman

Abstract:

Finding synchronizing sequences for the finite automata is a very important problem in many practical applications (part orienters in industry, reset problem in biocomputing theory, network issues etc). Problem of finding the shortest synchronizing sequence is NP-hard, so polynomial algorithms probably can work only as heuristic ones. In this paper we propose two versions of polynomial algorithms which work better than well-known Eppstein-s Greedy and Cycle algorithms.

Keywords: Synchronizing words, reset sequences, Černý Conjecture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
3189 Examining the Performance of Three Multiobjective Evolutionary Algorithms Based on Benchmarking Problems

Authors: Konstantinos Metaxiotis, Konstantinos Liagkouras

Abstract:

The objective of this study is to examine the performance of three well-known multiobjective evolutionary algorithms for solving optimization problems. The first algorithm is the Non-dominated Sorting Genetic Algorithm-II (NSGA-II), the second one is the Strength Pareto Evolutionary Algorithm 2 (SPEA-2), and the third one is the Multiobjective Evolutionary Algorithms based on decomposition (MOEA/D). The examined multiobjective algorithms are analyzed and tested on the ZDT set of test functions by three performance metrics. The results indicate that the NSGA-II performs better than the other two algorithms based on three performance metrics.

Keywords: MOEAs, Multiobjective optimization, ZDT test functions, performance metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
3188 The Influence of Preprocessing Parameters on Text Categorization

Authors: Jan Pomikalek, Radim Rehurek

Abstract:

Text categorization (the assignment of texts in natural language into predefined categories) is an important and extensively studied problem in Machine Learning. Currently, popular techniques developed to deal with this task include many preprocessing and learning algorithms, many of which in turn require tuning nontrivial internal parameters. Although partial studies are available, many authors fail to report values of the parameters they use in their experiments, or reasons why these values were used instead of others. The goal of this work then is to create a more thorough comparison of preprocessing parameters and their mutual influence, and report interesting observations and results.

Keywords: Text categorization, machine learning, electronic documents, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
3187 Explanatory of Relationship between Learning Motivation and Learning Performance

Authors: Chih Chin Yang

Abstract:

In this paper, the relationship between learning motivation and learning performance is explored by using exchange theory. The relationship is concluded that external performance can raise learning motivation and then increase learning performance. The internal performance should be not completely neglected and the external performance should be not attached important excessively. The parents need self-study and must be also reeducated. The existing education must be improved in raise of internal performance. The incorrect learning thinking will mislead the students, parents, and educators of next generation, when the students obtain good learning performance in the learning environment with excess stimulants. Over operation of external performance will result abnormal learning thinking and violating learning goal. Learning is not only to obtain performance. Learning quality and learning performance will be limited as without learning motivation. The best learning motivation is, the best learning performance is. The learning for reward is not good for learning performance. Strategies of promoting life-long learning are including the encouraging for learner, establishment of good interaction learning environment, and the advertisement of the merit and the importance of life-long learning, which can let the learner with the correct learning motivation.

Keywords: exchange theory, learning motivation, learning performance, learning quality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
3186 Robustness of Hybrid Learning Acceleration Feedback Control Scheme in Flexible Manipulators

Authors: M. Z Md Zain, M. O. Tokhi, M. S. Alam

Abstract:

This paper describes a practical approach to design and develop a hybrid learning with acceleration feedback control (HLC) scheme for input tracking and end-point vibration suppression of flexible manipulator systems. Initially, a collocated proportionalderivative (PD) control scheme using hub-angle and hub-velocity feedback is developed for control of rigid-body motion of the system. This is then extended to incorporate a further hybrid control scheme of the collocated PD control and iterative learning control with acceleration feedback using genetic algorithms (GAs) to optimize the learning parameters. Experimental results of the response of the manipulator with the control schemes are presented in the time and frequency domains. The performance of the HLC is assessed in terms of input tracking, level of vibration reduction at resonance modes and robustness with various payloads.

Keywords: Flexible manipulator, iterative learning control, vibration suppression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
3185 Comparative Study of Scheduling Algorithms for LTE Networks

Authors: Samia Dardouri, Ridha Bouallegue

Abstract:

Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.

Keywords: LTE, Multimedia flows, Scheduling algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4767
3184 Correlation-based Feature Selection using Ant Colony Optimization

Authors: M. Sadeghzadeh, M. Teshnehlab

Abstract:

Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.

Keywords: Ant colony optimization, Classification, Datamining, Feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
3183 Playing Games with Genetic Algorithms: Application on Price-QoS Competition in Telecommunications Market

Authors: M’hamed Outanoute, Mohamed Baslam, Belaid Bouikhalene

Abstract:

The customers use the best compromise criterion between price and quality of service (QoS) to select or change their Service Provider (SP). The SPs share the same market and are competing to attract more customers to gain more profit. Due to the divergence of SPs interests, we believe that this situation is a non-cooperative game of price and QoS. The game converges to an equilibrium position known Nash Equilibrium (NE). In this work, we formulate a game theoretic framework for the dynamical behaviors of SPs. We use Genetic Algorithms (GAs) to find the price and QoS strategies that maximize the profit for each SP and illustrate the corresponding strategy in NE. In order to quantify how this NE point is performant, we perform a detailed analysis of the price of anarchy induced by the NE solution. Finally, we provide an extensive numerical study to point out the importance of considering price and QoS as a joint decision parameter.

Keywords: Pricing, QoS, Market share game, Genetic algorithms, Nash equilibrium, Learning, Price of anarchy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
3182 Design and Implementation of a Software Platform Based on Artificial Intelligence for Product Recommendation

Authors: G. Settanni, A. Panarese, R. Vaira, A. Galiano

Abstract:

Nowadays, artificial intelligence is used successfully in the field of e-commerce for its ability to learn from a large amount of data. In this research study, a prototype software platform was designed and implemented in order to suggest to users the most suitable products for their needs. The platform includes a recommender system based on artificial intelligence algorithms that provide suggestions and decision support to the customer. Specifically, support vector machine algorithms have been implemented combined with natural language processing techniques that allow the user to interact with the system, express their requests and receive suggestions. The interested user can access the web platform on the internet using a computer, tablet or mobile phone, register, provide the necessary information and view the products that the system deems them the most appropriate. The platform also integrates a dashboard that allows the use of the various functions, which the platform is equipped with, in an intuitive and simple way. Also, Long Short-Term Memory algorithms have been implemented and trained on historical data in order to predict customer scores of the different items. Items with the highest scores are recommended to customers.

Keywords: Deep Learning, Long Short-Term Memory, Machine Learning, Recommender Systems, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 243
3181 A Family of Affine Projection Adaptive Filtering Algorithms With Selective Regressors

Authors: Mohammad Shams Esfand Abadi, Nader Hadizadeh Kashani, Vahid Mehrdad

Abstract:

In this paper we present a general formalism for the establishment of the family of selective regressor affine projection algorithms (SR-APA). The SR-APA, the SR regularized APA (SR-RAPA), the SR partial rank algorithm (SR-PRA), the SR binormalized data reusing least mean squares (SR-BNDR-LMS), and the SR normalized LMS with orthogonal correction factors (SR-NLMS-OCF) algorithms are established by this general formalism. We demonstrate the performance of the presented algorithms through simulations in acoustic echo cancellation scenario.

Keywords: Adaptive filter, affine projection, selective regressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
3180 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: D. Hişam, S. İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three ML models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest (RF) Classifier was the most accurate model.

Keywords: Vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 95
3179 Patient-Specific Modeling Algorithm for Medical Data Based on AUC

Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper

Abstract:

Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.

Keywords: Approach instance-based, area Under the ROC Curve, Patient-specific Decision Path, clinical predictions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
3178 Improved Computational Efficiency of Machine Learning Algorithms Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning (ML) archetypal that could forecast the COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID-19 cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organization (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data are split into 8:2 ratio for training and testing purposes to forecast future new COVID-19 cases. Support Vector Machine (SVM), Random Forest (RF), and linear regression (LR) algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID-19 cases is evaluated. RF outperformed the other two ML algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n = 30. The mean square error obtained for RF is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis, RF algorithm can perform more effectively and efficiently in predicting the new COVID-19 cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104
3177 Analysis and Categorization of e-Learning Activities Based On Meaningful Learning Characteristics

Authors: Arda Yunianta, Norazah Yusof, Mohd Shahizan Othman, Dewi Octaviani

Abstract:

Learning is the acquisition of new mental schemata, knowledge, abilities and skills which can be used to solve problems potentially more successfully. The learning process is optimum when it is assisted and personalized. Learning is not a single activity, but should involve many possible activities to make learning become meaningful. Many e-learning applications provide facilities to support teaching and learning activities. One way to identify whether the e-learning system is being used by the learners is through the number of hits that can be obtained from the e-learning system's log data. However, we cannot rely solely to the number of hits in order to determine whether learning had occurred meaningfully. This is due to the fact that meaningful learning should engage five characteristics namely active, constructive, intentional, authentic and cooperative. This paper aims to analyze the e-learning activities that is meaningful to learning. By focusing on the meaningful learning characteristics, we match it to the corresponding Moodle e-learning activities. This analysis discovers the activities that have high impact to meaningful learning, as well as activities that are less meaningful. The high impact activities is given high weights since it become important to meaningful learning, while the low impact has less weight and said to be supportive e-learning activities. The result of this analysis helps us categorize which e-learning activities that are meaningful to learning and guide us to measure the effectiveness of e-learning usage.

Keywords: e-learning system, e-learning activity, meaningful learning characteristics, Moodle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3095
3176 Angular-Coordinate Driven Radial Tree Drawing

Authors: Farshad Ghassemi Toosi, Nikola S. Nikolov

Abstract:

We present a visualization technique for radial drawing of trees consisting of two slightly different algorithms. Both of them make use of node-link diagrams for visual encoding. This visualization creates clear drawings without edge crossing. One of the algorithms is suitable for real-time visualization of large trees, as it requires minimal recalculation of the layout if leaves are inserted or removed from the tree; while the other algorithm makes better utilization of the drawing space. The algorithms are very similar and follow almost the same procedure but with different parameters. Both algorithms assign angular coordinates for all nodes which are then converted into 2D Cartesian coordinates for visualization. We present both algorithms and discuss how they compare to each other.

Keywords: Radial Tree Drawing, Real-Time Visualization, Angular Coordinates, Large Trees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
3175 A Comparative Study of Page Ranking Algorithms for Information Retrieval

Authors: Ashutosh Kumar Singh, Ravi Kumar P

Abstract:

This paper gives an introduction to Web mining, then describes Web Structure mining in detail, and explores the data structure used by the Web. This paper also explores different Page Rank algorithms and compare those algorithms used for Information Retrieval. In Web Mining, the basics of Web mining and the Web mining categories are explained. Different Page Rank based algorithms like PageRank (PR), WPR (Weighted PageRank), HITS (Hyperlink-Induced Topic Search), DistanceRank and DirichletRank algorithms are discussed and compared. PageRanks are calculated for PageRank and Weighted PageRank algorithms for a given hyperlink structure. Simulation Program is developed for PageRank algorithm because PageRank is the only ranking algorithm implemented in the search engine (Google). The outputs are shown in a table and chart format.

Keywords: Web Mining, Web Structure, Web Graph, LinkAnalysis, PageRank, Weighted PageRank, HITS, DistanceRank, DirichletRank,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2771
3174 Is E-learning Based On Learning Theories? A Literature Review

Authors: Apostolia Pange, Jenny Pange

Abstract:

E-learning aims to build knowledge and skills in order to enhance the quality of learning. Research has shown that the majority of the e-learning solutions lack in pedagogical background and present some serious deficiencies regarding teaching strategies and content delivery, time and pace management, interface design and preservation of learners- focus. The aim of this review is to approach the design of e-learning solutions with a pedagogical perspective and to present some good practices of e-learning design grounded on the core principles of Learning Theories (LTs).

Keywords: design principles, e-learning, Learning Theories

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5163
3173 Fuzzy-Genetic Optimal Control for Four Degreeof Freedom Robotic Arm Movement

Authors: V. K. Banga, R. Kumar, Y. Singh

Abstract:

In this paper, we present optimal control for movement and trajectory planning for four degrees-of-freedom robot using Fuzzy Logic (FL) and Genetic Algorithms (GAs). We have evaluated using Fuzzy Logic (FL) and Genetic Algorithms (GAs) for four degree-of-freedom (4 DOF) robotics arm, Uncertainties like; Movement, Friction and Settling Time in robotic arm movement have been compensated using Fuzzy logic and Genetic Algorithms. The development of a fuzzy genetic optimization algorithm is presented and discussed. The result are compared only GA and Fuzzy GA. This paper describes genetic algorithms, which is designed to optimize robot movement and trajectory. Though the model represents is a general model for redundant structures and could represent any n-link structures. The result is a complete trajectory planning with Fuzzy logic and Genetic algorithms demonstrating the flexibility of this technique of artificial intelligence.

Keywords: Inverse kinematics, Genetic algorithms (GAs), Fuzzy logic (FL), Trajectory planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
3172 Integrating Computational Intelligence Techniques and Assessment Agents in ELearning Environments

Authors: Konstantinos C. Giotopoulos, Christos E. Alexakos, Grigorios N. Beligiannis, Spiridon D.Likothanassis

Abstract:

In this contribution an innovative platform is being presented that integrates intelligent agents and evolutionary computation techniques in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting: I) various assessment agents for e-learning environments, II) a specific resource retrieval agent for the provision of additional information from Internet sources matching the needs and profile of the specific user and III) a genetic algorithm designed to extract efficient information (classifying rules) based on the students- answering input data. The agents are implemented in order to provide intelligent assessment services based on computational intelligence techniques such as Bayesian Networks and Genetic Algorithms. The proposed Genetic Algorithm (GA) is used in order to extract efficient information (classifying rules) based on the students- answering input data. The idea of using a GA in order to fulfil this difficult task came from the fact that GAs have been widely used in applications including classification of unknown data. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.

Keywords: Bayesian Networks, Computational Intelligencetechniques, E-learning legacy systems, Service Oriented Integration, Intelligent Agents, Genetic Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1696
3171 E-Learning Experiences of Hong Kong Students

Authors: J. Lam, R. Chan

Abstract:

The adoption of e-learning in Hong Kong has been increasing rapidly in the past decade. To understand the e-learning experiences of the students, the School of Professional and Continuing Education of The University of Hong Kong conducted a survey. The survey aimed to collect students- experiences in using learning management system, their perceived e-learning advantages, barriers in e-learning and preferences in new e-learning development. A questionnaire with 84 questions was distributed in mid 2012 and 608 valid responds were received. The analysis results showed that the students found e-learning helpful to their study. They preferred interactive functions and mobile features. Blended learning mode, both face-to-face learning mode integrated with online learning and face-to-face learning mode supplemented with online resources, were preferred by the students. The results of experiences of Hong Kong students in e-learning provided a contemporary reference to the e-learning practitioners to understand the e-learning situation in Asia.

Keywords: E-learning, blended learning, learning experience, learning management system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
3170 Fractal Dimension: An Index to Quantify Parameters in Genetic Algorithms

Authors: Mahmoud R. Shaghaghian

Abstract:

Genetic Algorithms (GAs) are direct searching methods which require little information from design space. This characteristic beside robustness of these algorithms makes them to be very popular in recent decades. On the other hand, while this method is employed, there is no guarantee to achieve optimum results. This obliged designer to run such algorithms more than one time to achieve more reliable results. There are many attempts to modify the algorithms to make them more efficient. In this paper, by application of fractal dimension (particularly, Box Counting Method), the complexity of design space are established for determination of mutation and crossover probabilities (Pm and Pc). This methodology is followed by a numerical example for more clarification. It is concluded that this modification will improve efficiency of GAs and make them to bring about more reliable results especially for design space with higher fractal dimensions.

Keywords: Genetic Algorithm, Fractal Dimension, BoxCounting Method, Weierstrass-Mandelbrot function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
3169 University Students Awareness on M-Learning

Authors: Sahilu Wendeson, Wan Fatimah Bt. Wan Ahmad, Nazleeni Samiha Bt. Haron

Abstract:

Mobile learning (M-learning) is the current technology that is becoming more popular. It uses the current mobile and wireless computing technology to complement the effectiveness of traditional learning process. The objective of this paper is presents a survey from 90 undergraduate students of Universiti Teknologi PETRONAS (UTP), to identify the students- perception on Mlearning. From the results, the students are willing to use M-learning. The acceptance level of the students is high, and the results obtained revealed that the respondents almost accept M-learning as one method of teaching and learning process and also able to improve the educational efficiency by complementing traditional learning in UTP.

Keywords: M-learning, Traditional learning, WirelessTechnology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
3168 Affine Projection Adaptive Filter with Variable Regularization

Authors: Young-Seok Choi

Abstract:

We propose two affine projection algorithms (APA) with variable regularization parameter. The proposed algorithms dynamically update the regularization parameter that is fixed in the conventional regularized APA (R-APA) using a gradient descent based approach. By introducing the normalized gradient, the proposed algorithms give birth to an efficient and a robust update scheme for the regularization parameter. Through experiments we demonstrate that the proposed algorithms outperform conventional R-APA in terms of the convergence rate and the misadjustment error.

Keywords: Affine projection, regularization, gradient descent, system identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
3167 ECG-Based Heartbeat Classification Using Convolutional Neural Networks

Authors: Jacqueline R. T. Alipo-on, Francesca I. F. Escobar, Myles J. T. Tan, Hezerul Abdul Karim, Nouar AlDahoul

Abstract:

Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases which are considered as one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis on the ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heart beat types. The dataset used in this work is the synthetic MIT-Beth Israel Hospital (MIT-BIH) Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.

Keywords: Heartbeat classification, convolutional neural network, electrocardiogram signals, ECG signals, generative adversarial networks, long short-term memory, LSTM, ResNet-50.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 114
3166 Learning to Order Terms: Supervised Interestingness Measures in Terminology Extraction

Authors: Jérôme Azé, Mathieu Roche, Yves Kodratoff, Michèle Sebag

Abstract:

Term Extraction, a key data preparation step in Text Mining, extracts the terms, i.e. relevant collocation of words, attached to specific concepts (e.g. genetic-algorithms and decisiontrees are terms associated to the concept “Machine Learning" ). In this paper, the task of extracting interesting collocations is achieved through a supervised learning algorithm, exploiting a few collocations manually labelled as interesting/not interesting. From these examples, the ROGER algorithm learns a numerical function, inducing some ranking on the collocations. This ranking is optimized using genetic algorithms, maximizing the trade-off between the false positive and true positive rates (Area Under the ROC curve). This approach uses a particular representation for the word collocations, namely the vector of values corresponding to the standard statistical interestingness measures attached to this collocation. As this representation is general (over corpora and natural languages), generality tests were performed by experimenting the ranking function learned from an English corpus in Biology, onto a French corpus of Curriculum Vitae, and vice versa, showing a good robustness of the approaches compared to the state-of-the-art Support Vector Machine (SVM).

Keywords: Text-mining, Terminology Extraction, Evolutionary algorithm, ROC Curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
3165 Mobile Learning Implementation: Students- Perceptions in UTP

Authors: Ahmad Sobri bin Hashim, Wan Fatimah Bt. Wan Ahmad, Rohiza Bt. Ahmad

Abstract:

Mobile Learning (M-Learning) is a new technology which is to enhance current learning practices and activities for all people especially students and academic practitioners UTP is currently, implemented two types of learning styles which are conventional and electronic learning. In order to improve current learning approaches, it is necessary for UTP to implement m-learning in UTP. This paper presents a study on the students- perceptions on mobile utilization in the learning practices in UTP. Besides, this paper also presents a survey that was conducted among 82 students from System Analysis and Design (SAD) course in UTP. The survey includes basic information of mobile devices that have been used by the students, opinions on current learning practices and also the opinions regarding the m-learning implementation in the current learning practices especially in SAD course. Based on the results of the survey, majority of the students are using the mobile devices that can support m-learning environment. Other than that, students also agreed that current learning practices are ineffective and they believe that m-learning utilization can improve the effectiveness of current learning practices.

Keywords: m-learning, conventional learning, electronic learning, mobile devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182