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Abstract— Term Extraction, a key data preparation step in Text 

Mining, extracts the terms, i.e. relevant collocation of words, 

attached to specific concepts (e.g. genetic-algorithms and decision-

trees are terms associated to the concept “Machine Learning” ). In

this paper, the task of extracting interesting collocations is achieved 

through a supervised learning algorithm, exploiting a few

collocations manually labelled as interesting/not interesting. From 

these examples, the ROGER algorithm learns a numerical function,

inducing some ranking on the collocations. This ranking is optimized 

using genetic algorithms, maximizing the trade-off between the false

positive and true positive rates (Area Under the ROC curve). This 

approach uses a particular representation for the word collocations,

namely the vector of values corresponding to the standard statistical

interestingness measures attached to this collocation. As this 

representation is general (over corpora and natural languages), 

generality tests were performed by experimenting the ranking 

function learned from an English corpus in Biology, onto a French 

corpus of Curriculum Vitae, and vice versa, showing a good 

robustness of the approaches compared to the state-of-the-art Support 

Vector Machine (SVM).

Keywords— Text-mining, Terminology Extraction, Evolutionary

algorithm, ROC Curve.

I. INTRODUCTION

es

pr

ides the known difficulties of data mining, text mining

esents specific difficulties due to the structure of

documents and natural language. In particular, the

construction of ontologies or terminologies [2,16] which is a 

central task in text mining, aims at controlling the polysemy

and synonymy of words by structuring the words and their

meanings in the application domain.

A preliminary step for ontology construction is to extract

the domain terms, or words collocations [2,16,23]. Terms

extraction involves two tasks: detecting “interesting”

collocation of words (terms) and classifying them according to 

classes predefined by an expert.

This paper focuses on the detection of interesting terms, and 

more precisely on defining a ranking criteria on the words

collocations. Based on [13], this paper formalizes an 

interestingness measure as a solution of some supervised

learning problem (Learning to Order Things, [6]), or 

optimization problem. Actually, an interestingness measure, or

ranking hypothesis, is assessed from its recall-precision trade-

off, measured with respect to its Receiver Operating 

Characteristics (ROC) curve. Accordingly, a ranking function

is learned by optimizing the area under the ROC curve (AUC)

[11,14] from a few words collocations labelled as 

relevant/irrelevant by an expert.
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The paper is organised as follows. Section II briefly

reviews the main criteria used in terms extraction. Section III 

presents the ROGER (ROc-based GEnetic learneR) algorithm,

and its extension to the construction of interestingness

measures are presented. Section IV reports on the 

experimental validation on two real-world corpora, and 

discusses the results obtained with respect to the state-of-the-

art. As the representation considered is domain and language

independent generality tests were performed by experimenting

the ranking function learned from one corpus to another. The 

paper ends with perspectives for further research. 

II. TERMS EXTRACTION MEASURES

Different statistical criteria are used in systems of 

terminology extraction, for instance ACABIT [8] uses

loglikelihood measure [9] and KEA [27] uses TF x IDF 

measure. The statistical criteria (value of the measures and the 

rank of each collocation) used in our approach are: 

Mutual Information (MI) [5]

Mutual Information with cube (MI3) [7]

Dice Coefficient (Dice) [24]

Loglikelihood (L) [9]

Number of occurrences + Loglikelihood (OccL)1 [18]

The choice of an interestingness measure, mostly tackled in

the literature through statistical and linguistic criteria [7,17,28] 

is currently viewed as a decision making problem.

Another approach based on learning an interestingness

measure, is proposed by Vivaldi et al. [26]. They represent

collocations from the values of the statistical criteria and use

Adaboost [20] to automatically construct a discriminant

hypothesis.

The presented work follows [26] with two main differences

1 OccL is defined by ranking terms according to their number of occurrences,

and breaking the ties based on the term likelihoods.
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i) measures (Dice, OccL) are added to the description of 

collocations ; ii) the learning problem is one of preference

learning [13] instead of discriminant learning.

III. OVERVIEW

A. Linear ranking function

The ROGER algorithm [21,22] tackling the AUC

optimization using evolution strategies, is among the most

efficient evolutionary algorithms for numerical optimization

[1]. ROGER investigates the space of continuous hypotheses, 

mapping the example space onto the real-valued space .

Using the standard  notations, the dataset ={(xi,yi), i=1..n,

xi
d, yi {-1,+1}} includes n examples, where each example

(collocation) is described from the values of the statistical 

criteria. This section describes the algorithm used to learn a 

term ranking hypothesis. We first briefly review the state-of-

the-art related to ROC analysis in Machine Learning.

For the sake of simplicity, let us restrict the discussion to

supervised binary learning. The goal of learning algorithms

can actually be seen as a multi-objective optimization

problem: maximizing the rate of true positive examples

(percentage of positive examples correctly classified) while

minimizing the rate of false positive examples (percentage of

negative examples misclassified as positive).

The ROC curve depicts the trade-off between both 

objectives achieved by a learning algorithm and represented in

the False Positive / True Positive Ratios plane. The ideal

hypothesis corresponds to point (0,1), with no false positive 

and 100% true positive examples.

ROC curve has no sensitivities to the ratio of positives and

negatives examples [15] as opposed to other accuracy 

measures such as Fscore [4]. One advantage of ROC curves is 

to naturally accommodate ill-balanced distributions and cost-

sensitive learning [8].

The area under the ROC curve (AUC) is thus viewed as a 

global measure of the learning efficiency. As noted by [14],

the area under the ROC curve is equivalent to the Wilcoxon

rank statistics, the probability of ranking correctly a pair of

(positive, negative) examples. Indeed the probability of

ranking an interesting collocation below a non-interesting one 

constitutes an appropriate evaluation for an interestingness 

measure.

The bias and variance of the AUC criterion have been

studied by [19] and compared to the criteria of the 

misclassification error. An analytical and empirical study

suggests that though the AUC bias might be higher than for 

the misclassification cost, its variance is lower; this can be

explained as AUC is an order n2 statistics, n being the number

of examples, whereas the misclassification cost is an order n

statistics.

The optimization of AUC constitutes a NP-complete

problem, which has been undertaken in the literature in a 

number of ways, from evolutionary programming of neural

nets [12] to greedy optimization of decision trees [11].

Recently, this problem was turned into a differentiable 

optimization problem by encapsulating the comparison of any

two examples into a sigmoid function [14], and resolved by a 

gradient-based approach. 

In earlier works [21,22], ROGER was exploring the space of 

linear hypotheses on d. To each genotype w=(w1,..., wd)
d is associated a hypothesis hw defined on d as: 

hw(x)=<w,x> =  wj . x
j.

The fitness F(hw) is defined as the fraction of pairs of

(positive, negative) examples that are ranked correctly

according to hw:

)1())()(Pr()( jijwiww yyxhxhhF

B. Non linear ROGER

Thank to the flexibility of evolutionary computation a

straightforward extension allows for considering (a limited

kind of) non-linear hypotheses by only doubling the size of 

the search space. Specifically, a genetic individual

z=(w1,...,wd,c1,…,cd)
2d is associated with the hypothesis hz

defined as:
d

j

jd

z jj cxwxxxh
1

1 )),...,((

The associated fitness F(hz) is computed as in equation (1).

In both cases, the optimization of F is achieved by a ( + )

evolution strategy, using self-adaptive mutation and uniform

crossover [1].

C. BAGGED-ROGER

This paper presents a new extension of ROGER named

BAGGED-ROGER which is based on the remark that

independent runs of an evolutionary learning algorithms

provide diverse hypotheses, namely the hypothesis reaching

the best AUC value along each run. 

Although these hypotheses cannot be considered truly

independent as they are optimized on the same training set, it

makes sense to consider their combination [3]. As shown in

[10], the averaging of randomized hypotheses can 

exponentially amplify their advantage over the default

accuracy. Formally, let h1,…,hT denote the T normalized2

hypotheses constructed along T independent runs of ROGER.

Their agregation noted Bh, is defined as:

)..1),(()( TtxhMedianxBh t

Only BAGGED-ROGER will be considered in the following.

Both linear and non linear hypotheses search space. 

IV. EMPIRICAL VALIDATION

This section presents experimental setting, and discusses

the results obtained.

A. Experimental setting

1) Optimization

In all experiments, BAGGED-ROGER involves the bagging of

hypotheses extracted along 21 independent runs, using a

2 Note that these hypotheses are normalized, i.e. |wj| = 1.
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(20+200) Evolution Strategy3.

Results are assessed using 10-fold stratified Cross

Validation. On each training set, 21 independent ROGER runs 

are launched. The final ranking function is obtained by

bagging (median value) the ranking functions learned over the

10 folds. This ranking function allows us to determine the

rank of each example.

2) Data preparation

Two corpora were considered, respectively related to

Molecular Biology (in English) and Curriculum Vitae (in

French). After a first data preparation: normalisation, Part-Of-

Speech Tagging (due to space limit, the interested reader is 

referred to [17] for more detail), we consider different

collocations (e.g., Noun-Noun, Adjective-Noun, Noun-

Preposition-Noun, etc.). For the two corpora, we only 

consider the more frequent type of collocations.

a) Molecular Biology 

A first application was considered, within the domain of

Molecular Biology. A 9,4 Mo corpus in English, composed of 

6,119 abstracts, was gathered by querying Medline4. Only 

1028 Noun-Noun collocations occurring at least 4 times have 

been considered in this application. These collocations have

been labelled by a domain expert (TABLE I). 

b) Curriculum Vitae (CV)

The second application aims at the automatic analysis of a

Curriculum Vitae corpus, in French, provided by the

VediorBis Foundation. The corpus involves 582 documents

(952 Ko). All 376 Noun-Adjective collocations appearing at 

least 3 times in the documents have been manually and 

independently labelled by two experts (see TABLE I). 

It must be noted that the proportion of interesting terms is

very high in both datasets, which is why we could ask an 

expert to label them. The situation is entirely different when

rare collocations are considered (see [18]). 

TABLE I : MOLECULAR BIOLOGY

Frequent collocations # collocations relevant irrelevant

Biology 1028 90.9% 9.1%

CV 376 85.7% 14.3%

B. Comparative validations

Table II shows the predictive accuracy of linear and non 

linear BAGGED-ROGER, compared to that of linear, Gaussian 

and quadratic Support Vector Machine using the state-of-the-

art SVMtorch software5.

Table II shows that BAGGED-ROGER using either linear or

non-linear hypotheses significantly improves on all statistical

measures, when compared to the state-of-the-art Machine 

Learning algorithm (BAGGED-SVM). Unexpectedly, it also

improves on the representation of SVMs using either linear,

Gaussian and quadratic (using default options), the average 

AUC of ranking hypotheses.

3 20 parents generate 200 offsprings using self adaptative mutation and 

uniform crossover with crossover rate 60%. The best 20 individuals among

the parents and offsprings form the next population.
4

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
5

http://www.idiap.ch/machine_learning.php?content=Torch/en_OldSVMTorch.txt

TABLE II : AVERAGE AUC OF RANKING HYPOTHESES BASED ON 

STATISTICAL CRITERIA.
OccL L MI3 Dice MI

Biology 0.57 0.42 0.35 0.31 0.30

CV 0.58 0.43 0.40 0.39 0.31

BAGGED-ROGER BAGGED-SVM

Linear Non linear Linear Gaussian Quadratic

Biology 0.61  0.04 0.67  0.05 0.51  0.13 0.54  0.12 0.32  0.07

CV 0.59  0.10 0.61  0.11 0.46  0.13 0.42  0.14 0.52  0.07

C. Generality tests 

Finally, we take advantage of the fact that the

representation of collocations is domain independent. This

allows us to use a model learned from one corpus onto another

one (different domains and/or languages).

Table III and Figure I demonstrate the good accuracy of the 

ranking functions, respectively learned by BAGGED-ROGER

and SVM, when learned from a dataset and applied on another

dataset. The unexpected robustness of the approach suggests

that the representation of collocations provided by statistical

measures is sufficiently precise to allow for discrimination.

Further research (see next section) is concerned with

investigation of this representation in more depth.

These results surprisingly show that ranking functions

extracted from Biology behave well on the CV corpus, for 

both BAGGED-SVM and BAGGED-ROGER.

The tentative interpretation offered for this finding is related

to the fact that the biology dataset is much better represented

than the CV dataset. However, BAGGER-ROGER also features a 

good generality of the ranking function extracted from the CV 

when applied on Biology (compared to SVM). This better

robustness might be explained from the stability of the model

involving the vote of ten (extracted along the 10-fold Cross

Validation) hypotheses involving the bagging of 21 

hypotheses each.

Other results are presented in the web page:

http://www.lri.fr/ia/fdt/Roger.

TABLE III : GENERALIY TEST,

AUC: LEARNING/TESTING WITH DIFFERENT CORPORA.

BAGGED-ROGER BAGGED-SVM

Linear Non linear Linear Gaussian Quadratic

CV  Biology 0.63 0.71 0.59 0.42 0.48

Biology  CV 0.64 0.63 0.64 0.61 0.46

V. CONCLUSION AND PERSPECTIVES

This paper claims that supervised learning can significantly 

improve the task of term extraction, by learning an estimated

relevance function from a few terms manually labelled as 

interesting / not interesting by the expert.

The approach combines three main features: i) the

numerical representation of the examples (collocations) 

described from the values of a set of standard statistical

interestingness measures; ii) a learning optimization criterion,

based on the Wilcoxon statistics (area under the ROC curve);

iii) the bagging of the various relevance functions learned
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along independent runs of a genetic algorithm, optimizing the

above criterion on the training set.

Experimental validation compared to state-of-the-art 

machine learning algorithms, shows the robustness of the

above approach. Interestingly, the set of interestingness

measures provides a domain - and language - independent

description of the collocations, which allows for exploiting the

relevance function learned from one corpus onto another

corpus. Generality tests performed across two corpora show

that the performances of the relevance function are gracefully 

degraded as it applies on a corpus in another domain, and,

which was even more unexpected, in another language.

The key question opened by this work is whether the set of

current interestingness measures provides enough information

to discriminate the interesting collocation, and accurately 

learn the (subjective) interestingness measure of the expert.

This question must be answered considering more corpora;

however, such experimental validations are limited as they

require that the expert manually labels all collocations which

is hardly feasible when the fraction of interesting collocations

is low, which is the usual case. 

Further work is concerned with enriching the representation

of collocations using non directly discriminant, but possibly

relevant, attributes: distance to the nearest typographic signs,

or distance to the nearest other collocation.

FIG. I : ROC CURVES WITH RANKING FUNCTIONS LEARNED WITH 

THE CV APPLIED ON THE MOLECULAR BIOLOGY CORPUS.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e 
re

le
va

nt
 r

at
e

False relevant rate

Non-Linear Bagged-Roger
Linear Bagged-Roger

Linear SVM
Occ+L

ACKNOWLEDGMENT

We thank Mary Felkin for her English review, Oriane

Matte-Tailliez for the expertise of the terms in Molecular

Biology, and PASCAL (Pattern Analysis, Statistical 

Modelling and Computational Learning) Network of 

Excellence for its support.

REFERENCES

[1] T. Bäck, Evolutionary Algorithms in theory and practice, 1995.

[2] D. Bourigault and C. Jacquemin, “Term Extraction + Term Clustering:

An Integrated Platform for Computer-Aided Terminology,” Proc. of 

EACL, Bergen., pp. 15-22, 1999".

[3] L. Breiman, “Arcing Classifiers,” Annals of Statistics, vol. 26, no. 3, pp.

801-845, 1998.

[4] R. Caruana and A. Niculescu-Mizil, “Data Mining in Metric Space: An 

Empirical Analysis of Supervised Learning Performance Criteria”. Proc.

of “ROC Analysis in AI” Workshop ECAI, pp 9-18, 2004.

[5] K.W. Church and P. Hanks, “Word Association Norms, Mutual

Information, and Lexicography,” Computational Linguistics, vol. 16, pp.

22-29, 1990.

[6] W. Cohen, R. Schapire, and Y. Singer, “Learning to Order Things,”

Journal of Artificial Intelligence Research, vol. 10, 243-270, 1999.

[7] B. Daille, E. Gaussier, and J.M. Langé, “An Evaluation of Statistical 

Scores for Word Association,” The Tbilisi Symposium on Logic, 

Language and Computation, CSLI Publications, pp. 177-188, 1998.

[8] P. Domingos, “Meta-Cost: A general method for making Classifiers Cost 

Sensitive,” Knowledge Discovery from Databases, pp. 155-164, 1999.

[9] T.E. Dunning, “Accurate Methods for the Statistics of Surprise and 

Coincidence,” Computational Linguistics, vol. 19, n°1, pp. 61-74, 1993.

[10] R. Esposito and L. Saitta, “Monte Carlo Theory as an Explanation of

Bagging and Boosting,” Proc. of International Joint Conference on 

Artificial Intelligence, pp. 499-504, Morgan Kaufman Publishers, 2003.

[11] C. Ferri, P. Flach, and J. Hernandez-Orallo, “Learning decision trees 

using the area under the ROC curve,” Proc. of International Conference 

on Machine Learning (ICML), pp. 139-146, 2002.

[12] D.B. Fogel, E.C. Wasson, and E.M. Boughton, “Evolving Neural 

Networks for Detecting Breast Cancer,” Cancer Letters, vol. 96, pp. 49-

53, 1995.

[13] Y. Freund, R. Iyer, R. E. Schapire, Y. Singer, “An Efficient Boosting 

Algorithm for Combining Preferences”, Journal of Machine Learning 

Research, 4(Nov):933-969, 2003.

[14] R. Jin, Y. Liu, L. Si, J. Carbonell, and A. Hauptmann, “A New Boosting

Algorithm Using Input-Dependent Regularizer,” Proc. of International

Conference on Machine Learning (ICML), AAAI Press, 2003.

[15] A. Kolcz, A. Chowdhury, J. Alspector,  “Data duplication: An

Imbalance Problem?” Workshop on Learning from Imbalanced Data 

Sets II (ICML), 2003 

[16] G. Nenadic, H. Mima, I. Spasic, S. Ananiadou, and J. Tsujii, 

“Terminology-based Literature Mining and Knowledge Acquisition in

Biomedicine”, International Journal of Medical Informatics, vol. 67, pp 

33-48, 2002.

[17] M. Roche, J. Azé, O. Matte-Tailliez, and Y. Kodratoff, “Mining texts by 

association rules discovery in a technical corpus,” Proc. of IIPWM'04,

Springer Verlag, pp. 89-98, 2004.

[18] M. Roche, J. Azé, Y. Kodratoff and M. Sebag, “Learning Interestingness

Measures in Terminology Extraction. A ROC-based approach,” Proc. of 

“ROC Analysis in AI” Workshop ECAI, pp 81-88, 2004.

[19] S. Rosset, “Model Selection via the AUC,” Proc. of International

Conference on Machine Learning (ICML), 2004.

[20] R.E. Schapire, "Theoretical views of boosting," Proc. of European

Conference on Computational Learning Theory, pp. 1-10, 1999.

[21] M. Sebag, N. Lucas, and J. Azé, “ROC-based Evolutionary Learning:

Application to Medical Data Mining,” Proc. of International Conference 

on Artificial Evolution (EA), Springer Verlag, pp. 384-396, 2004.

[22] M. Sebag, N. Lucas, and J. Azé, “Impact studies and sensitivity analysis

in medical data mining with ROC-based genetic learning,” Proc. of 

IEEE International Conference on Data Mining (ICDM), pp. 637-640,

2003.

[23] F. Smadja, “Retrieving collocations from text: Xtract,” Computational

Linguistics, vol. 19, no. 1, pp. 143-177, 1993 

[24] F. Smadja, K. R. McKeown, and V. Hatzivassiloglou, “Translating

collocations for bilingual lexicons: A statistical approach,”

Computational Linguistics, vol. 22, n°1, pp. 1-38, 1996.

[25] V.N. Vapnik, “The Nature of Statistical Learning,” Springer Verlag,

1995.

[26] J. Vivaldi and L. Marquez and H. Rodriguez, “Improving Term

Extraction by System Combination Using Boosting,” Lecture Notes in 

Computer Science, vol 2167, pp. 515-526, 2001.

[27] I.H. Witten, G.W. Paynter, E. Frank, C. Gutwin, and C.G. Nevill-

Manning. Kea: Practical automatic keyphrase extraction. Proc. of DL 

'99, pp. 254-256, 1999.

[28] F. Xu, D. Kurz, J. Piskorski, and S. Schmeier, “A Domain Adaptive 

Approach to Automatic Acquisition of Domain Relevant Terms and their

Relations with Bootstrapping,” Proc. of LREC 2002, the third 

international conference on language resources and evaluation, 2002.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:6, 2007 

1827International Scholarly and Scientific Research & Innovation 1(6) 2007 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

6,
 2

00
7 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/7

46
2.

pd
f




