Search results for: Hybrid system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8876

Search results for: Hybrid system

8876 Developing NAND Flash-Memory SSD-Based File System Design

Authors: Jaechun No

Abstract:

This paper focuses on I/O optimizations of N-hybrid (New-Form of hybrid), which provides a hybrid file system space constructed on SSD and HDD. Although the promising potentials of SSD, such as the absence of mechanical moving overhead and high random I/O throughput, have drawn a lot of attentions from IT enterprises, its high ratio of cost/capacity makes it less desirable to build a large-scale data storage subsystem composed of only SSDs. In this paper, we present N-hybrid that attempts to integrate the strengths of SSD and HDD, to offer a single, large hybrid file system space. Several experiments were conducted to verify the performance of N-hybrid.

Keywords: SSD, data section, I/O optimizations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
8875 Hybrid Modeling and Optimal Control of a Two-Tank System as a Switched System

Authors: H. Mahboubi, B. Moshiri, A. Khaki Seddigh

Abstract:

In the past decade, because of wide applications of hybrid systems, many researchers have considered modeling and control of these systems. Since switching systems constitute an important class of hybrid systems, in this paper a method for optimal control of linear switching systems is described. The method is also applied on the two-tank system which is a much appropriate system to analyze different modeling and control techniques of hybrid systems. Simulation results show that, in this method, the goals of control and also problem constraints can be satisfied by an appropriate selection of cost function.

Keywords: Hybrid systems, optimal control, switched systems, two-tank system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
8874 Optimization of a Hybrid Wind-Pv-Diesel Standalone System: Case Chlef, Algeria

Authors: T. Tahri, A. Bettahar, M. Douani

Abstract:

In this work, an attempt is made to design an optimal wind/pv/diesel hybrid power system for a village of Ain Merane, Chlef, Algeria, where the wind speed and solar radiation measurements were made. The aim of this paper is the optimization of a hybrid wind/solar/diesel system applied in term of technical and economic feasibility by simulation using HOMER. A comparison was made between the performance of wind/pv/diesel system and the classic connecting system.

Keywords: Chlef-Algeria, Homer, Renewable energy, Wind-pvdiesel hybrid system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3053
8873 Performance Analysis of a Hybrid DF-AF Hybrid RF/FSO System under Gamma Gamma Atmospheric Turbulence Channel Using MPPM Modulation

Authors: Hechmi Saidi, Noureddine Hamdi

Abstract:

The performance of hybrid amplify and forward - decode and forward (AF-DF) hybrid radio frequency/free space optical (RF/FSO) communication system, that adopts M-ary pulse position modulation (MPPM) techniques, is analyzed. Both exact and approximate symbol-error rates (SERs) are derived. The random variations of the received optical irradiance, produced by the atmospheric turbulence, is modeled by the gamma-gamma (GG) statistical distribution. A closed-form expression for the probability density function (PDF) is derived for the whole above system is obtained. Thanks to the use of hybrid AF-DF hybrid RF/FSO configuration and MPPM, the effects of atmospheric turbulence is mitigated; hence the capacity of combating atmospheric turbulence and the transmissitted signal quality are improved.

Keywords: FSO, RF, hybrid, AF, DF, SER, SNR, GG channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1064
8872 Hybrid Minimal Repair for a Serial System

Authors: Ellysa Nursanti, Anas Ma'ruf, Tota Simatupang, Bermawi P. Iskandar

Abstract:

This study proposes a hybrid minimal repair policy which combines periodic maintenance policy with age-based maintenance policy for a serial production system. Parameters of such policy are defined as  and  which indicate as hybrid minimal repair time and planned preventive maintenance time respectively  . Under this hybrid policy, the system is repaired minimally if it fails during , . A perfect repair is conducted on the first failure after  at any machines. At the same time, we take opportunity to advance the preventive maintenance of other machines simultaneously. If the system is still operating properly up to , then the preventive maintenance is carried out as its predetermined schedule. For a given , we obtain the optimal value  which minimizes the expected cost per time unit. Numerical example is presented to illustrate the properties of the optimal solution.

Keywords: Hybrid minimal repair, opportunistic maintenance, preventive maintenance, series system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
8871 A Hybrid Technology for a Multiagent Consultation System in Obesity Domain

Authors: Rohana Mahmud, Hairul Aysa Abdul Halim Sithiq, Haryuna Mohd Taharim

Abstract:

In this paper, the authors present architecture of a multi agent consultation system for obesity related problems, which hybrid the technology of an expert system (ES) and an intelligent agent (IA). The strength of the ES which is capable of pulling the expert knowledge is consulted and presented to the end user via the autonomous and friendly pushing environment of the intelligent agent.

Keywords: Expert System, Hybrid Technology, Intelligent Agent, Medical Informatics, Multi Agent Consultation System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
8870 Signal and Thermodynamic Analysis for Evaluation of Thermal and Power of Gas Turbine-Solid Oxide Fuel Cell Hybrid System

Authors: R. Mahjoub, K. Maghsoudi Mehraban

Abstract:

In recent years, solid oxide fuel cells have been used as one of the main technologies for the production of electrical energy with high-efficiency ratio, which is used hydrogen and other hydrocarbons as fuels. The fuel cell technology can be used either alone or in hybrid gas turbines systems. In this study, thermodynamics analysis for GT-SOFC hybrid system is developed, and then mass balance and exergy equations have been applied not only on the process but also on the individual components of the hybrid system, which enable us to estimate the thermal efficiency of the hybrid systems. Furthermore, various sources of irreversibility in the solid oxide fuel cell system are discussed, and modeling and parametric analyses like heat and pressure are carried out. This study enables us to consider the irreversible effects of solid oxide fuel cells, and also it leads to the specification of efficiency of the system accurately. Next in the study, both methane and hydrogen as a fuel for SOFC are used and implemented, and finally, our results are compared with other references.

Keywords: hybrid system, gas turbine, entropy and exergy analysis, irreversibility analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 494
8869 Overview of Different Approaches Used in Optimal Operation Control of Hybrid Renewable Energy Systems

Authors: K. Kusakana

Abstract:

A hybrid energy system is a combination of renewable energy sources with back up, as well as a storage system used to respond to given load energy requirements. Given that the electrical output of each renewable source is fluctuating with changes in weather conditions, and since the load demand also varies with time; one of the main attributes of hybrid systems is to be able to respond to the load demand at any time by optimally controlling each energy source, storage and back-up system. The induced optimization problem is to compute the optimal operation control of the system with the aim of minimizing operation costs while efficiently and reliably responding to the load energy requirement. Current optimization research and development on hybrid systems are mainly focusing on the sizing aspect. Thus, the aim of this paper is to report on the state-of-the-art of optimal operation control of hybrid renewable energy systems. This paper also discusses different challenges encountered, as well as future developments that can help in improving the optimal operation control of hybrid renewable energy systems.

Keywords: Renewable energies, hybrid systems, optimization, operation control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
8868 Hybrid Model Based on Artificial Immune System and Cellular Automata

Authors: Ramin Javadzadeh, Zahra Afsahi, MohammadReza Meybodi

Abstract:

The hybridization of artificial immune system with cellular automata (CA-AIS) is a novel method. In this hybrid model, the cellular automaton within each cell deploys the artificial immune system algorithm under optimization context in order to increase its fitness by using its neighbor-s efforts. The hybrid model CA-AIS is introduced to fix the standard artificial immune system-s weaknesses. The credibility of the proposed approach is evaluated by simulations and it shows that the proposed approach achieves better results compared to standard artificial immune system.

Keywords: Artificial Immune System, Cellular Automat, neighborhood

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
8867 Design and Implementation of Cyber Video Consultation System Using Hybrid P2P

Authors: Hyen Ki Kim

Abstract:

This paper describes the design and implementation of cyber video consultation systems(CVCS) using hybrid P2P for video consultation between remote sites. The proposed system is based on client-server and P2P(Peer to Peer) architecture, where client-server is used for communication with the MCU(Multipoint Control Unit) and P2P is used for the cyber video consultation. The developed video consultation system decreases server traffic, and cuts down network expenses, as the multimedia data decentralizes to the client by hybrid P2P architecture. Also the developed system is tested by the group-type video consultation system using communication protocol and application software through Ethernet networks.

Keywords: Consultation, Cyber, Hybrid, Peer-to-Peer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
8866 Research on Hybrid Neural Network in Intrusion Detection System

Authors: Jianhua Wang, Yan Yu

Abstract:

This paper presents an intrusion detection system of hybrid neural network model based on RBF and Elman. It is used for anomaly detection and misuse detection. This model has the memory function .It can detect discrete and related aggressive behavior effectively. RBF network is a real-time pattern classifier, and Elman network achieves the memory ability for former event. Based on the hybrid model intrusion detection system uses DARPA data set to do test evaluation. It uses ROC curve to display the test result intuitively. After the experiment it proves this hybrid model intrusion detection system can effectively improve the detection rate, and reduce the rate of false alarm and fail.

Keywords: RBF, Elman, anomaly detection, misuse detection, hybrid neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
8865 Design and Analysis of 1.4 MW Hybrid Saps System for Rural Electrification in Off-Grid Applications

Authors: Arpan Dwivedi, Yogesh Pahariya

Abstract:

In this paper, optimal design of hybrid standalone power supply system (SAPS) is done for off grid applications in remote areas where transmission of power is difficult. The hybrid SAPS system uses two primary energy sources, wind and solar, and in addition to these diesel generator is also connected to meet the load demand in case of failure of wind and solar system. This paper presents mathematical modeling of 1.4 MW hybrid SAPS system for rural electrification. This paper firstly focuses on mathematical modeling of PV module connected in a string, secondly focuses on modeling of permanent magnet wind turbine generator (PMWTG). The hybrid controller is also designed for selection of power from the source available as per the load demand. The power output of hybrid SAPS system is analyzed for meeting load demands at urban as well as for rural areas.

Keywords: SAPS, DG, PMWTG, rural area, off grid, PV module.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
8864 Optimized Hybrid Renewable Energy System of Isolated Islands in Smart-Grid Scenario - A Case Study in Indian Context

Authors: Aurobi Das, V. Balakrishnan

Abstract:

This paper focuses on the integration of hybrid renewable energy resources available in remote isolated islands of Sundarban-24 Parganas-South of Eastern part of India to National Grid of conventional power supply to give a Smart-Grid scenario. Before grid-integration, feasibility of optimization of hybrid renewable energy system is monitored through an Intelligent Controller proposed to be installed at Moushuni Island of Sundarban. The objective is to ensure the reliability and efficiency of the system to optimize the utilization of the hybrid renewable energy sources and also a proposition of how theses isolated Hybrid Renewable Energy Systems at remote islands can be grid-connected is analyzed towards vision of green smart-grid.

Keywords: Intelligent controller, hybrid renewable, solar photo voltaic, smart-grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849
8863 Optimal Design and Intelligent Management of Hybrid Power System

Authors: Reza Sedaghati

Abstract:

Given the increasing energy demand in the world as well as limited fossil energy fuel resources, it is necessary to use renewable energy resources more than ever. Developing a hybrid energy system is suggested to overcome the intermittence of renewable energy resources such as sun and wind, in which the excess electrical energy can be converted and stored. While these resources store the energy, they can provide a more reliable system that is really suitable for off-grid applications. In hybrid systems, a methodology for optimal sizing of power generation systems components is of great importance in terms of economic aspects and efficiency. In this study, a hybrid energy system is designed to supply an off-grid sample load pattern with the aim of supplying necessary energy and minimizing the total production cost throughout the system life as well as increasing the reliability. For this purpose, the optimal size and the cost function of these resources is determined and minimized using evolutionary algorithms and system efficiency is studied with real-time load and meteorological information of Kazerun, a city in southern Iran under different conditions.

Keywords: Hybrid energy system, intelligent method, optimal size, minimal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
8862 Hybrid Power – Application for Tourism in Isolated Areas

Authors: Aurelian Octavian Ciucâ, Ioan Bitir-Istrate, Mircea Scripcariu

Abstract:

The rapidly increasing costs of power line extensions and fossil fuel, combined with the desire to reduce carbon dioxide emissions pushed the development of hybrid power system suited for remote locations, the purpose in mind being that of autonomous local power systems. The paper presents the suggested solution for a “high penetration" hybrid power system, it being determined by the location of the settlement and its “zero policy" on carbon dioxide emissions. The paper focuses on the technical solution and the power flow management algorithm of the system, taking into consideration local conditions of development.

Keywords: Renewable energy, hybrid power system, wind turbine, photovoltaic panels, bio-diesel cogeneration, bio-fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
8861 Using Hybrid System of Ground Heat Exchanger and Evaporative Cooler in Arid Weather Condition

Authors: Vahid Khalajzadeh, Ghassem Heidarinejad

Abstract:

In this paper, the feasibility study of using a hybrid system of ground heat exchangers (GHE) and direct evaporative cooling system in arid weather condition has been performed. The model is applied for Yazd and Kerman, two cities with arid weather condition in Iran. The system composed of three sections: Ground- Coupled-Circuit (GCC), Direct Evaporative Cooler (DEC) and Cooling Coil Unite (CCU). The GCC provides the necessary precooling for DEC. The GCC includes four vertical GHE which are designed in series configuration. Simulation results show that hybridization of GCC and DEC could provide comfort condition whereas DEC alone did not. Based on the results the cooling effectiveness of a hybrid system is more than unity. Thus, this novel hybrid system could decrease the air temperature below the ambient wet-bulb temperature. This environmentally clean and energy efficient system can be considered as an alternative to the mechanical vapor compression systems.

Keywords: Computational Fluid Dynamics (CFD), Cooling CoilUnit (CCU), Direct Evaporative Cooling (DEC), Ground CoupledCircuit (GCC)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2271
8860 Optimal Sizing of a Hybrid Wind/PV Plant Considering Reliability Indices

Authors: S. Dehghan, B. Kiani, A. Kazemi, A. Parizad

Abstract:

The utilization of renewable energy sources in electric power systems is increasing quickly because of public apprehensions for unpleasant environmental impacts and increase in the energy costs involved with the use of conventional energy sources. Despite the application of these energy sources can considerably diminish the system fuel costs, they can also have significant influence on the system reliability. Therefore an appropriate combination of the system reliability indices level and capital investment costs of system is vital. This paper presents a hybrid wind/photovoltaic plant, with the aim of supplying IEEE reliability test system load pattern while the plant capital investment costs is minimized by applying a hybrid particle swarm optimization (PSO) / harmony search (HS) approach, and the system fulfills the appropriate level of reliability.

Keywords: Distributed Generation, Fuel Cell, HS, Hybrid Power Plant, PSO, Photovoltaic, Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
8859 Irreversibility and Electrochemical Modeling of GT-SOFC Hybrid System and Parametric Analysis on Performance of Fuel Cell

Authors: R. Mahjoub, K. Maghsoudi Mehraban

Abstract:

Since the heart of the hybrid system is the fuel cell and it has vital impact on efficiency and performance of cycle, in this study, the major modeling of electrochemical reaction within the fuel cell is analyzed. Also, solid oxide fuel cell is integrated with the gas turbine and thermodynamic analysis on different elements of hybrid system is applied. Next, in predefined operational points of hybrid cycle, the simulation results are obtained. Then, different source of irreversibility in fuel cell is modeled and influence of different major parameters on different irreversibility is computed and applied. Then, the effect of important parameters such as thickness and surface of electrolyte fuel cell are simulated in fuel cell and its dependency to these parameters is explained. At the end of the paper, different impact of parameters on fuel cell with a gas turbine and current density and voltage of fuel cell are simulated.

Keywords: Electrochemical analysis, Gas turbine, Hybrid system, Irreversibility analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
8858 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System

Authors: Ahmad Rouhani, Masoud Jabbari, Sima Honarmand

Abstract:

This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technical and economic. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.

Keywords: Hybrid energy system, optimum sizing, power management, TLBO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2561
8857 Optimization and Feasibility Analysis of PV/Wind/ Battery Hybrid Energy Conversion

Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

In this paper, the optimum design for renewable energy system powered an aquaculture pond was determined. Hybrid Optimization Model for Electric Renewable (HOMER) software program, which is developed by U.S National Renewable Energy Laboratory (NREL), is used for analyzing the feasibility of the stand alone and hybrid system in this study. HOMER program determines whether renewable energy resources satisfy hourly electric demand or not. The program calculates energy balance for every 8760 hours in a year to simulate operation of the system. This optimization compares the demand for the electrical energy for each hour of the year with the energy supplied by the system for that hour and calculates the relevant energy flow for each component in the model. The essential principle is to minimize the total system cost while HOMER ensures control of the system. Moreover the feasibility analysis of the energy system is also studied. Wind speed, solar irradiance, interest rate and capacity shortage are the parameters which are taken into consideration. The simulation results indicate that the hybrid system is the best choice in this study, yielding lower net present cost. Thus, it provides higher system performance than PV or wind stand alone systems.

Keywords: Wind stand-alone system, Photovoltaic stand-alone system, Hybrid system, Optimum system sizing, feasibility, Cost analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2117
8856 Power Management Strategy for Solar-Wind-Diesel Stand-alone Hybrid Energy System

Authors: Md. Aminul Islam, Adel Merabet, Rachid Beguenane, Hussein Ibrahim

Abstract:

This paper presents a simulation and mathematical model of stand-alone solar-wind-diesel based hybrid energy system (HES). A power management system is designed for multiple energy resources in a stand-alone hybrid energy system. Both Solar photovoltaic and wind energy conversion system consists of maximum power point tracking (MPPT), voltage regulation, and basic power electronic interfaces. An additional diesel generator is included to support and improve the reliability of stand-alone system when renewable energy sources are not available. A power management strategy is introduced to distribute the generated power among resistive load banks. The frequency regulation is developed with conventional phase locked loop (PLL) system. The power management algorithm was applied in Matlab®/Simulink® to simulate the results.

Keywords: Solar photovoltaic, wind energy, diesel engine, hybrid energy system, power management, frequency and voltage regulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4713
8855 Process Design and Application of Aerobic Hybrid Bioreactor in the Treatment of Municipal Wastewater

Authors: Sushovan Sarkar, Debabrata Mazumder

Abstract:

Hybrid bioreactor having both suspended-growth and attached-growth bacteria is found a novel and excellent bioreactor system for treating the municipal wastewater containing inhibitory substrates too. In this reactor a fraction of substrate is used by suspended biomass and the remaining by attached biomass resulting in the competition between the two growths for the substrate. The combination of suspended and attached growth provides the system with enhanced biomass concentration and sludge age more than those in ASP. Similar to attached growth system, the hybrid bioreactor ensures considerable efficiency for treating toxic and refractory substances in wastewater. For the process design of hybrid bioreactor a suitable mathematical model is required. Although various mathematical models were developed on hybrid bioreactor in due course of time in earlier research works, none of them was found having a specific simplified solution of the corresponding models and without having any drawback. To overcome this drawback authors already developed a simplified mathematical model for process design of a hybrid bioreactor. The present paper briefly highlights on the various aspects of process design of an aerobic hybrid bioreactor for the treatment of municipal wastewater.

Keywords: Hybrid bioreactor, mathematical model, process design, application, municipal wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2916
8854 Contribution to Energy Management in Hybrid Energy Systems Based on Agents Coordination

Authors: Djamel Saba, Fatima Zohra Laallam, Brahim Berbaoui

Abstract:

This paper presents a contribution to the design of a multi-agent for the energy management system in a hybrid energy system (SEH). The multi-agent-based energy-coordination management system (MA-ECMS) is based mainly on coordination between agents. The agents share the tasks and exchange information through communications protocols to achieve the main goal. This intelligent system can fully manage the consumption and production or simply to make proposals for action he thinks is best. The initial step is to give a presentation for the system that we want to model in order to understand all the details as much as possible. In our case, it is to implement a system for simulating a process control of energy management.

Keywords: Multi agents system, hybrid energy system, communications protocols, modelization, simulation, control process, energy management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1317
8853 Modeling Hybrid Systems with MLD Approach and Analysis of the Model Size and Complexity

Authors: H. Mahboubi, B. Moshiri, A. Khaki Seddigh

Abstract:

Recently, a great amount of interest has been shown in the field of modeling and controlling hybrid systems. One of the efficient and common methods in this area utilizes the mixed logicaldynamical (MLD) systems in the modeling. In this method, the system constraints are transformed into mixed-integer inequalities by defining some logic statements. In this paper, a system containing three tanks is modeled as a nonlinear switched system by using the MLD framework. Comparing the model size of the three-tank system with that of a two-tank system, it is deduced that the number of binary variables, the size of the system and its complexity tremendously increases with the number of tanks, which makes the control of the system more difficult. Therefore, methods should be found which result in fewer mixed-integer inequalities.

Keywords: Hybrid systems, mixed-integer inequalities, mixed logical dynamical systems, multi-tank system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1760
8852 Performance and Economic Evaluation of a Hybrid Photovoltaic/Thermal Solar System in Northern China

Authors: E. Sok, Y. Zhuo, S. Wang

Abstract:

A hybrid Photovoltaic/Thermal (PV/T) solar system integrates photovoltaic and solar thermal technologies into one single solar energy device, with dual generation of electricity and heat energy. The aim of the present study is to evaluate the potential for introduction of the PV/T technology into Northern China. For this purpose, outdoor experiments were conducted on a prototype of a PV/T water-heating system. The annual thermal and electrical performances were investigated under the climatic conditions of Beijing. An economic analysis of the system was then carried out, followed by a sensitivity study. The analysis revealed that the hybrid system is not economically attractive with the current market and energy prices. However, considering the continuous commitment of the Chinese government towards policy development in the renewable energy sector, and technological improvements like the increasing cost-effectiveness of PV cells, PV/Thermal technology may become economically viable in the near future.

Keywords: Hybrid Photovoltaic/Thermal (PV/T), Solar energy, Economic analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
8851 Feasibility Study and Developing Appropriate Hybrid Energy Systems in Regional Level

Authors: Ahmad Rouhani

Abstract:

Iran has several potential for using renewable energies, so use them could significantly contribute to energy supply. The purpose of this paper is to identify the potential of the country and select the appropriate DG technologies with consideration the potential and primary energy resources in the regions. In this context, hybrid energy systems proportionate with the potential of different regions will be determined based on technical, economic, and environmental aspect. In the following the proposed structure will be optimized in terms of size and cost. DG technologies used in this project include photovoltaic system, wind turbine, diesel generator and battery bank. The HOMER software is applied for choosing the appropriate structure and the optimization of system sizing. The results have been analyzed in terms of technical and economic. The performance and the cost of each project demonstrate the appropriate structure of hybrid energy system in that region.

Keywords: Feasibility, Hybrid Energy System, Iran, Renewable Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
8850 Fuzzy Logic Based Determination of Battery Charging Efficiency Applied to Hybrid Power System

Authors: Priyanka Paliwal, N. P. Patidar, R. K. Nema

Abstract:

Battery storage system is emerging as an essential component of hybrid power system based on renewable energy resources such as solar and wind in order to make these sources dispatchable. Accurate modeling of battery storage system is ssential in order to ensure optimal planning of hybrid power systems incorporating battery storage. Majority of the system planning studies involving battery storage assume battery charging efficiency to be constant. However a strong correlation exists between battery charging efficiency and battery state of charge. In this work a Fuzzy logic based model has been presented for determining battery charging efficiency relative to a particular SOC. In order to demonstrate the efficacy of proposed approach, reliability evaluation studies are carried out for a hypothetical autonomous hybrid power system located in Jaisalmer, Rajasthan, India. The impact of considering battery charging efficiency as a function of state of charge is compared against the assumption of fixed battery charging efficiency for three different configurations comprising of wind-storage, solar-storage and wind-solar-storage.

Keywords: Battery Storage, Charging efficiency, Fuzzy Logic, Hybrid Power System, Reliability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
8849 Hybrid MIMO-OFDM Detection Scheme for High Performance

Authors: Young-Min Ko, Dong-Hyun Ha, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

In recent years, a multi-antenna system is actively used to improve the performance of the communication. A MIMO-OFDM system can provide multiplexing gain or diversity gain. These gains are obtained in proportion to the increase of the number of antennas. In order to provide the optimal gain of the MIMO-OFDM system, various transmission and reception schemes are presented. This paper aims to propose a hybrid scheme that base station provides both diversity gain and multiplexing gain at the same time.

Keywords: DFE, diversity gain, hybrid, MIMO, multiplexing gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212
8848 The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand

Authors: Napat Watjanatepin, Wikorn Wong-SatieanNapat Watjanatepin, Wikorn Wong-Satiean

Abstract:

The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand.

Keywords: Central part of Thailand, fogging system, greenhouse plantation, PV-Wind hybrid autonomous system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
8847 Development of a Plug-In Hybrid Powertrain System with Double Continuously Variable Transmissions

Authors: Cheng-Chi Yu, Chi-Shiun Chiou

Abstract:

This study developed a plug-in hybrid powertrain system which consisted of two continuous variable transmissions. By matching between the engine, motor, generator, and dual continuous variable transmissions, this integrated power system can take advantages of the components. The hybrid vehicle can be driven by the internal combustion engine, or electric motor alone, or by these two power sources together when the vehicle is driven in hard acceleration or high load. The energy management of this integrated hybrid system controls the power systems based on rule-based control strategy to achieve better fuel economy. When the vehicle driving power demand is low, the internal combustion engine is operating in the low efficiency region, so the internal combustion engine is shut down, and the vehicle is driven by motor only. When the vehicle driving power demand is high, internal combustion engine would operate in the high efficiency region; then the vehicle could be driven by internal combustion engine. This strategy would operate internal combustion engine only in optimal efficiency region to improve the fuel economy. In this research, the vehicle simulation model was built in MATLAB/ Simulink environment. The analysis results showed that the power coupled efficiency of the hybrid powertrain system with dual continuous variable transmissions was better than that of the Honda hybrid system on the market.

Keywords: Plug-in hybrid power system, fuel economy, performance, continuous variable transmission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289