Search results for: FGD wastes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 195

Search results for: FGD wastes

165 Supplementary Cementitious Materials as Sustainable Partial Replacement for Cement in the Building Industry

Authors: Nwakaego C. Onyenokporo

Abstract:

Cement is the most extensively used construction material due to its strength and versatility of use. However, the production of Portland cement has become unsustainable because of high energy usage, reduction of natural non-renewable resources and emissions of greenhouse gases. Production of cement contributes to anthropogenic greenhouse gases emissions annually. The growing concerns for the environment resulting from this constant and excessive use of cement has therefore raised the need for more green materials and technology. The use of supplementary cementitious materials (SCMs) is considered as one of the many alternatives suited to address this issue and serve as a sustainable partial replacement for cement in construction. This paper will examine the reuse of these waste materials to partially replace Portland cement. It provides a critical review of literature analysing various supplementary cementitious materials which are applicable in the building industry as either partial replacement for cement or aggregates. These materials have been grouped based on source into industrial wastes, domestic/general wastes, and agricultural wastes. The reuse of these waste materials could potentially reduce the negative effects of cement production and reduce landfills which constitute an environmental nuisance. This paper seeks to inform building industry professionals and researchers in the field on the applicability of these waste materials in construction.

Keywords: cement, greenhouse gases, landfills, sustainable, waste materials

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669
164 Supplementary Cementitious Materials as Sustainable Partial Replacement for Cement in the Building Industry

Authors: Nwakaego C. Onyenokporo

Abstract:

Cement is the most extensively used construction material due to its strength and versatility of use. However, the production of Portland cement has become unsustainable because of high energy usage, reduction of natural non-renewable resources and emissions of greenhouse gases. Production of cement contributes to anthropogenic greenhouse gases emissions annually. The growing concerns for the environment resulting from this constant and excessive use of cement has therefore raised the need for more green materials and technology. The use of supplementary cementitious materials (SCMs) is considered as one of the many alternatives suited to address this issue and serve as a sustainable partial replacement for cement in construction. This paper will examine the reuse of these waste materials to partially replace Portland cement. It provides a critical review of literature analysing various supplementary cementitious materials which are applicable in the building industry as either partial replacement for cement or aggregates. These materials have been grouped based on source into industrial wastes, domestic/general wastes, and agricultural wastes. The reuse of these waste materials could potentially reduce the negative effects of cement production and reduce landfills which constitute an environmental nuisance. This paper seeks to inform building industry professionals and researchers in the field on the applicability of these waste materials in construction.

Keywords: Cement, greenhouse gases, landfills, sustainable, waste materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589
163 Bioconversion of Oranges Wastes for Pectinase Production Using Aspergillus niger under Solid State Fermentation

Authors: N. Hachemi, A. Nouani, A. Benchabane

Abstract:

The influence of cultivation factors such as content of ammonium sulfate, glucose and water in the culture medium and particle size of dry orange waste, on their bioconversion for pectinase production was studied using complete factorial design. A polygalacturonase (PG) was isolated using ion exchange chromatography under gradient elution 0-0,5 m/l NaCl (column equilibrate with acetate buffer pH 4,5), subsequently by sephadex G75 column chromatography was applied and the molecular weight was obtained about 51,28 KDa. Purified PG enzyme exhibits a pH and temperature optima of activity at 5 and 35°C respectively. Treatment of apple juice by purified enzyme extract yielded a clear juice, which was competitive with juice yielded by pure Sigma Aldrich Aspergillus niger enzyme.

Keywords: Bioconversion, orange wastes, optimization, pectinase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
162 Preparation of Heterogeneous Ferrite Catalysts and Their Application for Fenton-Like Oxidation of Radioactive Organic Wastewater

Authors: Hsien T. Hsieh, Chao R. Chen, Li C. Chuang, Chin C. Shen

Abstract:

Fenton oxidation technology is the general strategy for the treatment of organic compounds-contained wastewater. However, a considerable amount of ferric sludge was produced during the Fenton process as secondary wastes, which were needed to be further removed from the effluent and treated. In this study, heterogeneous catalysts based on ferrite oxide (Cu-Fe-Ce-O) were synthesized and characterized, and their application for Fenton-like oxidation of simulated and actual radioactive organic wastewater was investigated. The results of TOC decomposition efficiency around 54% ~ 99% were obtained when the catalyst loading, H2O2 loading, pH, temperature, and reaction time were controlled. In this case, no secondary wastes formed and the given catalysts were able to be separated by magnetic devices and reused again.

Keywords: Fenton, oxidation, heterogeneous catalyst, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
161 Qualitative and Quantitative Characterization of Generated Waste in Nouri Petrochemical Complex, Assaluyeh, Iran

Authors: L. Heidari, M. Jalili Ghazizade

Abstract:

In recent years, different petrochemical complexes have been established to produce aromatic compounds. Among them, Nouri Petrochemical Complex (NPC) is the largest producer of aromatic raw materials in the world, and is located in south of Iran. Environmental concerns have been raised in this region due to generation of different types of solid waste generated in the process of aromatics production, and subsequently, industrial waste characterization has been thoroughly considered. The aim of this study is qualitative and quantitative characterization of industrial waste generated in the aromatics production process and determination of the best method for industrial waste management. For this purpose, all generated industrial waste during the production process was determined using a checklist. Four main industrial wastes were identified as follows: spent industrial soil, spent catalyst, spent molecular sieves and spent N-formyl morpholine (NFM) solvent. The amount of heavy metals and organic compounds in these wastes were further measured in order to identify the nature and toxicity of such a dangerous compound. Then industrial wastes were classified based on lab analysis results as well as using different international lists of hazardous waste identification such as EPA, UNEP and Basel Convention. Finally, the best method of waste disposal is selected based on environmental, economic and technical aspects. 

Keywords: Spent industrial soil, spent molecular sieve, spent normal ¬formyl -morpholine solvent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803
160 Res2ValHUM: Creation of Resource Management Tool and Microbial Consortia Isolation and Identification

Authors: A. Ribeiro, N. Valério, C. Vilarinho, J. Araujo, J. Carvalho

Abstract:

Res2ValHUM project involves institutions from the Spanish Autonomous Region of Galicia and the north of Portugal (districts of Porto and Braga) and has as overall objectives of promotion of composting as an process for the correct managing of organic waste, valorization of compost in different fields or applications for the constitution of products with high added value, reducing of raw materials losses, and reduction of the amount of waste throw in landfills. Three main actions were designed to achieve the objectives: development of a management tool to improve collection and residue channeling for composting, sensibilization of the population for composting and characterization of the chemical and biological properties of compost and humic and fulvic substances to envisage high-value applications of compost. Here we present the cooperative activity of Galician and northern Portuguese institutions to valorize organic waste in both regions with common socio-economic characteristics and residue management problems. Results from the creation of the resource manage tool proved the existence of a large number of agricultural wastes that could be valorized. In the North of Portugal, the wastes from maize, oats, potato, apple, grape pomace, rye, and olive pomace can be highlighted. In the Autonomous Region of Galicia the wastes from maize, wheat, potato, apple, and chestnuts can be emphasized. Regarding the isolation and identification of microbial consortia from compost samples, results proved microorganisms belong mainly to the genus Bacillus spp. Among all the species identified in compost samples, Bacillus licheniformis can be highlighted in the production of humic and fulvic acids.

Keywords: Agricultural wastes, Bacillus licheniformis, Bacillus spp., Humic-acids, Fulvic-acids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
159 Electrokinetic Remediation of Uranium Contaminated Soil by Ion Exchange Membranes

Authors: Z. H. Shi, T. J. Dou, H. Zhang, H. X. Huang, N. Zeng

Abstract:

The contamination of significant quantities of soils and sediments with uranium and other actinide elements as a result of nuclear activity poses many environmental risks. The electrokinetic process is one of the most promising remediation techniques for sludge, sediment, and saturated or unsaturated soils contaminated with heavy metals and radionuclides. However, secondary waste is a major concern for soil contaminated with nuclides. To minimize the generation of secondary wastes, this study used the anion and cation exchange membranes to improve the performance of the experimental apparatus. Remediation experiments of uranium-contaminated soil were performed with different agents. The results show that using acetic acid and EDTA as chelating agents clearly enhances the migration ability of the uranium. The ion exchange membranes (IEMs) used in the experiments not only reduce secondary wastes, but also, keep the soil pH stable.

Keywords: Electrokinetic remediation, ion exchange membranes, soil, uranium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
158 Utilization of Agro-Industrial Waste in Metal Matrix Composites: Towards Sustainability

Authors: L. Lancaster, M. H. Lung, D. Sujan

Abstract:

The application of agro-industrial waste in Aluminum Metal Matrix Composites has been getting more attention as they can reinforce particles in metal matrix which enhance the strength properties of the composites. In addition, by applying these agroindustrial wastes in useful way not only save the manufacturing cost of products but also reduce the pollutions on environment. This paper represents a literature review on a range of industrial wastes and their utilization in metal matrix composites. The paper describes the synthesis methods of agro-industrial waste filled metal matrix composite materials and their mechanical, wear, corrosion, and physical properties. It also highlights the current application and future potential of agro-industrial waste reinforced composites in aerospace, automotive and other construction industries.

Keywords: Bond layer, Interfacial shear stress, Bi-layered assembly, Thermal mismatch, Flip Chip Ball Grid Array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4528
157 Compost quality Management by Adding Sulfuric Acid and Alkaline Wastewater of Paper Mill as two Amendments

Authors: Hamid Reza Alipour, Ali Mohammadi Torkashvand

Abstract:

In composting process, N high-organic wastes loss the great part of its nitrogen as ammonia; therefore, using compost amendments can promote the quality of compost due to the decrease in ammonia volatilization. With regard to the effect of pH on composting, microorganisms- activity and ammonia volatilization, sulfuric acid and alkaline wastewater of paper mill (as liming agent with Ca and Mg ions) were used as compost amendments. Study results indicated that these amendments are suitable for reclamation of compost quality properties. These held nitrogen in compost caused to reduce C/N ratio. Both amendments had a significant effect on total nitrogen, but it should be used sulfuric acid in fewer amounts (20 ml/kg fresh organic wastes); and the more amounts of acid is not proposed.

Keywords: Compost, Paper mill wastewater, sulfuric acid, Ammonia Volatilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
156 Effect of Natural Fibres Inclusion in Clay Bricks: Physico-Mechanical Properties

Authors: Chee-Ming Chan

Abstract:

In spite of the advent of new materials, clay bricks remain, arguably, the most popular construction materials today. Nevertheless the low cost and versatility of clay bricks cannot always be associated with high environmental and sustainable values, especially in terms of raw material sources and manufacturing processes. At the same time, the worldwide agricultural footprint is fast growing, with vast agricultural land cultivation and active expansion of the agro-based industry. The resulting large quantities of agricultural wastes, unfortunately, are not always well managed or utilised. These wastes can be recycled, such as by retrieving fibres from disposed leaves and fruit bunches, and then incorporated in brick-making. This way the clay bricks are made a 'greener' building material and the discarded natural wastes can be reutilised, avoiding otherwise wasteful landfill and harmful open incineration. This study examined the physical and mechanical properties of clay bricks made by adding two natural fibres to a clay-water mixture, with baked and non-baked conditions. The fibres were sourced from pineapple leaves (PF) and oil palm fruit bunch (OF), and added within the range of 0.25-0.75 %. Cement was added as a binder to the mixture at 5-15 %. Although the two fibres had different effects on the bricks produced, cement appeared to dominate the compressive strength. The non-baked bricks disintegrated when submerged in water, while the baked ones displayed cement-dependent characteristics in water-absorption and density changes. Interestingly, further increase in fibre content did not cause significant density decrease in both the baked and non-baked bricks.

Keywords: natural fibres, clay bricks, strength, water absorption, density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4590
155 Production of Biodiesel Using Tannery Fleshing as a Feedstock via Solid-State Fermentation

Authors: C. Santhana Krishnan, A. M. Mimi Sakinah, Lakhveer Singh, Zularisam A. Wahid

Abstract:

This study was initiated to evaluate and optimize the conversion of animal fat from tannery wastes into methyl ester. In the pre-treatment stage, animal fats feedstock was hydrolysed and esterified through solid state fermentation (SSF) using Microbacterium species immobilized onto sand silica matrix. After 72 hours of fermentation, predominant esters in the animal fats were found to be with 83.9% conversion rate. Later, esterified animal fats were transesterified at 3 hour reaction time with 1% NaOH (w/v %), 6% methanol to oil ratio (w/v %) to produce 89% conversion rate. C13 NMR revealed long carbon chain in fatty acid methyl esters at 22.2817-31.9727 ppm. Methyl esters of palmitic, stearic, oleic represented the major components in biodiesel.

Keywords: Tannery wastes, fatty animal fleshing, trans-esterification, immobilization, solid state fermentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2673
154 An Overview of Sludge Utilization into Fired Clay Brick

Authors: Aeslina Binti Abdul Kadir, Ahmad Shayuti Bin Abdul Rahim

Abstract:

Brick is one of the most common masonry units used as building material. Due to the demand, different types of waste have been investigated to be incorporated into the bricks. Many types of sludge have been incorporated in fired clay brick for example marble sludge, stone sludge, water sludge, sewage sludge, and ceramic sludge. The utilization of these waste materials in fired clay bricks usually has positive effects on the properties such as lightweight bricks with improved shrinkage, porosity, and strength. This paper reviews on utilization of different types of sludge wastes into fired clay bricks. Previous investigations have demonstrated positive effects on the physical and mechanical properties as well as less impact towards the environment. Thus, the utilizations of sludge waste could produce a good quality of brick and could be one of alternative disposal methods for the sludge wastes.

Keywords: Fired Clay Brick, Sludge waste, Compressive strength, Shrinkage, Water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5417
153 Environmental and Technical Modeling of Industrial Solid Waste Management Using Analytical Network Process; A Case Study: Gilan-IRAN

Authors: D. Nouri, M.R. Sabour, M. Ghanbarzadeh Lak

Abstract:

Proper management of residues originated from industrial activities is considered as one of the serious challenges faced by industrial societies due to their potential hazards to the environment. Common disposal methods for industrial solid wastes (ISWs) encompass various combinations of solely management options, i.e. recycling, incineration, composting, and sanitary landfilling. Indeed, the procedure used to evaluate and nominate the best practical methods should be based on environmental, technical, economical, and social assessments. In this paper an environmentaltechnical assessment model is developed using analytical network process (ANP) to facilitate the decision making practice for ISWs generated at Gilan province, Iran. Using the results of performed surveys on industrial units located at Gilan, the various groups of solid wastes in the research area were characterized, and four different ISW management scenarios were studied. The evaluation process was conducted using the above-mentioned model in the Super Decisions software (version 2.0.8) environment. The results indicates that the best ISW management scenario for Gilan province is consist of recycling the metal industries residues, composting the putrescible portion of ISWs, combustion of paper, wood, fabric and polymeric wastes as well as energy extraction in the incineration plant, and finally landfilling the rest of the waste stream in addition with rejected materials from recycling and compost production plants and ashes from the incineration unit.

Keywords: Analytical Network Process, Disposal Scenario, Gilan Province, Industrial Waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
152 Waste Burial to the Pressure Deficit Areas in the Eastern Siberia

Authors: L. Abukova, O. Abramova, A. Goreva, Y. Yakovlev

Abstract:

Important executive decisions on oil and gas production stimulation in Eastern Siberia have been recently taken. There are unique and large fields of oil, gas, and gas-condensate in Eastern Siberia. The Talakan, Koyumbinskoye, Yurubcheno-Tahomskoye, Kovykta, Chayadinskoye fields are supposed to be developed first. It will result in an abrupt increase in environmental load on the nature of Eastern Siberia. In Eastern Siberia, the introduction of ecological imperatives in hydrocarbon production is still realistic. Underground water movement is the one of the most important factors of the ecosystems condition management. Oil and gas production is associated with the forced displacement of huge water masses, mixing waters of different composition, and origin that determines the extent of anthropogenic impact on water drive systems and their protective reaction. An extensive hydrogeological system of the depression type is identified in the pre-salt deposits here. Pressure relieve here is steady up to the basement. The decrease of the hydrodynamic potential towards the basement with such a gradient resulted in reformation of the fields in process of historical (geological) development of the Nepsko-Botuobinskaya anteclise. The depression hydrodynamic systems are characterized by extremely high isolation and can only exist under such closed conditions. A steady nature of water movement due to a strictly negative gradient of reservoir pressure makes it quite possible to use environmentally-harmful liquid substances instead of water. Disposal of the most hazardous wastes is the most expedient in the deposits of the crystalline basement in certain structures distant from oil and gas fields. The time period for storage of environmentally-harmful liquid substances may be calculated by means of the geological time scales ensuring their complete prevention from releasing into environment or air even during strong earthquakes. Disposal of wastes of chemical and nuclear industries is a matter of special consideration. The existing methods of storage and disposal of wastes are very expensive. The methods applied at the moment for storage of nuclear wastes at the depth of several meters, even in the most durable containers, constitute a potential danger. The enormous size of the depression system of the Nepsko-Botuobinskaya anteclise makes it possible to easily identify such objects at the depth below 1500 m where nuclear wastes will be stored indefinitely without any environmental impact. Thus, the water drive system of the Nepsko-Botuobinskaya anteclise is the ideal object for large-volume injection of environmentally harmful liquid substances even if there are large oil and gas accumulations in the subsurface. Specific geological and hydrodynamic conditions of the system allow the production of hydrocarbons from the subsurface simultaneously with the disposal of industrial wastes of oil and gas, mining, chemical, and nuclear industries without any environmental impact.

Keywords: Eastern Siberia, formation pressure, underground water, waste burial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 956
151 An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials

Authors: O. Alelweet, S. Pavia

Abstract:

In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors.

Keywords: Reactivity, water demand, alkali-activated materials, brick, bauxite, illitic clay, fly ash, slag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697
150 The Effect of Feedstock Type and Slow Pyrolysis Temperature on Biochar Yield from Coconut Wastes

Authors: Adilah Shariff, Nur Syairah Mohamad Aziz, Norsyahidah Md Saleh, Nur Syuhada Izzati Ruzali

Abstract:

The first objective of this study is to investigate the suitability of coconut frond (CF) and coconut husk (CH) as feedstocks using a laboratory-scale slow pyrolysis experimental setup. The second objective is to investigate the effect of pyrolysis temperature on the biochar yield. The properties of CF and CH feedstocks were compared. The properties of the CF and CH feedstocks were investigated using proximate and elemental analysis, lignocellulosic determination, and also thermogravimetric analysis (TGA). The CF and CH feedstocks were pyrolysed at 300, 400, 500, 600 and 700 °C for 2 hours at 10 °C/min heating rate. The proximate analysis showed that CF feedstock has 89.96 mf wt% volatile matter, 4.67 mf wt% ash content and 5.37 mf wt% fixed carbon. The lignocelluloses analysis showed that CF feedstock contained 21.46% lignin, 39.05% cellulose and 22.49% hemicelluloses. The CH feedstock contained 84.13 mf wt% volatile matter, 0.33 mf wt% ash content, 15.54 mf wt% fixed carbon, 28.22% lignin, 33.61% cellulose and 22.03% hemicelluloses. Carbon and oxygen are the major component of the CF and CH feedstock compositions. Both of CF and CH feedstocks contained very low percentage of sulfur, 0.77% and 0.33%, respectively. TGA analysis indicated that coconut wastes are easily degraded. It may be due to their high volatile content. Between the temperature ranges of 300 and 800 °C, the TGA curves showed that the weight percentage of CF feedstock is lower than CH feedstock by 0.62%-5.88%. From the D TGA curves, most of the weight loss occurred between 210 and 400 °C for both feedstocks. The maximum weight loss for both CF and CH are 0.0074 wt%/min and 0.0061 wt%/min, respectively, which occurred at 324.5 °C. The yield percentage of both CF and CH biochars decreased significantly as the pyrolysis temperature was increased. For CF biochar, the yield decreased from 49.40 wt% to 28.12 wt% as the temperature increased from 300 to 700 °C. The yield for CH biochars also decreased from 52.18 wt% to 28.72 wt%. The findings of this study indicated that both CF and CH are suitable feedstock for slow pyrolysis of biochar.

Keywords: Biochar, biomass, coconut wastes, slow pyrolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1521
149 Valorization of Beer Brewing Wastes by Composting

Authors: M. E. Silva, I. Brás

Abstract:

The aim of this work was to study the viability of recycling the residual yeast and diatomaceous earth (RYDE) slurry generated by the beer brewing industry by composting with animal manures, as well as to evaluate the quality of the composts obtained. Two pilot composting trials were carried out with different mixes: cow manure/RYDE slurry (Pile CM) and sheep manure/RYDE slurry (Pile SM). For all piles, wood chips were applied as bulking agent. The process was monitored by evaluating standard physical and chemical parameters. The compost quality was assessed by the heavy metals content and phytotoxicity. Both piles reached a thermophilic phase in the first day, however having different trends. The pH showed a slight alkaline character. The C/N reached values lower than 19 at the end of composting process. Generally, all the piles exhibited absence of heavy metals. However, the pile SM exhibited phytotoxicity. This study showed that RYDE slurry can be valorized by composting with cow manure.

Keywords: Beer brewing wastes, compost; quality, valorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 977
148 Selection of Solid Waste Landfill Site Using Geographical Information System (GIS)

Authors: F. Iscan, C. Yagci

Abstract:

Rapid population growth, urbanization and industrialization are known as the most important factors of environment problems. Elimination and management of solid wastes are also within the most important environment problems. One of the main problems in solid waste management is the selection of the best site for elimination of solid wastes. Lately, Geographical Information System (GIS) has been used for easing selection of landfill area. GIS has the ability of imitating necessary economic, environmental and political limitations. They play an important role for the site selection of landfill area as a decision support tool. In this study; map layers will be studied for minimum effect of environmental, social and cultural factors and maximum effect for engineering/economic factors for site selection of landfill areas and using GIS for a decision support mechanism in solid waste landfill areas site selection will be presented in Aksaray/Turkey city, Güzelyurt district practice.

Keywords: GIS, landfill, solid waste, spatial analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3106
147 Co-Pyrolysis of Olive Pomace with Plastic Wastes and Characterization of Pyrolysis Products

Authors: Merve Sogancioglu, Esra Yel, Ferda Tartar, Nihan Canan Iskender

Abstract:

Waste polyethylene (PE) is classified as waste low density polyethylene (LDPE) and waste high density polyethylene (HDPE) according to their densities. Pyrolysis of plastic waste may have an important role in dealing with the enormous amounts of plastic waste produced all over the world, by decreasing their negative impact on the environment. This waste may be converted into economically valuable hydrocarbons, which can be used both as fuels and as feed stock in the petrochemical industry. End product yields and properties depend on the plastic waste composition. Pyrolytic biochar is one of the most important products of waste plastics pyrolysis. In this study, HDPE and LDPE plastic wastes were co-pyrolyzed together with waste olive pomace. Pyrolysis runs were performed at temperature 700°C with heating rates of 5°C/min. Higher pyrolysis oil and gas yields were observed by the using waste olive pomace. The biochar yields of HDPE- olive pomace and LDPEolive pomace were 6.37% and 7.26% respectively for 50% olive pomace doses. The calorific value of HDPE-olive pomace and LDPE-olive pomace of pyrolysis oil were 8350 and 8495 kCal.

Keywords: Biochar, co-pyrolysis, waste plastic, waste olive pomace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
146 Recycling of Aggregates from Construction Demolition Wastes in Concrete: Study of Physical and Mechanical Properties

Authors: M. Saidi, F. Ait-Medjber, B. Safi, M. Samar

Abstract:

This work is focused on the study of valuation of recycled concrete aggregates, by measuring certain properties of concrete in the fresh and hardened state. In this study, rheological tests and physic-mechanical characterization on concretes and mortars were conducted with recycled concrete whose geometric properties were identified aggregates. Mortars were elaborated with recycled fine aggregate (0/5mm) and concretes were manufactured using recycled coarse aggregates (5/12.5 mm and 12.5/20 mm). First, a study of the mortars was conducted to determine the effectiveness of polycarboxylate superplasticizer on the workability of these and their action deflocculating of the recycled sand. The rheological behavior of mortars based on fine aggregate recycled was characterized. The results confirm that the mortars composed of different fractions of recycled sand (0 /5) have a better mechanical properties (compressive and flexural strength) compared to normal mortar. Also, the mechanical strengths of concretes made with recycled aggregates (5/12.5 mm and 12.5/20 mm), are comparable to those of conventional concrete with conventional aggregates, provided that the implementation can be improved by the addition of a superplasticizer.

Keywords: Demolition wastes, recycled coarse aggregate, concrete, workability, mechanical strength, porosity/water absorption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3341
145 Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company

Authors: Charles Chikwendu Okpala, Christopher Chukwutoo Ihueze

Abstract:

As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company’s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting.

Keywords: Taguchi Robust Design, signal to noise ratio, Single Minute Exchange of Dies, lean production system, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
144 Laboratory Investigations on the Utilization of Recycled Construction Aggregates in Asphalt Mixtures

Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman

Abstract:

Road networks are increasingly expanding all over the world. The construction and maintenance of the road pavements require large amounts of aggregates. Considerable usage of various natural aggregates for constructing roads as well as the increasing rate at which solid waste is generated have attracted the attention of many researchers in the pavement industry to investigate the feasibility of the application of some of the waste materials as alternative materials in pavement construction. Among various waste materials, construction and demolition wastes, including Recycled Construction Aggregate (RCA) constitute a major part of the municipal solid wastes in Australia. Creating opportunities for the application of RCA in civil and geotechnical engineering applications is an efficient way to increase the market value of RCA. However, in spite of such promising potentials, insufficient and inconclusive data and information on the engineering properties of RCA had limited the reliability and design specifications of RCA to date. In light of this, this paper, as a first step of a comprehensive research, aims to investigate the feasibility of the application of RCA obtained from construction and demolition wastes for the replacement of part of coarse aggregates in asphalt mixture. As the suitability of aggregates for using in asphalt mixtures is determined based on the aggregate characteristics, including physical and mechanical properties of the aggregates, an experimental program is set up to evaluate the physical and mechanical properties of RCA. This laboratory investigation included the measurement of compressive strength and workability of RCA, particle shape, water absorption, flakiness index, crushing value, deleterious materials and weak particles, wet/dry strength variation, and particle density. In addition, the comparison of RCA properties with virgin aggregates has been included as part of this investigation and this paper presents the results of these investigations on RCA, basalt, and the mix of RCA/basalt.

Keywords: Asphalt, basalt, pavement, recycled aggregate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 927
143 Recycling Construction Waste Materials to Reduce the Environmental Pollutants

Authors: Mehrdad Abkenari, Alireza Rezaei, Naghmeh Pournayeb

Abstract:

There have recently been many studies and investments in developed and developing countries regarding the possibility of recycling construction waste, which are still ongoing. Since the term 'construction waste' covers a vast spectrum of materials in constructing buildings, roads and etc., many investigations are required to measure their technical performance in use as well as their time and place of use. Concrete is among the major and fundamental materials used in current construction industry. Along with the rise of population in developing countries, it is desperately required to meet the people's primary need in construction industry and on the other hand, dispose existing wastes for reducing the amount of environmental pollutants. Restrictions of natural resources and environmental pollution are the most important problems encountered by civil engineers. Reusing construction waste is an important and economic approach that not only assists the preservation of environment but also, provides us with primary raw materials. In line with consistent municipal development in disposal and reuse of construction waste, several approaches including, management of construction waste and materials, materials recycling and innovation and new inventions in materials have been predicted. This article has accordingly attempted to study the activities related to recycling of construction wastes and then, stated the economic, quantitative, qualitative and environmental results obtained.

Keywords: Civil engineering, environment, recycling, construction waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829
142 A Conceptual Framework of Scheduled Waste Management in Highway Industry

Authors: Nurul Nadhirah Anuar, Muhammad Fauzi Abdul Ghani

Abstract:

Scheduled waste management is very important in environmental and health aspects. In delivering services, highway industry has been indirectly involved in producing scheduled wastes. This paper aims to define the scheduled waste, to provide a conceptual framework of the scheduled waste management in highway industry, to highlight the effect of improper management of scheduled waste and to encourage future researchers to identify and share the present practice of scheduled waste management in their country. The understanding on effective management of scheduled waste will help the operators of highway industry, the academicians, future researchers, and encourage a friendly environment around the world. The study on scheduled waste management in highway industry is very crucial as highway transverse and run along kilometers crossing the various type of environment, residential and schools. Using Environmental Quality (Scheduled Waste) Regulations 2005 as a guide, this conceptual paper highlight several scheduled wastes produced by highway industry in Malaysia and provide a conceptual framework of scheduled waste management that focused on the highway industry. Understanding on scheduled waste management is vital in order to preserve the environment. Besides that, the waste substances are hazardous to human being. Many diseases have been associated with the improper management of schedule waste such as cancer, throat irritation and respiration problem.

Keywords: Asia Region, Environment, Highway Industry, Scheduled Waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2404
141 Seasonal Influence on Environmental Indicators of Beach Waste

Authors: Marcus C. Garcia, Giselle C. Guimarães, Luciana H. Yamane, Renato R. Siman

Abstract:

The environmental indicators and the classification of beach waste are essential tools to diagnose the current situation and to indicate ways to improve the quality of this environment. The purpose of this paper was to perform a quali-quantitative analysis of the beach waste on the Curva da Jurema Beach (Espírito Santo - Brazil). Three transects were used with equidistant positioning over the total length of the beach for the solid waste collection. Solid wastes were later classified according to their use and primary raw material from the low and high summer season. During the low season, average values of 7.10 items.m-1, 18.22 g.m-1 and 0.91 g.m-2 were found for the whole beach, and transect 3 contributed the most waste, with the total sum of items equal to 999 (49%), a total mass of 5.62 kg and a total volume of 21.31 L. During the high summer season, average values of 8.22 items.m-1, 54.40 g.m-1 and 2.72 g.m-2 were found, with transect 2 contributing the most to the total sum with 1,212 items (53%), a total mass of 10.76 kg and a total volume of 51.99 L. Of the total collected, plastic materials represented 51.4% of the total number of items, 35.9% of the total mass and 68% of the total volume. The implementation of reactive and proactive measures is necessary so that the management of the solid wastes on Curva da Jurema Beach is in accordance with principles of sustainability.

Keywords: Beach solid waste, environmental indicators, quali-quantitative analysis, waste management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353
140 Effect of Windrow Management on Ammonia and Nitrous Oxide Emissions from Swine Manure Composting

Authors: Nanh Lovanh, John Loughrin, Kimberly Cook, Phil Silva, Byung-Taek Oh

Abstract:

In the era of sustainability, utilization of livestock wastes as soil amendment to provide micronutrients for crops is very economical and sustainable. It is well understood that livestock wastes are comparable, if not better, nutrient sources for crops as chemical fertilizers. However, the large concentrated volumes of animal manure produced from livestock operations and the limited amount of available nearby agricultural land areas necessitated the need for volume reduction of these animal wastes. Composting of these animal manures is a viable option for biomass and pathogenic reduction in the environment. Nevertheless, composting also increases the potential loss of available nutrients for crop production as well as unwanted emission of anthropogenic air pollutants due to the loss of ammonia and other compounds via volatilization. In this study, we examine the emission of ammonia and nitrous oxide from swine manure windrows to evaluate the benefit of biomass reduction in conjunction with the potential loss of available nutrients. The feedstock for the windrows was obtained from swine farm in Kentucky where swine manure was mixed with wood shaving as absorbent material. Static flux chambers along with photoacoustic gas analyzer were used to monitor ammonia and nitrous oxide concentrations during the composting process. The results show that ammonia and nitrous oxide fluxes were quite high during the initial composting process and after the turning of each compost pile. Over the period of roughly three months of composting, the biochemical oxygen demand (BOD) decreased by about 90%. Although composting of animal waste is quite beneficial for biomass reduction, composting may not be economically feasible from an agronomical point of view due to time, nutrient loss (N loss), and potential environmental pollution (ammonia and greenhouse gas emissions). Therefore, additional studies are needed to assess and validate the economics and environmental impact of animal (swine) manure composting (e.g., crop yield or impact on climate change).

Keywords: Windrow, swine manure, ammonia, nitrous oxide, fluxes, management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
139 Simulation of a Process Design Model for Anaerobic Digestion of Municipal Solid Wastes

Authors: Asok Adak, Debabrata Mazumder, Pratip Bandyopadhyay

Abstract:

Anaerobic Digestion has become a promising technology for biological transformation of organic fraction of the municipal solid wastes (MSW). In order to represent the kinetic behavior of such biological process and thereby to design a reactor system, development of a mathematical model is essential. Addressing this issue, a simplistic mathematical model has been developed for anaerobic digestion of MSW in a continuous flow reactor unit under homogeneous steady state condition. Upon simulated hydrolysis, the kinetics of biomass growth and substrate utilization rate are assumed to follow first order reaction kinetics. Simulation of this model has been conducted by studying sensitivity of various process variables. The model was simulated using typical kinetic data of anaerobic digestion MSW and typical MSW characteristics of Kolkata. The hydraulic retention time (HRT) and solid retention time (SRT) time were mainly estimated by varying different model parameters like efficiency of reactor, influent substrate concentration and biomass concentration. Consequently, design table and charts have also been prepared for ready use in the actual plant operation.

Keywords: Anaerobic digestion, municipal solid waste (MSW), process design model, simulation study, hydraulic retention time(HRT), solid retention time (SRT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2623
138 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 3: Volume Reduction and Stabilization of Solid Waste

Authors: Masaumi Nakahara, Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura

Abstract:

In the Japan Atomic Energy Agency, three types of experimental research, advanced reactor fuel reprocessing, radioactive waste disposal, and nuclear fuel cycle technology, have been carried out at the Chemical Processing Facility. The facility has generated high level radioactive liquid and solid wastes in hot cells. The high level radioactive solid waste is divided into three main categories, a flammable waste, a non-flammable waste, and a solid reagent waste. A plastic product is categorized into the flammable waste and molten with a heating mantle. The non-flammable waste is cut with a band saw machine for reducing the volume. Among the solid reagent waste, a used adsorbent after the experiments is heated, and an extractant is decomposed for its stabilization. All high level radioactive solid wastes in the hot cells are packed in a high level radioactive solid waste can. The high level radioactive solid waste can is transported to the 2nd High Active Solid Waste Storage in the Tokai Reprocessing Plant in the Japan Atomic Energy Agency.

Keywords: High level radioactive solid waste, advanced reactor fuel reprocessing, radioactive waste disposal, nuclear fuel cycle technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841
137 Application of Acinetobacter sp. KKU44 for Cellulase Production from Agricultural Waste

Authors: Surasak Siripornadulsil, Nutt Poomai, Wilailak Siripornadulsil

Abstract:

Due to a high ethanol demand, the approach for  effective ethanol production is important and has been developed  rapidly worldwide. Several agricultural wastes are highly  abundant in celluloses and the effective cellulase enzymes do exist  widely among microorganisms. Accordingly, the cellulose  degradation using microbial cellulase to produce a low-cost substrate  for ethanol production has attracted more attention. In this  study, the cellulase producing bacterial strain has been isolated  from rich straw and identified by 16S rDNA sequence analysis as Acinetobacter sp. KKU44. This strain is able to grow and exhibit the cellulase activity. The optimal temperature for its growth and  cellulase production is 37°C. The optimal temperature of bacterial  cellulase activity is 60°C. The cellulase enzyme from  Acinetobacter sp. KKU44 is heat-tolerant enzyme. The bacterial culture of 36h. showed highest cellulase activity at 120U/mL when  grown in LB medium containing 2% (w/v). The capability of  Acinetobacter sp. KKU44 to grow in cellulosic agricultural wastes as a sole carbon source and exhibiting the high cellulase activity at high temperature suggested that this strain could be potentially developed further as a cellulose degrading strain for a production of low-cost substrate used in ethanol production. 

 

Keywords: Acinetobacter sp. KKU44, bagasse, cellulase enzyme, rice husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2592
136 Health Care Waste Management Practices in Liberia: An Investigative Case Study

Authors: V. Emery David Jr., J. Wenchao, D. Mmereki, Y. John, F. Heriniaina

Abstract:

Healthcare waste management continues to present an array of challenges for developing countries, and Liberia is of no exception. There is insufficient information available regarding the generation, handling, and disposal of health care waste. This face serves as an impediment to healthcare management schemes. The specific objective of this study is to present an evaluation of the current health care management practices in Liberia. It also presented procedures, techniques used, methods of handling, transportation, and disposal methods of wastes as well as the quantity and composition of health care waste. This study was conducted as an investigative case study, covering three different health care facilities; a hospital, a health center, and a clinic in Monrovia, Montserrado County. The average waste generation was found to be 0-7kg per day at the clinic and health center and 8-15kg per/day at the hospital. The composition of the waste includes hazardous and non-hazardous waste i.e. plastic, papers, sharps, and pathological elements etc. Nevertheless, the investigation showed that the healthcare waste generated by the surveyed healthcare facilities were not properly handled because of insufficient guidelines for separate collection, and classification, and adequate methods for storage and proper disposal of generated wastes. This therefore indicates that there is a need for improvement within the healthcare waste management system to improve the existing situation.

Keywords: Disposal, Healthcare waste, management, Montserrado County, Monrovia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2553