Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Electrokinetic Remediation of Uranium Contaminated Soil by Ion Exchange Membranes
Authors: Z. H. Shi, T. J. Dou, H. Zhang, H. X. Huang, N. Zeng
Abstract:
The contamination of significant quantities of soils and sediments with uranium and other actinide elements as a result of nuclear activity poses many environmental risks. The electrokinetic process is one of the most promising remediation techniques for sludge, sediment, and saturated or unsaturated soils contaminated with heavy metals and radionuclides. However, secondary waste is a major concern for soil contaminated with nuclides. To minimize the generation of secondary wastes, this study used the anion and cation exchange membranes to improve the performance of the experimental apparatus. Remediation experiments of uranium-contaminated soil were performed with different agents. The results show that using acetic acid and EDTA as chelating agents clearly enhances the migration ability of the uranium. The ion exchange membranes (IEMs) used in the experiments not only reduce secondary wastes, but also, keep the soil pH stable.Keywords: Electrokinetic remediation, ion exchange membranes, soil, uranium.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1126275
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398References:
[1] D. Ribera, F. Labrot, G. Tisnerat, J.F. Narbonne, “Uranium in the environment: occurrence, transfer and biological effects,” Rev. Environ. Contam. Toxicol. vol. 146, 1996, pp. 53-89.
[2] I. G.. Carvalho, R. Cidu, L. Fanfani, et al. “Environmental impact of uranium mining and ore processing in the Lagoa Real District, Bahia, Brazil,” Environ. Sci. Technol. 2005(39), pp. 8646-8652.
[3] A. Abdelouas, “Uranium mill tailings: geochemisty, mineralogy, and environmental impact.” Elem. vol. 2, 2006, pp. 335-341.
[4] R. C. Ewing, “Environmental impact of the nuclear fuel cycle. In: Gieré R, Stille P(Eds). Energy, Waste and the Environment: a geochemicaal perspective. Geological Society Special Publication 236,” The Geological Society, London, 2004, pp. 7-23.
[5] M. F. AbdEI-Sabour, “Remediation and bioremediation of uranium contaminated soils,” Electron. J. Environ. Agric. Food Chem. (EJEAFChe), vol. 6, 2007, pp. 2009-2023.
[6] C. F. V. Mason, N. Lu, W. R. J. R Turney, M. Williams, “A complete remediation system for uranium-contaminated soils: application to a uranium-contaminated site at Los Alamos National Laboratory,” Rem.J., vol. 8, 2007, pp. 113-126.
[7] I. Datskou, J. Hutchison, S. Ince, “Estimation of secondary waste loads generated during environmental restoration activities,” J. Hazard. Mater. , vol. 51, 1996, pp. 35-45.
[8] T. L. Jones, A. Ghassemi, D. L. Wise, D. J. Trantolo, “Modern in-field process systems-case study: soil washing. Remediation of hazardous waste contaminated soils,” Environ. Sci. Pollut. Control Ser. vol. 8, 1994, pp. 719-743.
[9] S. D. Ebbs, W. A. Norvell, L. V. Kochian, “The effect of acidification and chelating agents on the solubilization of uranium from contaminated soil,” J. Environ. Qual., vol. 27, 1998, pp.1486-1494.
[10] M. Fomian, J. M. Charnock, S. Hillier, R. Alvarez, G. M. Gadd, Fungal transformations of uranium oxides, Environ. Microbiol., vol. 9, 2007, pp.1696-1710.
[11] J. Luo, F. A. Weber, O. A. Cirpka, W. M. Wu, J. L. Nyman, J. Carley, P. M. Jardine, C. S. Criddle, P. K. Kitanidis. “Modeling in-situ uranium(Ⅵ) bioreduction by sulfate-reducing bacteria,” J. Contam. Hydrol., vol. 92, 2007, pp. 129-148.
[12] H. Beyenal, R. K. Sani, B. M. Peyton, A. C. Dohnalkova, J. E. Amonette, Z.Lewandowski, “Uranium immobilization by sulfate-reducing biofilms,” Environ. Sci. Technol., vol. 38, 2004, pp. 2067-2074.
[13] N. Maes, et al., “The assessment of electromigration as a new technique to study diffusion of radionuclides in clayey soils,” Contam. Hydrol., vol.36, 1999, pp. 231-247.
[14] G. Li, S. H. Guo, S. C. Li, L. Y. Zhang, S. S. Wang. “Comparison of approaching and fixed anodes for avoiding the ‘focusing’ effect during electrokinetic remediation of chromium-contaminated soil,” Chem. Eng. J., vol.203, 2012, pp. 231-238.
[15] G. N. Kim, et al., “Removal of cesium and cobalt from soil around TRIGA reactor using electrokinetic method,” J. Ind. Eng. Chem., vol.9, 2003, pp. 306-313.
[16] G. N. Kim, D. B. Shon, H. M. Park, K. W. Lee, U. S. Chung, “Development of pilot-scale electrokinetic remediation technology for uranium removal,” Sep. Purif. Technol., vol.80, 2011, pp. 67-72.
[17] B. Kornilovich, et al., “Enhanced electrokinetic remediation of metals-contaminated clay,” Colloids. Surf. A. Physicochem. Eng. Asp., vol.265, 2005, pp. 114-123.