Search results for: Dynamic Equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2942

Search results for: Dynamic Equation

2942 A Dynamic Equation for Downscaling Surface Air Temperature

Authors: Ch. Surawut, D. Sukawat

Abstract:

In order to utilize results from global climate models, dynamical and statistical downscaling techniques have been developed. For dynamical downscaling, usually a limited area numerical model is used, with associated high computational cost. This research proposes dynamic equation for specific space-time regional climate downscaling from the Educational Global Climate Model (EdGCM) for Southeast Asia. The equation is for surface air temperature. This equation provides downscaling values of surface air temperature at any specific location and time without running a regional climate model. In the proposed equations, surface air temperature is approximated from ground temperature, sensible heat flux and 2m wind speed. Results from the application of the equation show that the errors from the proposed equations are less than the errors for direct interpolation from EdGCM.

Keywords: Dynamic Equation, Downscaling, Inverse distance weight interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
2941 Dynamic Measurement System Modeling with Machine Learning Algorithms

Authors: Changqiao Wu, Guoqing Ding, Xin Chen

Abstract:

In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.

Keywords: Dynamic system modeling, neural network, normal equation, second order gradient descent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
2940 A Thermodynamic Solution for the Static and Dynamic Characteristics of a Two-Lobe Journal Bearing

Authors: B. Chetti, W. A. Crosby

Abstract:

The work described in this paper is an investigation of the static and dynamic characteristics of two-lobe journal bearings taking into consideration the thermal effects. A thermo-hydrodynamic solution of a finite two-lobe journal bearing is performed by solving the generalized form Reynolds equation with the energy equation, taking into consideration viscosity variation across the film thickness. The static and dynamic characteristics were numerically obtained. The results are evaluated for different values of viscosity-temperature coefficient and Peclet number. The results show that considering the thermal effects in the solution of the two-lobe journal bearing has a marked on the study of its stability.

Keywords: Two-lobe bearing, thermal effect, static and dynamic characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
2939 Ginzburg-Landau Model for Curved Two-Phase Shallow Mixing Layers

Authors: Irina Eglite, Andrei A. Kolyshkin

Abstract:

Method of multiple scales is used in the paper in order to derive an amplitude evolution equation for the most unstable mode from two-dimensional shallow water equations under the rigid-lid assumption. It is assumed that shallow mixing layer is slightly curved in the longitudinal direction and contains small particles. Dynamic interaction between carrier fluid and particles is neglected. It is shown that the evolution equation is the complex Ginzburg-Landau equation. Explicit formulas for the computation of the coefficients of the equation are obtained.

Keywords: Shallow water equations, mixing layer, weakly nonlinear analysis, Ginzburg-Landau equation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
2938 Oscillation Criteria for Nonlinear Second-order Damped Delay Dynamic Equations on Time Scales

Authors: Da-Xue Chen, Guang-Hui Liu

Abstract:

In this paper, we establish several oscillation criteria for the nonlinear second-order damped delay dynamic equation r(t)|xΔ(t)|β-1xΔ(t)Δ + p(t)|xΔσ(t)|β-1xΔσ(t) + q(t)f(x(τ (t))) = 0 on an arbitrary time scale T, where β > 0 is a constant. Our results generalize and improve some known results in which β > 0 is a quotient of odd positive integers. Some examples are given to illustrate our main results.

Keywords: Oscillation, damped delay dynamic equation, time scale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1276
2937 Identification of States and Events for the Static and Dynamic Simulation of Single Electron Tunneling Circuits

Authors: Sharief F. Babiker, Abdelkareem Bedri, Rania Naeem

Abstract:

The implementation of single-electron tunneling (SET) simulators based on the master-equation (ME) formalism requires the efficient and accurate identification of an exhaustive list of active states and related tunnel events. Dynamic simulations also require the control of the emerging states and guarantee the safe elimination of decaying states. This paper describes algorithms for use in the stationary and dynamic control of the lists of active states and events. The paper presents results obtained using these algorithms with different SET structures.

Keywords: Active state, Coulomb blockade, Master Equation, Single electron devices

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1389
2936 On the Modeling and State Estimation for Dynamic Power System

Authors: A. Thabet, M. Boutayeb, M. N. Abdelkrim

Abstract:

This paper investigates a method for the state estimation of nonlinear systems described by a class of differential-algebraic equation (DAE) models using the extended Kalman filter. The method involves the use of a transformation from a DAE to ordinary differential equation (ODE). A relevant dynamic power system model using decoupled techniques will be proposed. The estimation technique consists of a state estimator based on the EKF technique as well as the local stability analysis. High performances are illustrated through a simulation study applied on IEEE 13 buses test system.

Keywords: Power system, Dynamic decoupled model, Extended Kalman Filter, Convergence analysis, Time computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736
2935 On the Integer Solutions of the Pell Equation x2 - dy2 = 2t

Authors: Ahmet Tekcan, Betül Gezer, Osman Bizim

Abstract:

Let k ≥ 1 and t ≥ 0 be two integers and let d = k2 + k be a positive non-square integer. In this paper, we consider the integer solutions of Pell equation x2 - dy2 = 2t. Further we derive a recurrence relation on the solutions of this equation.

Keywords: Pell equation, Diophantine equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2386
2934 Order Reduction of Linear Dynamic Systems using Stability Equation Method and GA

Authors: G. Parmar, R. Prasad, S. Mukherjee

Abstract:

The authors present an algorithm for order reduction of linear dynamic systems using the combined advantages of stability equation method and the error minimization by Genetic algorithm. The denominator of the reduced order model is obtained by the stability equation method and the numerator terms of the lower order transfer function are determined by minimizing the integral square error between the transient responses of original and reduced order models using Genetic algorithm. The reduction procedure is simple and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. The proposed algorithm has also been extended for the order reduction of linear multivariable systems. Two numerical examples are solved to illustrate the superiority of the algorithm over some existing ones including one example of multivariable system.

Keywords: Genetic algorithm, Integral square error, Orderreduction, Stability equation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3188
2933 Analysis of a Self-Acting Air Journal Bearing: Effect of Dynamic Deformation of Bump Foil

Authors: H. Bensouilah, H. Boucherit, M. Lahmar

Abstract:

A theoretical investigation on the effects of both steady-state and dynamic deformations of the foils on the dynamic performance characteristics of a self-acting air foil journal bearing operating under small harmonic vibrations is proposed. To take into account the dynamic deformations of foils, the perturbation method is used for determining the gas-film stiffness and damping coefficients for given values of excitation frequency, compressibility number, and compliance factor of the bump foil. The nonlinear stationary Reynolds’ equation is solved by means of the Galerkins’ finite element formulation while the finite differences method are used to solve the first order complex dynamic equations resulting from the perturbation of the nonlinear transient compressible Reynolds’ equation. The stiffness of a bump is uniformly distributed throughout the bearing surface (generation I bearing). It was found that the dynamic properties of the compliant finite length journal bearing are significantly affected by the compliance of foils especially whenthe dynamic deformation of foils is considered in addition to the static one by applying the principle of superposition.

Keywords: Elasto-aerodynamic lubrication, Air foil bearing, Steady-state deformation, Dynamic deformation, Stiffness and damping coefficients, Perturbation method, Fluid-structure interaction, Galerk infinite element method, Finite difference method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2755
2932 Stability Analysis of Three-Lobe Journal Bearing Lubricated with a Micropolar Fluids

Authors: Boualem Chetti

Abstract:

In this paper, the dynamic characteristics of a threelobe journal bearing lubricated with micropolar fluids are determined by the linear stability theory. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory .The finite difference technique has been used to determine the solution of the modified Reynolds equation. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The computed results show that the three-lobe bearing lubricated with micropolar fluid exhibits better stability compared with that lubricated with Newtonian fluid. According to the results obtained, the effect of the parameter micropolar fluid is remarkable on the dynamic characteristics and stability of the three-lobe bearing.

Keywords: Three-lobe bearings, Micropolar fluid, Dynamic characteristics, Stability analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2712
2931 A Numerical Approach for Static and Dynamic Analysis of Deformable Journal Bearings

Authors: D. Benasciutti, M. Gallina, M. Gh. Munteanu, F. Flumian

Abstract:

This paper presents a numerical approach for the static and dynamic analysis of hydrodynamic radial journal bearings. In the first part, the effect of shaft and housing deformability on pressure distribution within oil film is investigated. An iterative algorithm that couples Reynolds equation with a plane finite elements (FE) structural model is solved. Viscosity-to-pressure dependency (Vogel- Barus equation) is also included. The deformed lubrication gap and the overall stress state are obtained. Numerical results are presented with reference to a typical journal bearing configuration at two different inlet oil temperatures. Obtained results show the great influence of bearing components structural deformation on oil pressure distribution, compared with results for ideally rigid components. In the second part, a numerical approach based on perturbation method is used to compute stiffness and damping matrices, which characterize the journal bearing dynamic behavior.

Keywords: Journal bearing, finite elements, deformation, dynamic analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
2930 Micropolar Fluids Effects on the Dynamic Characteristics of Four-lobe Journal Bearing

Authors: B. Chetti

Abstract:

Dynamic characteristics of a four-lobe journal bearing of micropolar fluids are presented. Lubricating oil containing additives and contaminants is modelled as micropolar fluid. The modified Reynolds equation is obtained using the micropolar lubrication theory and solving it by using finite difference technique. The dynamic characteristics in terms of stiffness, damping coefficients, the critical mass and whirl ratio are determined for various values of size of material characteristic length and the coupling number. The results show compared with Newtonian fluids, that micropolar fluid exhibits better stability.

Keywords: Four-lobe bearings, dynamic characteristics, stabilityanalysis, micropolar fluid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
2929 Potentials and Influencing Factors of Dynamic Pricing in Business: Empirical Insights of European Experts

Authors: Christopher Reichstein, Ralf-Christian Härting, Martina Häußler

Abstract:

With a continuously increasing speed of information exchange on the World Wide Web, retailers in the E-Commerce sector are faced with immense possibilities regarding different online purchase processes like dynamic price settings. By use of Dynamic Pricing, retailers are able to set short time price changes in order to optimize producer surplus. The empirical research illustrates the basics of Dynamic Pricing and identifies six influencing factors of Dynamic Pricing. The results of a structural equation modeling approach show five main drivers increasing the potential of dynamic price settings in the E-Commerce. Influencing factors are the knowledge of customers’ individual willingness to pay, rising sales, the possibility of customization, the data volume and the information about competitors’ pricing strategy.

Keywords: E-commerce, empirical research, experts, Dynamic Pricing (DP), influencing factors, potentials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
2928 The Proof of Two Conjectures Related to Pell-s Equation x2 −Dy2 = ± 4

Authors: Armend Sh. Shabani

Abstract:

Let D ≠ 1 be a positive non-square integer. In this paper are given the proofs for two conjectures related to Pell-s equation x2 -Dy2 = ± 4, proposed by A. Tekcan.

Keywords: Pell's equation, solutions of Pell's equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1235
2927 Analysis and Application of in Indirect MinimumJerk Method for Higher order Differential Equation in Dynamics Optimization Systems

Authors: V. Tawiwat, T. Amornthep, P. Pnop

Abstract:

Both the minimum energy consumption and smoothness, which is quantified as a function of jerk, are generally needed in many dynamic systems such as the automobile and the pick-and-place robot manipulator that handles fragile equipments. Nevertheless, many researchers come up with either solely concerning on the minimum energy consumption or minimum jerk trajectory. This research paper considers the indirect minimum Jerk method for higher order differential equation in dynamics optimization proposes a simple yet very interesting indirect jerks approaches in designing the time-dependent system yielding an alternative optimal solution. Extremal solutions for the cost functions of indirect jerks are found using the dynamic optimization methods together with the numerical approximation. This case considers the linear equation of a simple system, for instance, mass, spring and damping. The simple system uses two mass connected together by springs. The boundary initial is defined the fix end time and end point. The higher differential order is solved by Galerkin-s methods weight residual. As the result, the 6th higher differential order shows the faster solving time.

Keywords: Optimization, Dynamic, Linear Systems, Jerks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1333
2926 An Analytical Method for Solving General Riccati Equation

Authors: Y. Pala, M. O. Ertas

Abstract:

In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.

Keywords: Riccati Equation, ordinary differential equation, nonlinear differential equation, analytical solution, proper solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
2925 The Pell Equation x2 − Py2 = Q

Authors: Ahmet Tekcan, Arzu Özkoç, Canan Kocapınar, Hatice Alkan

Abstract:

Let p be a prime number such that p ≡ 1(mod 4), say p = 1+4k for a positive integer k. Let P = 2k + 1 and Q = k2. In this paper, we consider the integer solutions of the Pell equation x2-Py2 = Q over Z and also over finite fields Fp. Also we deduce some relations on the integer solutions (xn, yn) of it.

Keywords: Pell equation, solutions of Pell equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
2924 Dynamic Voltage Stability Estimation using Particle Filter

Authors: Osea Zebua, Norikazu Ikoma, Hiroshi Maeda

Abstract:

Estimation of voltage stability based on optimal filtering method is presented. PV curve is used as a tool for voltage stability analysis. Dynamic voltage stability estimation is done by using particle filter method. Optimum value (nose point) of PV curve can be estimated by estimating parameter of PV curve equation optimal value represents critical voltage and condition at specified point of measurement. Voltage stability is then estimated by analyzing loading margin condition c stimating equation. This maximum loading ecified dynamically.

Keywords: normalized PV curve, optimal filtering method particle filter, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
2923 Dynamic Stability of Beams with Piezoelectric Layers Located on a Continuous Elastic Foundation

Authors: A. R. Nezamabadi, M. Karami Khorramabadi

Abstract:

This paper studies dynamic stability of homogeneous beams with piezoelectric layers subjected to periodic axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Bernoulli-Euler beam theory. Applying the Hamilton's principle, the governing dynamic equation is established. The influences of applied voltage, foundation coefficient and piezoelectric thickness on the unstable regions are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: Dynamic stability, Homogeneous graded beam-Piezoelectric layer, Harmonic balance method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1726
2922 Membrane Distillation Process Modeling: Dynamical Approach

Authors: Fadi Eleiwi, Taous Meriem Laleg-Kirati

Abstract:

This paper presents a complete dynamic modeling of a membrane distillation process. The model contains two consistent dynamic models. A 2D advection-diffusion equation for modeling the whole process and a modified heat equation for modeling the membrane itself. The complete model describes the temperature diffusion phenomenon across the feed, membrane, permeate containers and boundary layers of the membrane. It gives an online and complete temperature profile for each point in the domain. It explains heat conduction and convection mechanisms that take place inside the process in terms of mathematical parameters, and justify process behavior during transient and steady state phases. The process is monitored for any sudden change in the performance at any instance of time. In addition, it assists maintaining production rates as desired, and gives recommendations during membrane fabrication stages. System performance and parameters can be optimized and controlled using this complete dynamic model. Evolution of membrane boundary temperature with time, vapor mass transfer along the process, and temperature difference between membrane boundary layers are depicted and included. Simulations were performed over the complete model with real membrane specifications. The plots show consistency between 2D advection-diffusion model and the expected behavior of the systems as well as literature. Evolution of heat inside the membrane starting from transient response till reaching steady state response for fixed and varying times is illustrated.

Keywords: Membrane distillation, Dynamical modeling, Advection-diffusion equation, Thermal equilibrium, Heat equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2852
2921 The Diophantine Equation y2 − 2yx − 3 = 0 and Corresponding Curves over Fp

Authors: Ahmet Tekcan, Arzu Özkoç, Hatice Alkan

Abstract:

In this work, we consider the number of integer solutions of Diophantine equation D : y2 - 2yx - 3 = 0 over Z and also over finite fields Fp for primes p ≥ 5. Later we determine the number of rational points on curves Ep : y2 = Pp(x) = yp 1 + yp 2 over Fp, where y1 and y2 are the roots of D. Also we give a formula for the sum of x- and y-coordinates of all rational points (x, y) on Ep over Fp.

Keywords: Diophantine equation, Pell equation, quadratic form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
2920 An Analytical Study of Small Unmanned Arial Vehicle Dynamic Stability Characteristics

Authors: Abdelhakam A. Noreldien, Sakhr B. Abudarag, Muslim S. Eltoum, Salih O. Osman

Abstract:

This paper presents an analytical study of Small Unmanned Aerial Vehicle (SUAV) dynamic stability derivatives. Simulating SUAV dynamics and analyzing its behavior at the earliest design stages is too important and more efficient design aspect. The approach suggested in this paper is using the wind tunnel experiment to collect the aerodynamic data and get the dynamic stability derivatives. AutoCAD Software was used to draw the case study (wildlife surveillance SUAV). The SUAV is scaled down to be 0.25% of the real SUAV dimensions and converted to a wind tunnel model. The model was tested in three different speeds for three different attitudes which are; pitch, roll and yaw. The wind tunnel results were then used to determine the case study stability derivative values, and hence it used to calculate the roots of the characteristic equation for both longitudinal and lateral motions. Finally, the characteristic equation roots were found and discussed in all possible cases.

Keywords: Model, simulating, SUAV, wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
2919 Assessment of Collapse Potential of Degrading SDOF Systems

Authors: Muzaffer Borekci, Murat S. Kirçil

Abstract:

Predicting the collapse potential of a structure during earthquakes is an important issue in earthquake engineering. Many researchers proposed different methods to assess the collapse potential of structures under the effect of strong ground motions. However most of them did not consider degradation and softening effect in hysteretic behavior. In this study, collapse potential of SDOF systems caused by dynamic instability with stiffness and strength degradation has been investigated. An equation was proposed for the estimation of collapse period of SDOF system which is a limit value of period for dynamic instability. If period of the considered SDOF system is shorter than the collapse period then the relevant system exhibits dynamic instability and collapse occurs.

Keywords: Collapse, degradation, dynamic instability, seismic response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095
2918 Flutter Analysis of Slender Beams with Variable Cross Sections Based on Integral Equation Formulation

Authors: Z. El Felsoufi, L. Azrar

Abstract:

This paper studies a mathematical model based on the integral equations for dynamic analyzes numerical investigations of a non-uniform or multi-material composite beam. The beam is subjected to a sub-tangential follower force and elastic foundation. The boundary conditions are represented by generalized parameterized fixations by the linear and rotary springs. A mathematical formula based on Euler-Bernoulli beam theory is presented for beams with variable cross-sections. The non-uniform section introduces non-uniformity in the rigidity and inertia of beams and consequently, more complicated equilibrium who governs the equation. Using the boundary element method and radial basis functions, the equation of motion is reduced to an algebro-differential system related to internal and boundary unknowns. A generalized formula for the deflection, the slope, the moment and the shear force are presented. The free vibration of non-uniform loaded beams is formulated in a compact matrix form and all needed matrices are explicitly given. The dynamic stability analysis of slender beam is illustrated numerically based on the coalescence criterion. A realistic case related to an industrial chimney is investigated.

Keywords: Chimney, BEM and integral equation formulation, non uniform cross section, vibration and Flutter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
2917 Solution of The KdV Equation with Asymptotic Degeneracy

Authors: Tapas Kumar Sinha, Joseph Mathew

Abstract:

Recently T. C. Au-Yeung, C.Au, and P. C. W. Fung [2] have given the solution of the KdV equation [1] to the boundary condition , where b is a constant. We have further extended the method of [2] to find the solution of the KdV equation with asymptotic degeneracy. Via simulations we find both bright and dark Solitons (i.e. Solitons with opposite phases).

Keywords: KdV equation, Asymptotic Degeneracy, Solitons, Inverse Scattering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
2916 Multivariable System Reduction Using Stability Equation Method and SRAM

Authors: D. Bala Bhaskar

Abstract:

An algorithm is proposed for the order reduction of large scale linear dynamic multi variable systems where the reduced order model denominator is obtained by using Stability equation method and numerator coefficients are obtained by using SRAM. The proposed algorithm produces a lower order model for an original stable high order multivariable system. The reduction procedure is easy to understand, efficient and computer oriented. To highlight the advantages of the approach, the algorithm is illustrated with the help of a numerical example and the results are compared with the other existing techniques in literature.

Keywords: Multi variable systems, order reduction, stability equation method, SRAM, time domain characteristics, ISE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
2915 Oscillation Theorems for Second-order Nonlinear Neutral Dynamic Equations with Variable Delays and Damping

Authors: Da-Xue Chen, Guang-Hui Liu

Abstract:

In this paper, we study the oscillation of a class of second-order nonlinear neutral damped variable delay dynamic equations on time scales. By using a generalized Riccati transformation technique, we obtain some sufficient conditions for the oscillation of the equations. The results of this paper improve and extend some known results. We also illustrate our main results with some examples.

Keywords: Oscillation theorem, second-order nonlinear neutral dynamic equation, variable delay, damping, Riccati transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
2914 Exact Solutions of the Helmholtz equation via the Nikiforov-Uvarov Method

Authors: Said Laachir, Aziz Laaribi

Abstract:

The Helmholtz equation often arises in the study of physical problems involving partial differential equation. Many researchers have proposed numerous methods to find the analytic or approximate solutions for the proposed problems. In this work, the exact analytical solutions of the Helmholtz equation in spherical polar coordinates are presented using the Nikiforov-Uvarov (NU) method. It is found that the solution of the angular eigenfunction can be expressed by the associated-Legendre polynomial and radial eigenfunctions are obtained in terms of the Laguerre polynomials. The special case for k=0, which corresponds to the Laplace equation is also presented.

Keywords: Helmholtz equation, Nikiforov-Uvarov method, exact solutions, eigenfunctions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3002
2913 Dynamic Analysis of Offshore 2-HUS/U Parallel Platform

Authors: Xie Kefeng, Zhang He

Abstract:

For the stability and control demand of offshore small floating platform, a 2-HUS/U parallel mechanism was presented as offshore platform. Inverse kinematics was obtained by institutional constraint equation, and the dynamic model of offshore 2-HUS/U parallel platform was derived based on rigid body’s Lagrangian method. The equivalent moment of inertia, damping and driving force/torque variation of offshore 2-HUS/U parallel platform were analyzed. A numerical example shows that, for parallel platform of given motion, system’s equivalent inertia changes 1.25 times maximally. During the movement of platform, they change dramatically with the system configuration and have coupling characteristics. The maximum equivalent drive torque is 800 N. At the same time, the curve of platform’s driving force/torque is smooth and has good sine features. The control system needs to be adjusted according to kinetic equation during stability and control and it provides a basis for the optimization of control system.

Keywords: 2-HUS/U platform, Dynamics, Lagrange, Parallel platform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 971