Search results for: Duplex Stainless Steel
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 772

Search results for: Duplex Stainless Steel

202 Soil Resistivity Structure and Its Implication on the Pole Grid Resistance for Transmission Lines

Authors: M. Nassereddine, J. Rizk, G. Nasserddine

Abstract:

High Voltage (HV) transmission lines are widely spread around residential places. They take all forms of shapes: concrete, steel, and timber poles. Earth grid always form part of the HV transmission structure, whereat soil resistivity value is one of the main inputs when it comes to determining the earth grid requirements. In this paper, the soil structure and its implication on the electrode resistance of HV transmission poles will be explored. In Addition, this paper will present simulation for various soil structures using IEEE and Australian standards to verify the computation with CDEGS software. Furthermore, the split factor behavior under different soil resistivity structure will be presented using CDEGS simulations.

Keywords: Earth Grid, EPR, High Voltage, Soil Resistivity Structure, Split Factor, Step Voltage, Touch Voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3240
201 Influence of Wind Induced Fatigue Damage in the Reliability of Wind Turbines

Authors: Emilio A. Berny-Brandt, Sonia E. Ruiz

Abstract:

Steel tubular towers serving as support structures for large wind turbines are subjected to several hundred million stress cycles caused by the turbulent nature of the wind. This causes highcycle fatigue, which could govern the design of the tower. Maintaining the support structure after the wind turbines reach its typical 20-year design life has become a common practice; however, quantifying the changes in the reliability on the tower is not usual. In this paper the effect of fatigue damage in the wind turbine structure is studied whit the use of fracture mechanics, and a method to estimate the reliability over time of the structure is proposed. A representative wind turbine located in Oaxaca, Mexico is then studied. It is found that the system reliability is significantly affected by the accumulation of fatigue damage. 

Keywords: Crack growth, fatigue, Monte Carlo simulation, structural reliability, wind turbines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
200 Study of the Cryogenically Cooled Electrode Shape in Electric Discharge Machining Process

Authors: Vineet Srivastava, Pulak M. Pandey

Abstract:

Electrical discharge machining (EDM) is well established machining technique mainly used to machine complex geometries on difficult-to-machine materials and high strength temperature resistant alloys. In the present research, the objective is to study the shape of the electrode and establish the application of liquid nitrogen in reducing distortion of the electrode during electrical discharge machining of M2 grade high speed steel using copper electrodes. Study of roundness was performed on the electrode to observe the shape of the electrode for both conventional EDM and EDM with cryogenically cooled electrode. Scanning Electron Microscope (SEM) has been used to study the shape of electrode tip. The effect of various parameters such as discharge current and pulse on time has been studied to understand the behavior of distortion of electrode. It has been concluded that the shape retention is better in case of liquid nitrogen cooled electrode.

Keywords: cryogenic cooling, EDM, electrode shape, out of roundness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2332
199 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission

Authors: Ramin Khamedi, Isa Ahmadi

Abstract:

In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).

Keywords: Dual Phase Steel, Deformation, Acoustic Emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
198 Variance Based Component Analysis for Texture Segmentation

Authors: Zeinab Ghasemi, S. Amirhassan Monadjemi, Abbas Vafaei

Abstract:

This paper presents a comparative analysis of a new unsupervised PCA-based technique for steel plates texture segmentation towards defect detection. The proposed scheme called Variance Based Component Analysis or VBCA employs PCA for feature extraction, applies a feature reduction algorithm based on variance of eigenpictures and classifies the pixels as defective and normal. While the classic PCA uses a clusterer like Kmeans for pixel clustering, VBCA employs thresholding and some post processing operations to label pixels as defective and normal. The experimental results show that proposed algorithm called VBCA is 12.46% more accurate and 78.85% faster than the classic PCA.

Keywords: Principal Component Analysis; Variance Based Component Analysis; Defect Detection; Texture Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
197 SMRF Seismic Response: Unequal Beam Depths

Authors: Babak H. Mamamqani, Alimohammad Entezarmahdi

Abstract:

There are many researches on parameters affecting seismic behavior of steel moment frames. Great deal of these researches considers cover plate connections with or without haunch and direct beam to column connection for exterior columns. Also there are experimental results for interior connections with equal beam depth on both sides but not much research has been performed on the seismic behavior of joints with unequal beam depth. Based on previous experimental results, a series of companion analyses have been set up considering different beam height and connection detailing configuration to investigate the seismic behavior of the connections. Results of this study indicate that when the differences between beams height on both side increases, use of haunch connection system leads to significant improvement in the seismic response whereas other configurations did not provide satisfying results.

Keywords: Analytical modeling, Haunch connection, Seismic design, Unequal beam depth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2724
196 Structural Performance of a Timber-Concrete Bridge Prototype

Authors: Pedro Gutemberg de Alcântara Segundinho, José Antonio Matthiesen, Marcelo Rodrigo Carreira

Abstract:

Timber-concrete structures were recently introduced in Brazil as a viable option for bridge construction on side roads. Binding between timber and concrete is fundamentally important to assure the rigidity and performance of this structural system. The objective of this study was to assess the structural performance of a timber-concrete bridge prototype with width of 170cm and span of 400cm, whose binding among timber beams and concrete slabs was made with metal pins, obtained from CA 50 construction steel bars of 12.5mm diameter. It was possible to conclude, from the results obtained experimentally in laboratory, that the timber-concrete bridge prototype showed a good structural performance. This structural system provides an economical, rapid implementation solution, which may be used on side roads, favoring regional integration and agricultural production flow.

Keywords: Binding, bridge prototype, timber and concrete

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110
195 Finite Element Simulation of Deep Drawing Process to Minimize Earing

Authors: Pawan S. Nagda, Purnank S. Bhatt, Mit K. Shah

Abstract:

Earing defect in drawing process is highly undesirable not only because it adds on an additional trimming operation but also because the uneven material flow demands extra care. The objective of this work is to study the earing problem in the Deep Drawing of circular cup and to optimize the blank shape to reduce the earing. A finite element model is developed for 3-D numerical simulation of cup forming process in ABAQUS. Extra-deep-drawing (EDD) steel sheet has been used for simulation. Properties and tool design parameters were used as input for simulation. Earing was observed in the simulated cup and it was measured at various angles with respect to rolling direction. To reduce the earing defect initial blank shape was modified with the help of anisotropy coefficient. Modified blanks showed notable reduction in earing.

Keywords: Finite element simulation, deep drawing, earing, anisotropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
194 Production and Characterization of Sol-Enhanced Zn- Ni-Al2O3 Nanocomposite Coating

Authors: Soroor Ghaziof, Wei Gao

Abstract:

Sol-enhanced Zn-Ni-Al2O3 nanocomposite coatings were electroplated on mild steel by our newly developed solenhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni-Al2O3nanocomposite coatings. The chemical composition, microstructure and mechanical properties of the composite and alloy coatings deposited at two different agitation speed were investigated. The structure of all coatings was single γ-Ni5Zn21 phase. The composite coatings possess refined crystals with higher microhardness compared to Zn-Ni alloy coatings. The wear resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nano particles into the coatings. Higher agitation speed provided more uniform coatings with smaller grain sized and slightly higher microhardness. Considering composite coatings, high agitation speeds may facilitate co-deposition of alumina in the coatings.

Keywords: Microhardness, Sol-enhanced electro plating, Wear resistance, Zn-Ni-Al2O3 composite coatings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
193 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration

Authors: S. Ghorbani, N. I. Polushin

Abstract:

Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.

Keywords: Cutting condition, vibration, natural frequency, decision tree, CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
192 Some Physical and Mechanical Properties of Jujube Fruit

Authors: D. Zare, H. Safiyari, F. Salmanizade

Abstract:

In this study, some physical and mechanical properties of jujube fruits, were measured and compared at constant moisture content of 15.5% w.b. The results showed that the mean length, width and thickness of jujube fruits were 18.88, 16.79 and 15.9 mm, respectively. The mean projected areas of jujube perpendicular to length, width, and thickness were 147.01, 224.08 and 274.60 mm2, respectively. The mean mass and volume were 1.51 g and 2672.80 mm3, respectively. The arithmetic mean diameter, geometric mean diameter and equivalent diameter varied from 14.53 to 20 mm, 14.5 to 19.94 mm, and 14.52 to 19.97 mm, respectively. The sphericity, aspect ratio and surface area of jujube fruits were 0.91, 0.89 and 926.28 mm2, respectively. Whole fruit density, bulk density and porosity of jujube fruits were measured and found to be 1.52 g/cm3, 0.3 g/cm3 and 79.3%, respectively. The angle of repose of jujube fruit was 14.66° (±0.58°). The static coefficient of friction on galvanized iron steel was higher than that on plywood and lower than that on glass surface. The values of rupture force, deformation, hardness and energy absorbed were found to be between 11.13-19.91N, 2.53- 4.82mm, 3.06-5.81N mm and 20.13-39.08 N/mm, respectively.

Keywords: Mechanical and Physical properties, Jujube fruits, friction coefficient

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
191 Seismic Behavior of Steel Structure with Buckling- Restrained Braces

Authors: M. Reza Bagerzadeh Karimi, M. Ali Lotfollahi Yaghin, R. Mehdi Nezhad, V. Sadeghi, M. Aghabalaie

Abstract:

One of the main purposes of designing bucklingrestrained braces is the fact that the entire lateral load is wasted by the braces, the entire gravitational load is moved to the foundation through the beams, and the columns can be moved to the foundation. In other words, braces are designed for bearing lateral load. In the implementation of the structure, it should be noted that the implementation of various parts of the structure must be conducted in such a way that the buckling-restrained braces would not bear the gravitational load. Moreover, this type of brace has been investigated under impact loading, and the design goals of designing method (direct motion) are controlled under impact loading. The results of dynamic analysis are shown as the relocation charts of the floors and switch between the floors. Finally, the results are compared with each other.

Keywords: Buckling-Restrained Braced Frame (BRBF), energydissipating, ABAQUS, SAP2000, impact load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2744
190 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete

Authors: Devendra Kumar Pandey, Debabrata Chakraborty

Abstract:

The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.

Keywords: High performance concrete, special concrete, structural design, structural lightweight concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 868
189 Analysis of the Strip Shape and Microstructure with Consideration of Roll Crossing and Shifting

Authors: Z. Y. Jiang, H. B. Tibar, A. Aljabri

Abstract:

Optimisation of the physical and mechanical properties of cold rolled thin strips is achieved by controlling the rolling parameters. In this paper, the factors affecting the asymmetrical cold rolling of thin low carbon steel strip have been studied at a speed ratio of 1.1 without lubricant applied. The effect of rolling parameters on the resulting microstructure was also investigated. It was found that under dry condition, work roll shifting and work roll cross angle can improve the strip profile, and the result is more significant with an increase of work roll cross angle rather than that of work roll shifting. However, there was no obvious change in microstructure. In addition, effects of rolling parameters on strip profile and microstructure have also been discussed.

Keywords: Reduction ratio, rolling speed ratio, strip shape, work rolls cross angle, work roll shifting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308
188 Strengthening of RC Beams with Large Openings in Shear by CFRP Laminates: 2D Nonlinear FE Analysis

Authors: S.C. Chin, N. Shafiq, M.F. Nuruddin

Abstract:

To date, theoretical studies concerning the Carbon Fiber Reinforced Polymer (CFRP) strengthening of RC beams with openings have been rather limited. In addition, various numerical analyses presented so far have effectively simulated the behaviour of solid beam strengthened by FRP material. In this paper, a two dimensional nonlinear finite element analysis is presented to validate against the laboratory test results of six RC beams. All beams had the same rectangular cross-section geometry and were loaded under four point bending. The crack pattern results of the finite element model show good agreement with the crack pattern of the experimental beams. The load midspan deflection curves of the finite element models exhibited a stiffer result compared to the experimental beams. The possible reason may be due to the perfect bond assumption used between the concrete and steel reinforcement.

Keywords: CFRP, large opening, RC beam, strengthening

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
187 Survey on Nano-fibers from Acetobacter Xylinum

Authors: A. Ashjaran, M. E. Yazdanshenas, A. Rashidi, R. Khajavi, A. Rezaee

Abstract:

fibers of pure cellulose can be made from some bacteria such as acetobacter xylinum. Bacterial cellulose fibers are very pure, tens of nm across and about 0.5 micron long. The fibers are very stiff and, although nobody seems to have measured the strength of individual fibers. Their stiffness up to 70 GPa. Fundamental strengths should be at least greater than those of the best commercial polymers, but best bulk strength seems to about the same as that of steel. They can potentially be produced in industrial quantities at greatly lowered cost and water content, and with triple the yield, by a new process. This article presents a critical review of the available information on the bacterial cellulose as a biological nonwoven fabric with special emphasis on its fermentative production and applications. Characteristics of bacterial cellulose biofabric with respect to its structure and physicochemical properties are discussed. Current and potential applications of bacterial cellulose in textile, nonwoven cloth, paper, films synthetic fiber coating, food, pharmaceutical and other industries are also presented.

Keywords: Microbial cellulose, Biofabric, Microorganisms Acetobacter xylinum, Polysaccharide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
186 Investigation of Regenerative and Recuperative Burners for Different Sizes of Reheating Furnaces

Authors: Somkiat Tangjitsitcharoen, Suthas Ratanakuakangwan, Matchulika Khonmeak, Nattadate Fuangworawong

Abstract:

This research aims to analyze the regenerative burner and the recuperative burner for the different reheating furnaces in the steel industry. The warm air temperatures of the burners are determined to suit with the sizes of the reheating furnaces by considering the air temperature, the fuel cost and the investment cost. The calculations of the payback period and the net present value are studied to compare the burners for the different reheating furnaces. The energy balance is utilized to calculate and compare the energy used in the different sizes of reheating furnaces for each burner. It is found that the warm air temperature is different if the sizes of reheating furnaces are varied. Based on the considerations of the net present value and the payback period, the regenerative burner is suitable for all plants at the same life of the burner. Finally, the sensitivity analysis of all factors has been discussed in this research.

Keywords: Energy Balance, Recuperative Burner, Regenerative Burner, Reheating Furnace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6410
185 Earth Potential Rise (EPR) Computation for a Fault on Transmission Mains Pole

Authors: M. Nassereddine, J. Rizk, A. Hellany, M. Nagrial

Abstract:

The prologue of new High Voltage (HV) transmission mains into the community necessitates earthing design to ensure safety compliance of the system. Conductive structures such as steel or concrete poles are widely used in HV transmission mains. The earth potential rise (EPR) generated by a fault on these structures could result to an unsafe condition. This paper discusses information on the input impedance of the over head earth wire (OHEW) system for finite and infinite transmission mains. The definition of finite and infinite system is discussed, maximum EPR due to pole fault. The simplified equations for EPR assessments are introduced and discussed for the finite and infinite conditions. A case study is also shown.

Keywords: Coupling Factor, Earth Grid, EPR, Fault Current Distribution, High Voltage, Line Impedance, OHEW, Split Factor, Transmission Mains.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3783
184 Damage Evaluation of Curved Steel Bridges Upgraded with Isolation Bearings and Unseating Prevention Cable Restrainers

Authors: Carlos Mendez Galindo, Toshiro Hayashikawa, Javier Gil Belda

Abstract:

This paper investigates the effectiveness of the use of seismic isolation devices on the overall 3D seismic response of curved highway viaducts with an emphasis on expansion joints. Furthermore, an evaluation of the effectiveness of the use of cable restrainers is presented. For this purpose, the bridge seismic performance has been evaluated on four different radii of curvature, considering two cases: restrained and unrestrained curved viaducts. Depending on the radius of curvature, three-dimensional non-linear dynamic analysis shows the vulnerability of curved viaducts to pounding and deck unseating damage. In this study, the efficiency of using LRB supports combined with cable restrainers on curved viaducts is demonstrated, not only by reducing in all cases the possible damage, but also by providing a similar behavior in the viaducts despite of curvature radius.

Keywords: Nonlinear dynamic response, seismic design, seismic isolation, unseating prevention system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
183 Seismic Performance Assessment of Pre-70 RC Frame Buildings with FEMA P-58

Authors: D. Cardone

Abstract:

Past earthquakes have shown that seismic events may incur large economic losses in buildings. FEMA P-58 provides engineers a practical tool for the performance seismic assessment of buildings. In this study, FEMA P-58 is applied to two typical Italian pre-1970 reinforced concrete frame buildings, characterized by plain rebars as steel reinforcement and masonry infills and partitions. Given that suitable tools for these buildings are missing in FEMA P- 58, specific fragility curves and loss functions are first developed. Next, building performance is evaluated following a time-based assessment approach. Finally, expected annual losses for the selected buildings are derived and compared with past applications to old RC frame buildings representative of the US building stock. 

Keywords: FEMA P-58, RC frame buildings, plain rebars, masonry infills, fragility functions, loss functions, expected annual loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
182 Determination of the Quality of the Machined Surface Using Fuzzy Logic

Authors: Dejan Tanikić, Jelena Đoković, Saša Kalinović, Miodrag Manić, Saša Ranđelović

Abstract:

This paper deals with measuring and modelling of the quality of the machined surface of the metal machining process. The average surface roughness (Ra) which represents the quality of the machined part was measured during the dry turning of the AISI 4140 steel. A large number of factors with the unknown relations among them influences this parameter, and that is why mathematical modelling is extremely complicated. Different values of cutting speed, feed rate, depth of cut (cutting regime) and workpiece hardness causes different surface roughness values. Modelling with soft computing techniques may be very useful in such cases. This paper presents the usage of the fuzzy logic-based system for determining metal machining process parameter in order to find the proper values of cutting regimes.

Keywords: Metal machining, surface roughness, fuzzy logic, process modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 641
181 Investigation of Tool Temperature and Surface Quality in Hot Machining of Hard-to-Cut Materials

Authors: M.Davami, M.Zadshakoyan

Abstract:

Production of hard-to-cut materials with uncoated carbide cutting tools in turning, not only cause tool life reduction but also, impairs the product surface roughness. In this paper, influence of hot machining method were studied and presented in two cases. Case1-Workpiece surface roughness quality with constant cutting parameter and 300 ºC initial workpiece surface temperature. Case 2- Tool temperature variation when cutting with two speeds 78.5 (m/min) and 51 (m/min). The workpiece material and tool used in this study were AISI 1060 steel (45HRC) and uncoated carbide TNNM 120408-SP10(SANDVIK Coromant) respectively. A gas flam heating source was used to preheating of the workpiece surface up to 300 ºC, causing reduction of yield stress about 15%. Results obtained experimentally, show that the method used can considerably improved surface quality of the workpiece.

Keywords: Hard-to-cut material, Hot machining, Surfaceroughness, Tool Temperature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
180 One Typical Jacket Platform’s Reactions in Front of Sea Water Level Variations

Authors: M. A. Lotfollahi Yaghin, R. Rezaei

Abstract:

Demanding structural safety under various loading conditions, has focused attention on their variation and structural elements behavior due to these variations. Jacket structures are designed for a specific water level (LAT). One of the important issues about these kinds of structures is the water level rise. For example, the level of water in the Caspian Sea has risen by 2.5m in the last fifteen years and is continuing to rise. In this paper, the structural behavior of one typical shallow or medium water jacket platform (a four-leg steel jacket platform in 55m water depth) under water level rise has been studied. The time history of Von Mises stress and nodal displacement has chosen for evaluating structural behavior. The results show that dependent on previous water depth and structural elements position; different structural elements have different behavior due to water level rise.

Keywords: Jacket offshore platform, Time- history, Von Mises, Water level rise, Utilization Ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2375
179 Reinforced Concrete, Problems and Solutions: A Literature Review

Authors: Omar Alhamad, Waleed Eid

Abstract:

Reinforced concrete is a concrete lined with steel so that the materials work together in the resistance forces. Reinforcement rods or mesh are used for tensile, shear, and sometimes intense pressure in a concrete structure. Reinforced concrete is subject to many natural problems or industrial errors. The result of these problems is that it reduces the efficiency of the reinforced concrete or its usefulness. Some of these problems are cracks, earthquakes, high temperatures or fires, as well as corrosion of reinforced iron inside reinforced concrete. There are also factors of ancient buildings or monuments that require some techniques to preserve them. This research presents some general information about reinforced concrete, the pros and cons of reinforced concrete, and then presents a series of literary studies of some of the late published researches on the subject of reinforced concrete and how to preserve it, propose solutions or treatments for the treatment of reinforced concrete problems, raise efficiency and quality for a longer period. These studies have provided advanced and modern methods and techniques in the field of reinforced concrete.

Keywords: Reinforced concrete, treatment, concrete, corrosion, seismic, cracks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372
178 X-Bracing Configuration and Seismic Response

Authors: Saeed Rahjoo, Babak H. Mamaqani

Abstract:

Concentric bracing systems have been in practice for many years because of their effectiveness in reducing seismic response. Depending on concept, seismic design codes provide various response modification factors (R), which itself consists of different terms, for different types of lateral load bearing systems but configuration of these systems are often ignored in the proposed values. This study aims at considering the effect of different x-bracing diagonal configuration on values of ductility dependent term in R computation. 51 models were created and nonlinear push over analysis has been performed. The main variables of this study were the suitable location of X–bracing diagonal configurations, which establishes better nonlinear behavior in concentric braced steel frames. Results show that some x-bracing diagonal configurations improve the seismic performance of CBF significantly and explicit consideration of lateral load bearing systems seems necessary.

Keywords: Bracing configuration, concentrically braced frame (CBF), Push over analyses, Response reduction factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3550
177 Analysis of Tool-Chip Interface Temperature with FEM and Empirical Verification

Authors: M. Bagheri, P. Mottaghizadeh

Abstract:

Reliable information about tool temperature distribution is of central importance in metal cutting. In this study, tool-chip interface temperature was determined in cutting of ST37 steel workpiece by applying HSS as the cutting tool in dry turning. Two different approaches were implemented for temperature measuring: an embedded thermocouple (RTD) in to the cutting tool and infrared (IR) camera. Comparisons are made between experimental data and results of MSC.SuperForm and FLUENT software. An investigation of heat generation in cutting tool was performed by varying cutting parameters at the stable cutting tool geometry and results were saved in a computer; then the diagrams of tool temperature vs. various cutting parameters were obtained. The experimental results reveal that the main factors of the increasing cutting temperature are cutting speed (V ), feed rate ( S ) and depth of cut ( h ), respectively. It was also determined that simultaneously change in cutting speed and feed rate has the maximum effect on increasing cutting temperature.

Keywords: Cutting parameters, Finite element modeling, Temperature measurement, Tool-chip interface temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2894
176 Evaluation of Applicability of High Strength Stirrup for Prestressed Concrete Members

Authors: J.-Y. Lee, H.-S. Lim, S.-E. Kim

Abstract:

Recently, the use of high-strength materials is increasing as the construction of large structures and high-rise structures increases. This paper presents an analysis of the shear behavior of prestressed concrete members with various types of materials by simulating a finite element (FE) analysis. The analytical results indicated that the shear strength and shear failure mode were strongly influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. Though the yield strength of shear reinforcement increased the shear strength of prestressed concrete members, there was a limit to the increase in strength because of the change of shear failure modes. According to the results of FE analysis on various parameters, the maximum yield strength of the steel stirrup that can be applied to prestressed concrete members was about 860 MPa.

Keywords: PSC members, shear failure mode, high strength stirrups, high strength concrete, shear behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350
175 A Comparison of Single of Decision Tree, Decision Tree Forest and Group Method of Data Handling to Evaluate the Surface Roughness in Machining Process

Authors: S. Ghorbani, N. I. Polushin

Abstract:

The machinability of workpieces (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron) in turning operation has been carried out using different types of cutting tool (conventional, cutting tool with holes in toolholder and cutting tool filled up with composite material) under dry conditions on a turning machine at different stages of spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). Experimentation was performed as per Taguchi’s orthogonal array. To evaluate the relative importance of factors affecting surface roughness the single decision tree (SDT), Decision tree forest (DTF) and Group method of data handling (GMDH) were applied.

Keywords: Decision Tree Forest, GMDH, surface roughness, taguchi method, turning process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
174 Airfield Pavements Made of Reinforced Concrete: Dimensioning According to the Theory of Limit States and Eurocode

Authors: M. Linek, P. Nita

Abstract:

In the previous airfield construction industry, pavements made of reinforced concrete have been used very rarely; however, the necessity to use this type of pavements in an emergency situations justifies the need reference to this issue. The paper concerns the problem of airfield pavement dimensioning made of reinforced concrete and the evaluation of selected dimensioning methods of reinforced concrete slabs intended for airfield pavements. Analysis of slabs dimensioning, according to classical method of limit states has been performed and it has been compared to results obtained in case of methods complying with Eurocode 2 guidelines. Basis of an analysis was a concrete slab of class C35/45 with reinforcement, located in tension zone. Steel bars of 16.0 mm have been used as slab reinforcement. According to comparative analysis of obtained results, conclusions were reached regarding application legitimacy of the discussed methods and their design advantages.

Keywords: Reinforced concrete, cement concrete, airport pavements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232
173 Behavior and Strength of Slab-Edge Beam-Column Connections under Shear Force and Moment

Authors: Omar M. Ben-Sasi

Abstract:

A total of fourteen slab-edge beam-column connection specimens were tested gradually to failure under the effect of simultaneous action of shear force and moment. The objective was to investigate the influence of some parameters thought to be important on the behavior and strength of slab-column connections with edge beams encountered in flat slab flooring and roofing systems. The parameters included the existence and strength of edge beam, depth and width of edge beam, steel reinforcement ratio of slab, ratio of moment to shear force, and the existence of openings in the region next to the column.

Results obtained demonstrated the importance of the studied parameters on the strength and behavior of slab-column connections with edge beams.

Keywords: Strength, flat slab, slab-column connections, shear force, moment, behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4443