Search results for: Dielectric heating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 508

Search results for: Dielectric heating

238 Investigation of Monochromatization Light Effect at Molecular/Atomic Level in Electronegative-Electropositive Gas Mixtures Plasma

Authors: L.C. Ciobotaru

Abstract:

In electronegative-electropositive gas mixtures plasma, at a total pressure varying in the range of ten to hundred Torr, the appearance of a quasi-mochromatization effect of the emitted radiation was reported. This radiation could be the result of the generating mechanisms at molecular level, which is the case of the excimer radiation but also at atomic level. Thus, in the last case, in (Ne+1%Ar/Xe+H2) gas mixtures plasma in a dielectric barrier discharge, this effect, called M-effect, consists in the reduction of the discharge emission spectrum practice at one single, strong spectral line with λ = 585.3 nm. The present paper is concerned with the characteristics comparative investigation of the principal reaction mechanisms involved in the quasi-monochromatization effect existence in the case of the excimer radiation, respectively of the Meffect. Also, the paper points out the role of the metastable electronegative atoms in the appearance of the monochromatization – effect at atomic level.

Keywords: Colombian forces, Direct Harpoon reaction, Monochromatization – effect, Resonant polar three-body reaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1364
237 Design and Fabrication of a Miniaturized Microstrip Antenna Loaded by DNG Metamaterial

Authors: A. Ghaznavi Jahromi, F. Mohajeri

Abstract:

In this paper the design, fabrication, and testing of a miniaturized rectangular microstrip patch antenna loaded with DNG metamaterials is reported. The metamaterial is composed of two nested spiral strips and a single straight strip which are etched on two sides of a 5.7 mm×5.7 mm Rogers RT/duroid 5880 with 0.5 mm thickness and dielectric constant of 2.2. Two units of this structure as a double negative (DNG) medium in combination with air as a double positive (DPS) medium are used as substrate of the microstrip patch antenna. By placing these metamaterial structures under the patch, a sub-wavelength resonance occurs which leads to a smaller size patch antenna compared to the conventional antenna at that frequency. The total size of the proposed antenna is reduced 54.6%. The dimensions of the proposed patch antenna are significantly smaller than the wavelength of the operation frequency with respect to the conventional patch antenna. Simulation result and test result for the proposed patch antenna are given and compared.

Keywords: Antennas, Metamaterials, Microstrip Antennas, Miniaturization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2915
236 Design of Compact Dual-Band Planar Antenna for WLAN Systems

Authors: Anil Kumar Pandey

Abstract:

A compact planar monopole antenna with dual-band operation suitable for wireless local area network (WLAN) application is presented in this paper. The antenna occupies an overall area of 18 ×12 mm2. The antenna is fed by a coplanar waveguide (CPW) transmission line and it combines two folded strips, which radiates at 2.4 and 5.2 GHz. In the proposed antenna, by optimally selecting the antenna dimensions, dual-band resonant modes with a much wider impedance matching at the higher band can be produced. Prototypes of the obtained optimized design have been simulated using EM solver. The simulated results explore good dual-band operation with -10 dB impedance bandwidths of 50 MHz and 2400 MHz at bands of 2.4 and 5.2 GHz, respectively, which cover the 2.4/5.2/5.8 GHz WLAN operating bands. Good antenna performances such as radiation patterns and antenna gains over the operating bands have also been observed. The antenna with a compact size of 18×12×1.6 mm3 is designed on an FR4 substrate with a dielectric constant of 4.4.

Keywords: CPW fed antenna, dual-band, electromagnetic simulation, wireless local area network, WLAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762
235 Overview of Energy Savings and Efficiency Strategies at the Hospitals

Authors: A. Teke, O. Timur

Abstract:

Hospitals represent approximately 6% of total energy consumption in the utility buildings sector. Heating, Ventilation and Air Conditioning (HVAC) systems are the major part of electrical energy consumption at the hospitals. The air-conditioning system is responsible for around 70% of total electricity consumption. Electric motors and lighting systems in a hospital represent approximately 19% and 21% of the total energy consumption, respectively. In this paper, profiles of hospital energy end-use consumption and an overview of energy saving areas at the hospitals are presented.

Keywords: Energy efficiency, energy saving, healthcare energy consumption, hospital.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4947
234 Production, Characterisation and Assessment of Biomixture Fuels for Compression Ignition Engine Application

Authors: K. Masera, A. K. Hossain

Abstract:

Hardly any neat biodiesel satisfies the European EN14214 standard for compression ignition engine application. To satisfy the EN14214 standard, various additives are doped into biodiesel; however, biodiesel additives might cause other problems such as increase in the particular emission and increased specific fuel consumption. In addition, the additives could be expensive. Considering the increasing level of greenhouse gas GHG emissions and fossil fuel depletion, it is forecasted that the use of biodiesel will be higher in the near future. Hence, the negative aspects of the biodiesel additives will likely to gain much more importance and need to be replaced with better solutions. This study aims to satisfy the European standard EN14214 by blending the biodiesels derived from sustainable feedstocks. Waste Cooking Oil (WCO) and Animal Fat Oil (AFO) are two sustainable feedstocks in the EU (including the UK) for producing biodiesels. In the first stage of the study, these oils were transesterified separately and neat biodiesels (W100 & A100) were produced. Secondly, the biodiesels were blended together in various ratios: 80% WCO biodiesel and 20% AFO biodiesel (W80A20), 60% WCO biodiesel and 40% AFO biodiesel (W60A40), 50% WCO biodiesel and 50% AFO biodiesel (W50A50), 30% WCO biodiesel and 70% AFO biodiesel (W30A70), 10% WCO biodiesel and 90% AFO biodiesel (W10A90). The prepared samples were analysed using Thermo Scientific Trace 1300 Gas Chromatograph and ISQ LT Mass Spectrometer (GC-MS). The GS-MS analysis gave Fatty Acid Methyl Ester (FAME) breakdowns of the fuel samples. It was found that total saturation degree of the samples was linearly increasing (from 15% for W100 to 54% for A100) as the percentage of the AFO biodiesel was increased. Furthermore, it was found that WCO biodiesel was mainly (82%) composed of polyunsaturated FAMEs. Cetane numbers, iodine numbers, calorific values, lower heating values and the densities (at 15 oC) of the samples were estimated by using the mass percentages data of the FAMEs. Besides, kinematic viscosities (at 40 °C and 20 °C), densities (at 15 °C), heating values and flash point temperatures of the biomixture samples were measured in the lab. It was found that estimated and measured characterisation results were comparable. The current study concluded that biomixture fuel samples W60A40 and W50A50 were perfectly satisfying the European EN 14214 norms without any need of additives. Investigation on engine performance, exhaust emission and combustion characteristics will be conducted to assess the full feasibility of the proposed biomixture fuels.

Keywords: Biodiesel, blending, characterisation, CI Engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 757
233 Effect of Band Contact on the Temperature Distribution for Dry Friction Clutch

Authors: Oday I. Abdullah, J. Schlattmann

Abstract:

In this study, the two dimensional heat conduction problem for the dry friction clutch disc is modeled mathematically analysis and is solved numerically using finite element method, to determine the temperature field when band contacts occurs between the rubbing surfaces during the operation of an automotive clutch. Temperature calculation have been made for contact area of different band width and the results obtained compared with these attained when complete contact occurs. Furthermore, the effects of slipping time and sliding velocity function are investigated as well. Both single and repeated engagements made at regular interval are considered.

Keywords: Band contact, dry friction clutch, frictional heating, temperature field, 2D FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3589
232 Temperature Investigations in Two Type of Crimped Connection Using Experimental Determinations

Authors: C. F. Ocoleanu, A. I. Dolan, G. Cividjian, S. Teodorescu

Abstract:

In this paper we make a temperature investigations in two type of superposed crimped connections using experimental determinations. All the samples use 8 copper wire 7.1 x 3 mm2 crimped by two methods: the first method uses one crimp indents and the second is a proposed method with two crimp indents. The ferrule is a parallel one. We study the influence of number and position of crimp indents. The samples are heated in A.C. current at different current values until steady state heating regime. After obtaining of temperature values, we compare them and present the conclusion.

Keywords: Crimped connections, experimental determinations, heat transfer temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
231 Numerical Study on Improving Indoor Thermal Comfort Using a PCM Wall

Authors: M. Faraji, F. Berroug

Abstract:

A one-dimensional mathematical model was developed in order to analyze and optimize the latent heat storage wall. The governing equations for energy transport were developed by using the enthalpy method and discretized with volume control scheme. The resulting algebraic equations were next solved iteratively by using TDMA algorithm. A series of numerical investigations were conducted in order to examine the effects of the thickness of the PCM layer on the thermal behavior of the proposed heating system. Results are obtained for thermal gain and temperature fluctuation. The charging discharging process was also presented and analyzed.

Keywords: Phase change material, Building, Concrete, Latent heat, Thermal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2098
230 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump

Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado

Abstract:

Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.

Keywords: Water mass flow rate, R-744, heat pump, solar evaporator, water heater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
229 A Novel Source/Drain-to-Gate Non-overlap MOSFET to Reduce Gate Leakage Current in Nano Regime

Authors: Ashwani K. Rana, Narottam Chand, Vinod Kapoor

Abstract:

In this paper, gate leakage current has been mitigated by the use of novel nanoscale MOSFET with Source/Drain-to-Gate Non-overlapped and high-k spacer structure for the first time. A compact analytical model has been developed to study the gate leakage behaviour of proposed MOSFET structure. The result obtained has found good agreement with the Sentaurus Simulation. Fringing gate electric field through the dielectric spacer induces inversion layer in the non-overlap region to act as extended S/D region. It is found that optimal Source/Drain-to-Gate Non-overlapped and high-k spacer structure has reduced the gate leakage current to great extent as compared to those of an overlapped structure. Further, the proposed structure had improved off current, subthreshold slope and DIBL characteristic. It is concluded that this structure solves the problem of high leakage current without introducing the extra series resistance.

Keywords: Gate tunneling current, analytical model, spacer dielectrics, DIBL, subthreshold slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
228 Effect of Fermentation Time on Xanthan Gum Production from Sugar Beet Molasses

Authors: Marzieh Moosavi- Nasab, Safoora Pashangeh, Maryam Rafsanjani

Abstract:

Xanthan gum is a microbial polysaccharide of great commercial significance. The purpose of this study was to select the optimum fermentation time for xanthan gum production by Xanthomonas campestris (NRRL-B-1459) using 10% sugar beet molasses as a carbon source. The pre-heating of sugar beet molasses and the supplementation of the medium were investigated in order to improve xanthan gum production. Maximum xanthan gum production in fermentation media (9.02 g/l) was observed after 4 days shaking incubation at 25°C and 240 rpm agitation speed. A solution of 10% sucrose was used as a control medium. Results indicated that the optimum period for xanthan gum production in this condition was 4 days.

Keywords: Biomass, Molasses, Xanthan gum, Xanthomonascampestris

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3680
227 A Comparative Case Study of the Impact of Square and Yurt-Shape Buildings on Energy Efficiency

Authors: Valeriya Tyo, Serikbolat Yessengabulov

Abstract:

Regions with extreme climate conditions such as Astana city require energy saving measures to increase energy performance of buildings which are responsible for more than 40% of total energy consumption. Identification of optimal building geometry is one of key factors to be considered. Architectural form of a building has impact on space heating and cooling energy use, however the interrelationship between the geometry and resultant energy use is not always readily apparent. This paper presents a comparative case study of two prototypical buildings with compact building shape to assess its impact on energy performance.

Keywords: Building geometry, energy efficiency, heat gain, heat loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
226 Design of S-Shape GPS Application Electrically Small Antenna

Authors: Riki H. Patel, Arpan Desai, Trushit Upadhyaya, Shobhit K. Patel

Abstract:

The microstrip antennas area has seen some inventive work in recent years and is now one of the most dynamic fields of antenna theory. A novel and simple wideband monopole antenna is presented printed on a single dielectric substrate which is fed by a 50 ohm microstrip line having a low-profile antenna structure with two parallel s-shaped meandered line of same size. This antenna is fed by a coaxial feeding tube. In this research, S–form microstrip patch antenna is designed from measuring the prototypes of the proposed antenna one available bands with 10db return loss bandwidths of about GPS application (GPS L2 1490 MHz) and covering the 1400 to 1580 MHz frequency band at 1.5 GHz, the simulated results for main parameters such as return loss, impedance bandwidth, radiation patterns, and gains are also discussed herein. The modeling study shows that such antennas, in simplicity design and supply, can satisfy GPS application. Two parallel slots are incorporated to disturb the surface flow path, introducing local inductive effect. This antenna is fed by a coaxial feeding tube.

Keywords: Bandwidth, electrically small antenna, microstrip patch antenna, GPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2866
225 Effect of Wind and Humidity on Microwave Links in North West Libya

Authors: M. S. Agha, A. M. Eshahiry, S. A. Aldabbar, Z. M. Alshahri

Abstract:

The propagation of microwave is affected by rain and dust particles causing signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents effect of wind and humidity on wireless communication such as microwave links in the North West region of Libya (Al-Khoms). The experimental procedure is done on three selected antennae towers (Nagaza station, Al-Khoms center station, Al-Khoms gateway station) for determining the attenuation loss per unit length and cross-polarization discrimination (XPD) change. Dust particles are collected along the region of the study, to measure the particle size distribution (PSD), calculate the concentration, and chemically analyze the contents, then the dielectric constant can be calculated. The results show that humidity and dust, antenna height and the visibility affect both attenuation and phase shift; in which, a few considerations must be taken into account in the communication power budget.

Keywords: Attenuation, scattering, transmission loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
224 Improving the Optoacoustic Signal by Monitoring the Changes of Coupling Medium

Authors: P. Prasannakumar, L. Myoung Young, G. Seung Kye, P. Sang Hun, S. Chul Gyu

Abstract:

In this paper, we discussed the coupling medium in the optoacoustic imaging. The coupling medium is placed between the scanned object and the ultrasound transducers. Water with varying temperature was used as the coupling medium. The water temperature is gradually varied between 25 to 40 degrees. This heating process is taken with care in order to avoid the bubble formation. Rise in the photoacoustic signal is noted through an unfocused transducer with frequency of 2.25 MHz as the temperature increases. The temperature rise is monitored using a NTC thermistor and the values in degrees are calculated using an embedded evaluation kit. Also the temperature is transmitted to PC through a serial communication. All these processes are synchronized using a trigger signal from the laser source.

Keywords: Embedded, optoacoustic, ultrasound, unfocused transducer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669
223 Development of a Porous Silica Film by Sol-gel Process

Authors: Binay K. Dutta, Tayseir M. Abd Ellateif, Saikat Maitra

Abstract:

In the present work homogeneous silica film on silicon was fabricated by colloidal silica sol. The silica sol precursor with uniformly granular particle was derived by the alkaline hydrolysis of tetraethoxyorthosilicate (TEOS) in presence of glycerol template. The film was prepared by dip coating process. The templated hetero-structured silica film was annealed at elevated temperatures to generate nano- and meso porosity in the film. The film was subsequently annealed at different temperatures to make it defect free and abrasion resistant. The sol and the film were characterized by the measurement of particle size distribution, scanning electron microscopy, XRD, FTIR spectroscopy, transmission electron microscopy, atomic force microscopy, measurement of the refractive index, thermal conductivity and abrasion resistance. The porosity of the films decreased whereas refractive index and dielectric constant of it `increased with the increase in the annealing temperature. The thermal conductivity of the films increased with the increase in the film thickness. The developed porous silica film holds strong potential for use in different areas.

Keywords: Silica film, Nanoporous, Sol-gel, Templating, Dip coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3039
222 Reconfigurable Circularly Polarized Compact Short Backfire Antenna

Authors: M. Javid Asad, M. Zafrullah, Mian Shahzad Iqbal

Abstract:

In this research paper, a slotted coaxial line fed cross dipole excitation structure for short backfire antenna is proposed and developed to achieve reconfigurable circular polarization. The cross dipole, which is fed by the slotted coaxial line, consists of two orthogonal dipoles. The dipoles are mounted on the outer conductor of the coaxial line. A unique technique is developed to generate reconfigurable circular polarization using cross dipole configuration. The sub-reflector is supported by the feed line, thus requiring no extra support. The antenna is developed on elliptical ground plane with dielectric rim making antenna compact. It is demonstrated that cross dipole excited short backfire antenna can achieve voltage standing wave ratio (VSWR) bandwidth of 14.28% for 2:1 VSWR, axial ratio of 0.2 dB with axial ratio (≤ 3dB) bandwidth of 2.14% and a gain of more than 12 dBi. The experimental results for the designed antenna structure are in close agreement with computer simulations.

Keywords: Circularly polarized, compact, short backfireantenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
221 Factors Affecting Current Ratings for Underground and Air Cables

Authors: S. H. Alwan, J. Jasni, M. Z. A. Ab Kadir, N. Aziz

Abstract:

The aim of this paper is to present a parametric study to determine the major factors that influence the calculations of current rating for both air and underground cables. The current carrying capability of the power cables rely largely on the installation conditions and material properties. In this work, the influences on ampacity of conductor size, soil thermal resistivity and ambient soil temperature for underground installations are shown. The influences on the current-carrying capacity of solar heating (time of day effects and intensity of solar radiation), ambient air temperature and cable size for cables air are also presented. IEC and IEEE standards are taken as reference.

Keywords: Cable ampacity, underground cable, IEC standard, air cables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6591
220 Effects of Dopant Concentrations on Radiative Properties of Nanoscale Multilayer with Coherent Formulation for Visible Wavelengths

Authors: S. A. A. Oloomi , M. Omidpanah

Abstract:

Semiconductor materials with coatings have a wide range of applications in MEMS and NEMS. This work uses transfermatrix method for calculating the radiative properties. Dopped silicon is used and the coherent formulation is applied. The Drude model for the optical constants of doped silicon is employed. Results showed that for the visible wavelengths, more emittance occurs in greater concentrations and the reflectance decreases as the concentration increases. In these wavelengths, transmittance is negligible. Donars and acceptors act similar in visible wavelengths. The effect of wave interference can be understood by plotting the spectral properties such as reflectance or transmittance of a thin dielectric film versus the film thickness and analyzing the oscillations of properties due to constructive and destructive interferences. But this effect has not been shown at visible wavelengths. At room temperature, the scattering process is dominated by lattice scattering for lightly doped silicon, and the impurity scattering becomes important for heavily doped silicon when the dopant concentration exceeds1018cm-3 .

Keywords: Dopant Concentrations, Radiative Properties, Nanoscale Multilayer, Coherent Formulation, Visible Wavelengths

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
219 The Effect of Unburned Carbon on Coal Fly Ash toward its Adsorption Capacity for Methyl Violet

Authors: Widi Astuti, Agus Prasetya, Endang Tri Wahyuni, I Made Bendiyasa

Abstract:

Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of quartz, mullite, and unburned carbon. In this study, the effect of unburned carbon on CFA toward its adsorption capacity was investigated. CFA with various carbon content was obtained by refluxing it with sulfuric acid having various concentration at various temperature and reflux time, by heating at 400-800°C, and by sieving into 100-mesh in particle size. To evaluate the effect of unburned carbon on CFA toward its adsorption capacity, adsorption of methyl violet solution with treated CFA was carried out. The research shows that unburned carbon leads to adsorption capacity decrease. The highest adsorption capacity of treated CFA was found 5.73 x 10-4mol.g-1.

Keywords: CFA, carbon, methyl violet, adsorption capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
218 Effects of Temperature-Dependent Material Properties on Stress and Temperature in Cracked Metal Plate under Electric Current Load

Authors: Thomas Jin-Chee Liu

Abstract:

Using the finite element analyses, this paper discusses the effects of temperature-dependent material properties on the stress and temperature fields in a cracked metal plate under the electric current load. The practical and complicated results are obtained when the temperature-dependent material properties are adopted in the analysis. If the simplified (temperature-independent) material properties are used, incorrect results will be obtained.

Keywords: Joule heating, temperature-dependent, crack tip, finite element.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
217 Accurate Time Domain Method for Simulation of Microstructured Electromagnetic and Photonic Structures

Authors: Vijay Janyani, Trevor M. Benson, Ana Vukovic

Abstract:

A time-domain numerical model within the framework of transmission line modeling (TLM) is developed to simulate electromagnetic pulse propagation inside multiple microcavities forming photonic crystal (PhC) structures. The model developed is quite general and is capable of simulating complex electromagnetic problems accurately. The field quantities can be mapped onto a passive electrical circuit equivalent what ensures that TLM is provably stable and conservative at a local level. Furthermore, the circuit representation allows a high level of hybridization of TLM with other techniques and lumped circuit models of components and devices. A photonic crystal structure formed by rods (or blocks) of high-permittivity dieletric material embedded in a low-dielectric background medium is simulated as an example. The model developed gives vital spatio-temporal information about the signal, and also gives spectral information over a wide frequency range in a single run. The model has wide applications in microwave communication systems, optical waveguides and electromagnetic materials simulations.

Keywords: Computational Electromagnetics, Numerical Simulation, Transmission Line Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
216 Steady State Simulation and Experimental Study of an Ethane Recovery Unit in an Iranian Natural Gas Refinery

Authors: Arash Esmaeili, Omid Ghabouli

Abstract:

The production and consumption of natural gas is on the rise throughout the world as a result of its wide availability, ease of transportation, use and clean-burning characteristics. The chief use of ethane is in the chemical industry in the production of Ethene (ethylene) by steam cracking. In this simulation, obtained ethane recovery percent based on Gas sub-cooled process (GSP) is 99.9 by mole that is included 32.1% by using de-methanizer column and 67.8% by de-ethanizer tower. The outstanding feature of this process is the novel split-vapor concept that employs to generate reflux for de-methanizer column. Remain amount of ethane in export gas cause rise in gross heating value up to 36.66 MJ/Nm3 in order to use in industrial and household consumptions.

Keywords: Ethane recovery, Hydrocarbon dew point, Simulation, Water dew point

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3001
215 Hydrogen Rich Fuel Gas Production from 2- Propanol Using Pt/Al2O3 and Ni/Al2O3 Catalysts in Supercritical Water

Authors: Yağmur Karakuş, Fatih Aynacı, Ekin Kıpçak, Mesut Akgün

Abstract:

Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water. Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water. In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Pt/Al2O3and Ni/Al2O3were the catalysts used in the gasification reactions. All of the experiments were performed under a constant pressure of 25MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.

Keywords: 2-Propanol, Gasification, Ni/Al2O3, Pt/Al2O3, Supercritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
214 Calculating the Efficiency of Steam Boilers Based on Its Most Effecting Factors: A Case Study

Authors: Nabil M. Muhaisen, Rajab Abdullah Hokoma

Abstract:

This paper is concerned with calculating boiler efficiency as one of the most important types of performance measurements in any steam power plant. That has a key role in determining the overall effectiveness of the whole system within the power station. For this calculation, a Visual-Basic program was developed, and a steam power plant known as El-Khmus power plant, Libya was selected as a case study. The calculation of the boiler efficiency was applied by using heating balance method. The findings showed how the maximum heat energy which produced from the boiler increases the boiler efficiency through increasing the temperature of the feed water, and decreasing the exhaust temperature along with humidity levels of the of fuel used within the boiler.

Keywords: Boiler, Calculation, Efficiency, Performance. Steam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3470
213 Evaluation of Optimal Residence Time in a Hot Rolled Reheating Furnace

Authors: Dong-Eun Lee

Abstract:

To calculate the temperature distribution of the slab in a hot rolled reheating furnace a mathematical model has been developed by considering the thermal radiation in the furnace and transient conduction in the slab. The furnace is modeled as radiating medium with spatially varying temperature. Radiative heat flux within the furnace including the effect of furnace walls, combustion gases, skid beams and buttons is calculated using the FVM and is applied as the boundary condition of the transient conduction equation of the slab. After determining the slab emissivity by comparison between simulation and experimental work, variation of heating characteristics in the slab is investigated in the case of changing furnace temperature with various time and the slab residence time is optimized with this evaluation.

Keywords: Reheating Furnace, Thermal Radiation, ResidenceTime, FVM for Radiation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2454
212 Development of an Infrared Thermography Method with CO2 Laser Excitation, Applied to Defect Detection in CFRP

Authors: Sam-Ang Keo, Franck Brachelet, Florin Breaban, Didier Defer

Abstract:

This paper presents a NDT by infrared thermography with excitation CO2 Laser, wavelength of 10.6 μm. This excitation is the controllable heating beam, confirmed by a preliminary test on a wooden plate 1.2 m x 0.9 m x 1 cm. As the first practice, this method is applied to detecting the defect in CFRP heated by the Laser 300 W during 40 s. Two samples 40 cm x 40 cm x 4.5 cm are prepared, one with defect, another one without defect. The laser beam passes through the lens of a deviation device, and heats the samples placed at a determinate position and area. As a result, the absence of adhesive can be detected. This method displays prominently its application as NDT with the composite materials. This work gives a good perspective to characterize the laser beam, which is very useful for the next detection campaigns.

Keywords: CO2 LASER, Infrared Thermography, NDT, CFRP, Defect Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2966
211 Thermal Technologies Applications for Soil Remediation

Authors: A. de Folly d’Auris, R. Bagatin, P. Filtri

Abstract:

This paper discusses the importance of having a good initial characterization of soil samples when thermal desorption has to be applied to polluted soils for the removal of contaminants. Particular attention has to be devoted on the desorption kinetics of the samples to identify the gases evolved during the heating, and contaminant degradation pathways. In this study, two samples coming from different points of the same contaminated site were considered. The samples are much different from each other. Moreover, the presence of high initial quantity of heavy hydrocarbons strongly affected the performance of thermal desorption, resulting in formation of dangerous intermediates. Analytical techniques such TGA (Thermogravimetric Analysis), DSC (Differential Scanning Calorimetry) and GC-MS (Gas Chromatography-Mass) provided a good support to give correct indication for field application.

Keywords: Desorption kinetics, hydrocarbons, thermal desorption, thermogravimetric measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
210 Finite Element Analysis of Crack Welding Process

Authors: Thomas Jin-Chee Liu

Abstract:

The numerical simulation of the crack welding process is reported in this paper. The thermo-electro-structural coupled-field finite element analysis is adopted to investigate the welding process of crack surfaces. In the simulation, the pressure-dependent and temperature-dependent electrical contact conditions are considered. From the results, the crack surfaces can melt and weld together under the compressive load and electric current. The contact pressure effect must be considered in the finite element analysis to obtain more practical results.

Keywords: Crack welding, contact pressure, Joule heating, finite element, coupled-field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
209 Optimization of Control Parameters for MRR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece

Authors: M. S. Reza, M. Hamdi, A.S. Hadi

Abstract:

The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece with copper tools are being optimized according to its individual machining characteristic i.e. material removal rate (MRR). Lower MRR during EDM machining process may decrease its- machining productivity. Hence, the quality characteristic for MRR is set to higher-the-better to achieve the optimum machining productivity. Taguchi method has been used for the construction, layout and analysis of the experiment for each of the machining characteristic for the MRR. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that the higher the discharge voltage, the higher will be the MRR.

Keywords: ANOVA, EDM, Injection Flushing, L18 OrthogonalArray, MRR, Stainless Steel 304

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777