Search results for: Design decomposition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5112

Search results for: Design decomposition

5112 Decomposition of Graphs into Induced Paths and Cycles

Authors: I. Sahul Hamid, Abraham V. M.

Abstract:

A decomposition of a graph G is a collection ψ of subgraphs H1,H2, . . . , Hr of G such that every edge of G belongs to exactly one Hi. If each Hi is either an induced path or an induced cycle in G, then ψ is called an induced path decomposition of G. The minimum cardinality of an induced path decomposition of G is called the induced path decomposition number of G and is denoted by πi(G). In this paper we initiate a study of this parameter.

Keywords: Path decomposition, Induced path decomposition, Induced path decomposition number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
5111 Induced Acyclic Path Decomposition in Graphs

Authors: Abraham V. M., I. Sahul Hamid

Abstract:

A decomposition of a graph G is a collection ψ of graphs H1,H2, . . . , Hr of G such that every edge of G belongs to exactly one Hi. If each Hi is either an induced path in G, then ψ is called an induced acyclic path decomposition of G and if each Hi is a (induced) cycle in G then ψ is called a (induced) cycle decomposition of G. The minimum cardinality of an induced acyclic path decomposition of G is called the induced acyclic path decomposition number of G and is denoted by ¤Çia(G). Similarly the cyclic decomposition number ¤Çc(G) is defined. In this paper we begin an investigation of these parameters.

Keywords: Cycle decomposition, Induced acyclic path decomposition, Induced acyclic path decomposition number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
5110 N-Sun Decomposition of Complete Graphs and Complete Bipartite Graphs

Authors: R. Anitha, R. S. Lekshmi

Abstract:

Graph decompositions are vital in the study of combinatorial design theory. Given two graphs G and H, an H-decomposition of G is a partition of the edge set of G into disjoint isomorphic copies of H. An n-sun is a cycle Cn with an edge terminating in a vertex of degree one attached to each vertex. In this paper we have proved that the complete graph of order 2n, K2n can be decomposed into n-2 n-suns, a Hamilton cycle and a perfect matching, when n is even and for odd case, the decomposition is n-1 n-suns and a perfect matching. For an odd order complete graph K2n+1, delete the star subgraph K1, 2n and the resultant graph K2n is decomposed as in the case of even order. The method of building n-suns uses Walecki's construction for the Hamilton decomposition of complete graphs. A spanning tree decomposition of even order complete graphs is also discussed using the labeling scheme of n-sun decomposition. A complete bipartite graph Kn, n can be decomposed into n/2 n-suns when n/2 is even. When n/2 is odd, Kn, n can be decomposed into (n-2)/2 n-suns and a Hamilton cycle.

Keywords: Hamilton cycle, n-sun decomposition, perfectmatching, spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2263
5109 N-Sun Decomposition of Complete, Complete Bipartite and Some Harary Graphs

Authors: R. Anitha, R. S. Lekshmi

Abstract:

Graph decompositions are vital in the study of combinatorial design theory. A decomposition of a graph G is a partition of its edge set. An n-sun graph is a cycle Cn with an edge terminating in a vertex of degree one attached to each vertex. In this paper, we define n-sun decomposition of some even order graphs with a perfect matching. We have proved that the complete graph K2n, complete bipartite graph K2n, 2n and the Harary graph H4, 2n have n-sun decompositions. A labeling scheme is used to construct the n-suns.

Keywords: Decomposition, Hamilton cycle, n-sun graph, perfect matching, spanning tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
5108 Adomian’s Decomposition Method to Functionally Graded Thermoelastic Materials with Power Law

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

This paper presents an iteration method for the numerical solutions of a one-dimensional problem of generalized thermoelasticity with one relaxation time under given initial and boundary conditions. The thermoelastic material with variable properties as a power functional graded has been considered. Adomian’s decomposition techniques have been applied to the governing equations. The numerical results have been calculated by using the iterations method with a certain algorithm. The numerical results have been represented in figures, and the figures affirm that Adomian’s decomposition method is a successful method for modeling thermoelastic problems. Moreover, the empirical parameter of the functional graded, and the lattice design parameter have significant effects on the temperature increment, the strain, the stress, the displacement.

Keywords: Adomian, Decomposition Method, Generalized Thermoelasticity, algorithm, empirical parameter, lattice design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 555
5107 Blind Channel Estimation Based on URV Decomposition Technique for Uplink of MC-CDMA

Authors: Pradya Pornnimitkul, Suwich Kunaruttanapruk, Bamrung Tau Sieskul, Somchai Jitapunkul

Abstract:

In this paper, we investigate a blind channel estimation method for Multi-carrier CDMA systems that use a subspace decomposition technique. This technique exploits the orthogonality property between the noise subspace and the received user codes to obtain channel of each user. In the past we used Singular Value Decomposition (SVD) technique but SVD have most computational complexity so in this paper use a new algorithm called URV Decomposition, which serve as an intermediary between the QR decomposition and SVD, replaced in SVD technique to track the noise space of the received data. Because of the URV decomposition has almost the same estimation performance as the SVD, but has less computational complexity.

Keywords: Channel estimation, MC-CDMA, SVD, URV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
5106 Generalized Morphological 3D Shape Decomposition Grayscale Interframe Interpolation Method

Authors: Dragos Nicolae VIZIREANU

Abstract:

One of the main image representations in Mathematical Morphology is the 3D Shape Decomposition Representation, useful for Image Compression and Representation,and Pattern Recognition. The 3D Morphological Shape Decomposition representation can be generalized a number of times,to extend the scope of its algebraic characteristics as much as possible. With these generalizations, the Morphological Shape Decomposition 's role to serve as an efficient image decomposition tool is extended to grayscale images.This work follows the above line, and further develops it. Anew evolutionary branch is added to the 3D Morphological Shape Decomposition's development, by the introduction of a 3D Multi Structuring Element Morphological Shape Decomposition, which permits 3D Morphological Shape Decomposition of 3D binary images (grayscale images) into "multiparameter" families of elements. At the beginning, 3D Morphological Shape Decomposition representations are based only on "1 parameter" families of elements for image decomposition.This paper addresses the gray scale inter frame interpolation by means of mathematical morphology. The new interframe interpolation method is based on generalized morphological 3D Shape Decomposition. This article will present the theoretical background of the morphological interframe interpolation, deduce the new representation and show some application examples.Computer simulations could illustrate results.

Keywords: 3D shape decomposition representation, mathematical morphology, gray scale interframe interpolation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
5105 Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems

Authors: Nermin Sökmen

Abstract:

An effort estimation model is needed for softwareintensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.

Keywords: Functional complexity, functional decomposition, development effort, technical difficulty, design team capability, regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
5104 Analysis of Catalytic Properties of Ni3Al Thin Foils for the Methanol and Hexane Decomposition

Authors: M. Michalska-Domańska, P. Jóźwik, Z. Bojar

Abstract:

Intermetallic Ni3Al – based alloys belong to a group of advanced materials characterized by good chemical and physical properties (such as structural stability, corrosion resistance) which offer advenced technological applications. The paper presents the study of catalytic properties of Ni3Al foils (thickness approximately 50 &m) in the methanol and hexane decomposition. The egzamined material posses microcrystalline structure without any additional catalysts on the surface. The better catalytic activity of Ni3Al foils with respect to quartz plates in both methanol and hexane decomposition was confirmed. On thin Ni3Al foils the methanol conversion reaches approximately 100% above 480 oC while the hexane conversion reaches approximately 100% (98,5%) at 500 oC. Deposit formed during the methanol decomposition is built up of carbon nanofibers decorated with metal-like nanoparticles.

Keywords: hexane decomposition, methanol decomposition, Ni3Al thin foils, Ni nanoparticles

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
5103 Optimizing Approach for Sifting Process to Solve a Common Type of Empirical Mode Decomposition Mode Mixing

Authors: Saad Al-Baddai, Karema Al-Subari, Elmar Lang, Bernd Ludwig

Abstract:

Empirical mode decomposition (EMD), a new data-driven of time-series decomposition, has the advantage of supposing that a time series is non-linear or non-stationary, as is implicitly achieved in Fourier decomposition. However, the EMD suffers of mode mixing problem in some cases. The aim of this paper is to present a solution for a common type of signals causing of EMD mode mixing problem, in case a signal suffers of an intermittency. By an artificial example, the solution shows superior performance in terms of cope EMD mode mixing problem comparing with the conventional EMD and Ensemble Empirical Mode decomposition (EEMD). Furthermore, the over-sifting problem is also completely avoided; and computation load is reduced roughly six times compared with EEMD, an ensemble number of 50.

Keywords: Empirical mode decomposition, mode mixing, sifting process, over-sifting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 992
5102 New Subband Adaptive IIR Filter Based On Polyphase Decomposition

Authors: Young-Seok Choi

Abstract:

We present a subband adaptive infinite-impulse response (IIR) filtering method, which is based on a polyphase decomposition of IIR filter. Motivated by the fact that the polyphase structure has benefits in terms of convergence rate and stability, we introduce the polyphase decomposition to subband IIR filtering, i.e., in each subband high order IIR filter is decomposed into polyphase IIR filters with lower order. Computer simulations demonstrate that the proposed method has improved convergence rate over conventional IIR filters.

Keywords: Subband adaptive filter, IIR filtering. Polyphase decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2499
5101 Singular Value Decomposition Based Optimisation of Design Parameters of a Gearbox

Authors: Mehmet Bozca

Abstract:

Singular value decomposition based optimisation of geometric design parameters of a 5-speed gearbox is studied. During the optimisation, a four-degree-of freedom torsional vibration model of the pinion gear-wheel gear system is obtained and the minimum singular value of the transfer matrix is considered as the objective functions. The computational cost of the associated singular value problems is quite low for the objective function, because it is only necessary to compute the largest and smallest singular values (μmax and μmin) that can be achieved by using selective eigenvalue solvers; the other singular values are not needed. The design parameters are optimised under several constraints that include bending stress, contact stress and constant distance between gear centres. Thus, by optimising the geometric parameters of the gearbox such as, the module, number of teeth and face width it is possible to obtain a light-weight-gearbox structure. It is concluded that the all optimised geometric design parameters also satisfy all constraints.

Keywords: Singular value, optimisation, gearbox, torsional vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
5100 A Novel Instantaneous Frequency Computation Approach for Empirical Mode Decomposition

Authors: Liming Zhang

Abstract:

This paper introduces a new instantaneous frequency computation approach  -Counting Instantaneous Frequency for a general class of signals called simple waves. The classsimple wave contains a wide range of continuous signals for which the concept instantaneous frequency has a perfect physical sense. The concept of  -Counting Instantaneous Frequency also applies to all the discrete data. For all the simple wave signals and the discrete data, -Counting instantaneous frequency can be computed directly without signal decomposition process. The intrinsic mode functions obtained through empirical mode decomposition belongs to simple wave. So  -Counting instantaneous frequency can be used together with empirical mode decomposition.

Keywords: Instantaneous frequency, empirical mode decomposition, intrinsic mode function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
5099 Adaptive Fourier Decomposition Based Signal Instantaneous Frequency Computation Approach

Authors: Liming Zhang

Abstract:

There have been different approaches to compute the analytic instantaneous frequency with a variety of background reasoning and applicability in practice, as well as restrictions. This paper presents an adaptive Fourier decomposition and (α-counting) based instantaneous frequency computation approach. The adaptive Fourier decomposition is a recently proposed new signal decomposition approach. The instantaneous frequency can be computed through the so called mono-components decomposed by it. Due to the fast energy convergency, the highest frequency of the signal will be discarded by the adaptive Fourier decomposition, which represents the noise of the signal in most of the situation. A new instantaneous frequency definition for a large class of so-called simple waves is also proposed in this paper. Simple wave contains a wide range of signals for which the concept instantaneous frequency has a perfect physical sense. The α-counting instantaneous frequency can be used to compute the highest frequency for a signal. Combination of these two approaches one can obtain the IFs of the whole signal. An experiment is demonstrated the computation procedure with promising results.

Keywords: Adaptive Fourier decomposition, Fourier series, signal processing, instantaneous frequency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359
5098 Blind Identification and Equalization of CDMA Signals Using the Levenvberg-Marquardt Algorithm

Authors: Mohammed Boutalline, Imad Badi, Belaid Bouikhalene, Said Safi

Abstract:

In this paper we describe the Levenvberg-Marquardt (LM) algorithm for identification and equalization of CDMA signals received by an antenna array in communication channels. The synthesis explains the digital separation and equalization of signals after propagation through multipath generating intersymbol interference (ISI). Exploiting discrete data transmitted and three diversities induced at the reception, the problem can be composed by the Block Component Decomposition (BCD) of a tensor of order 3 which is a new tensor decomposition generalizing the PARAFAC decomposition. We optimize the BCD decomposition by Levenvberg-Marquardt method gives encouraging results compared to classical alternating least squares algorithm (ALS). In the equalization part, we use the Minimum Mean Square Error (MMSE) to perform the presented method. The simulation results using the LM algorithm are important.

Keywords: Identification and equalization, communication channel, Levenvberg-Marquardt, tensor decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
5097 A Reconfigurable Processing Element for Cholesky Decomposition and Matrix Inversion

Authors: Aki Happonen, Adrian Burian, Erwin Hemming

Abstract:

Fixed-point simulation results are used for the performance measure of inverting matrices by Cholesky decomposition. The fixed-point Cholesky decomposition algorithm is implemented using a fixed-point reconfigurable processing element. The reconfigurable processing element provides all mathematical operations required by Cholesky decomposition. The fixed-point word length analysis is based on simulations using different condition numbers and different matrix sizes. Simulation results show that 16 bits word length gives sufficient performance for small matrices with low condition number. Larger matrices and higher condition numbers require more dynamic range for a fixedpoint implementation.

Keywords: Cholesky Decomposition, Fixed-point, Matrix inversion, Reconfigurable processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
5096 A Decomposition Method for the Bipartite Separability of Bell Diagonal States

Authors: Wei-Chih Su, Kuan-Peng Chen, Ming-Chung Tsai, Zheng-Yao Su

Abstract:

A new decomposition form is introduced in this report to establish a criterion for the bi-partite separability of Bell diagonal states. A such criterion takes a quadratic inequality of the coefficients of a given Bell diagonal states and can be derived via a simple algorithmic calculation of its invariants. In addition, the criterion can be extended to a quantum system of higher dimension.

Keywords: decomposition, bipartite separability, Bell diagonal states.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
5095 Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics

Authors: Mahdi Nouri

Abstract:

In this paper Algebraic Riccati matrix equation is used for Eigen-decomposition of special structured matrices. This is achieved by similarity transformation and then using algebraic riccati matrix equation to triangulation of matrices. The process is decomposition of matrices into small and specially structured submatrices with low dimensions for fast and easy finding of Eigenpairs. Numerical and structural examples included showing the efficiency of present method.

Keywords: Riccati, matrix equation, eigenvalue problem, symmetric, bisymmetric, persymmetric, decomposition, canonical forms, Graphs theory, adjacency and Laplacian matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
5094 Laplace Adomian Decomposition Method Applied to a Two-Dimensional Viscous Flow with Shrinking Sheet

Authors: M. A. Koroma, S. Widatalla, A. F. Kamara, C. Zhang

Abstract:

Our aim in this piece of work is to demonstrate the power of the Laplace Adomian decomposition method (LADM) in approximating the solutions of nonlinear differential equations governing the two-dimensional viscous flow induced by a shrinking sheet.

Keywords: Adomian polynomials, Laplace Adomian decomposition method, Padé Approximant, Shrinking sheet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031
5093 ECG Analysis using Nature Inspired Algorithm

Authors: A.Sankara Subramanian, G.Gurusamy, G.Selvakumar, P.Gnanasekar, A.Nagappan

Abstract:

This paper presents an algorithm based on the wavelet decomposition, for feature extraction from the ECG signal and recognition of three types of Ventricular Arrhythmias using neural networks. A set of Discrete Wavelet Transform (DWT) coefficients, which contain the maximum information about the arrhythmias, is selected from the wavelet decomposition. After that a novel clustering algorithm based on nature inspired algorithm (Ant Colony Optimization) is developed for classifying arrhythmia types. The algorithm is applied on the ECG registrations from the MIT-BIH arrhythmia and malignant ventricular arrhythmia databases. We applied Daubechies 4 wavelet in our algorithm. The wavelet decomposition enabled us to perform the task efficiently and produced reliable results.

Keywords: Daubechies 4 Wavelet, ECG, Nature inspired algorithm, Ventricular Arrhythmias, Wavelet Decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
5092 A Linearization and Decomposition Based Approach to Minimize the Non-Productive Time in Transfer Lines

Authors: Hany Osman, M. F. Baki

Abstract:

We address the balancing problem of transfer lines in this paper to find the optimal line balancing that minimizes the nonproductive time. We focus on the tool change time and face orientation change time both of which influence the makespane. We consider machine capacity limitations and technological constraints associated with the manufacturing process of auto cylinder heads. The problem is represented by a mixed integer programming model that aims at distributing the design features to workstations and sequencing the machining processes at a minimum non-productive time. The proposed model is solved by an algorithm established using linearization schemes and Benders- decomposition approach. The experiments show the efficiency of the algorithm in reaching the exact solution of small and medium problem instances at reasonable time.

Keywords: Transfer line balancing, Benders' decomposition, Linearization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
5091 A Reconfigurable Processing Element Implementation for Matrix Inversion Using Cholesky Decomposition

Authors: Aki Happonen, Adrian Burian, Erwin Hemming

Abstract:

Fixed-point simulation results are used for the performance measure of inverting matrices using a reconfigurable processing element. Matrices are inverted using the Cholesky decomposition algorithm. The reconfigurable processing element is capable of all required mathematical operations. The fixed-point word length analysis is based on simulations of different condition numbers and different matrix sizes.

Keywords: Cholesky Decomposition, Fixed-point, Matrixinversion, Reconfigurable processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
5090 Linear Elasticity Problems Solved by Using the Fictitious Domain Method and Total - FETI Domain Decomposition

Authors: Lukas Mocek, Alexandros Markopoulos

Abstract:

The main goal of this paper is to show a possibility, how to solve numerically elliptic boundary value problems arising in 2D linear elasticity by using the fictitious domain method (FDM) and the Total-FETI domain decomposition method. We briefly mention the theoretical background of these methods and demonstrate their performance on a benchmark.

Keywords: Linear elasticity, fictitious domain method, Total-FETI, domain decomposition, saddle-point system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
5089 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel

Authors: Supriyono, Sumardiyono, Rendy J. Pramono

Abstract:

Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.

Keywords: Antioxidant, biodiesel, decomposition, oxidation, tocopherol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
5088 Application of Tocopherol as Antioxidant to Reduce Decomposition Process on Palm Oil Biodiesel

Authors: Supriyono, Sumardiyono, Rendy J. Pramono

Abstract:

Biodiesel is one of the alternative fuels promising for substituting petrodiesel as energy source which has an advantage as it is sustainable and eco-friendly. Due to the raw material that tends to decompose during storage, biodiesel also has the same characteristic that tends to decompose during storage. Biodiesel decomposition will form higher acid value as the result of oxidation to double bond on a fatty acid compound on biodiesel. Thus, free fatty acid value could be used to evaluate degradation of biodiesel due to the oxidation process. High free fatty acid on biodiesel could impact on the engine performance. Decomposition of biodiesel due to oxidation reaction could prevent by introducing a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. Biodiesel made from high free fatty acid (FFA) crude palm oil (CPO) by using two steps esterification is vulnerable to oxidation process which is resulted in increasing on the FFA value. Tocopherol also known as vitamin E is one of the antioxidant that could improve the stability of biodiesel due to decomposition by the oxidation process. Tocopherol 0.5% concentration on palm oil biodiesel could reduce 13% of increasing FFA under temperature 80 °C and exposing time 180 minute.

Keywords: Antioxidant, biodiesel, decomposition, oxidation, tocopherol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
5087 Numerical Solution of Volterra Integro-differential Equations of Fractional Order by Laplace Decomposition Method

Authors: Changqing Yang, Jianhua Hou

Abstract:

In this paper the Laplace Decomposition method is developed to solve linear and nonlinear fractional integro- differential equations of Volterra type.The fractional derivative is described in the Caputo sense.The Laplace decomposition method is found to be fast and accurate.Illustrative examples  are included to demonstrate the validity and applicability of presented technique and comparasion is made with exacting results.

Keywords: Integro-differential equations, Laplace transform, fractional derivative, adomian polynomials, pade appoximants.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
5086 Empirical Mode Decomposition Based Multiscale Analysis of Physiological Signal

Authors: Young-Seok Choi

Abstract:

We present a refined multiscale Shannon entropy for analyzing electroencephalogram (EEG), which reflects the underlying dynamics of EEG over multiple scales. The rationale behind this method is that neurological signals such as EEG possess distinct dynamics over different spectral modes. To deal with the nonlinear and nonstationary nature of EEG, the recently developed empirical mode decomposition (EMD) is incorporated, allowing a decomposition of EEG into its inherent spectral components, referred to as intrinsic mode functions (IMFs). By calculating the Shannon entropy of IMFs in a time-dependent manner and summing them over adaptive multiple scales, it results in an adaptive subscale entropy measure of EEG. Simulation and experimental results show that the proposed entropy properly reveals the dynamical changes over multiple scales.

Keywords: EEG, subscale entropy, Empirical mode decomposition, Intrinsic mode function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
5085 Catalytic Decomposition of Potassium Monopersulfate. Influence of Variables

Authors: Javier Rivas, Olga Gimeno, Maria Carbajo, Teresa Borralho

Abstract:

Potassium monopersulfate has been decomposed in aqueous solution in the presence of Co(II). The effect of the main operating variables has been assessed. Minimum variations in pH exert a considerable influence on the process kinetics. Thus, when no pH adjustment is considered, the actual effect of variables like initial monopersulfate and/or catalyst concentration may be hindered. As expected, temperature enhances the monopersulfate decomposition rate by following the Arrhenius law. The activation energy in the proximity of 85 kJ/mol has been obtained. Amongst the different solids tested in the monopersulfate decomposition, only the perovskite LaTi0.15Cu0.85O3 has shown a significant catalytic activity.

Keywords: Monopersulfate, Oxone®, Sulfate radicals, Watertreatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
5084 Discrete Wavelet Transform Decomposition Level Determination Exploiting Sparseness Measurement

Authors: Lei Lei, Chao Wang, Xin Liu

Abstract:

Discrete wavelet transform (DWT) has been widely adopted in biomedical signal processing for denoising, compression and so on. Choosing a suitable decomposition level (DL) in DWT is of paramount importance to its performance. In this paper, we propose to exploit sparseness of the transformed signals to determine the appropriate DL. Simulation results have shown that the sparseness of transformed signals after DWT increases with the increasing DLs. Additional Monte-Carlo simulation results have verified the effectiveness of sparseness measure in determining the DL.

Keywords: Sparseness, DWT, decomposition level, ECG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5874
5083 A New Time-Frequency Speech Analysis Approach Based On Adaptive Fourier Decomposition

Authors: Liming Zhang

Abstract:

In this paper, a new adaptive Fourier decomposition (AFD) based time-frequency speech analysis approach is proposed. Given the fact that the fundamental frequency of speech signals often undergo fluctuation, the classical short-time Fourier transform (STFT) based spectrogram analysis suffers from the difficulty of window size selection. AFD is a newly developed signal decomposition theory. It is designed to deal with time-varying non-stationary signals. Its outstanding characteristic is to provide instantaneous frequency for each decomposed component, so the time-frequency analysis becomes easier. Experiments are conducted based on the sample sentence in TIMIT Acoustic-Phonetic Continuous Speech Corpus. The results show that the AFD based time-frequency distribution outperforms the STFT based one.

Keywords: Adaptive fourier decomposition, instantaneous frequency, speech analysis, time-frequency distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724