Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8363

Search results for: speech analysis

8363 Analysis of Combined Use of NN and MFCC for Speech Recognition

Authors: Safdar Tanweer, Abdul Mobin, Afshar Alam

Abstract:

The performance and analysis of speech recognition system is illustrated in this paper. An approach to recognize the English word corresponding to digit (0-9) spoken by 2 different speakers is captured in noise free environment. For feature extraction, speech Mel frequency cepstral coefficients (MFCC) has been used which gives a set of feature vectors from recorded speech samples. Neural network model is used to enhance the recognition performance. Feed forward neural network with back propagation algorithm model is used. However other speech recognition techniques such as HMM, DTW exist. All experiments are carried out on Matlab.

Keywords: Speech Recognition, MFCC, Neural Network, classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2907
8362 Using Teager Energy Cepstrum and HMM distancesin Automatic Speech Recognition and Analysis of Unvoiced Speech

Authors: Panikos Heracleous

Abstract:

In this study, the use of silicon NAM (Non-Audible Murmur) microphone in automatic speech recognition is presented. NAM microphones are special acoustic sensors, which are attached behind the talker-s ear and can capture not only normal (audible) speech, but also very quietly uttered speech (non-audible murmur). As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech conversion etc.) for sound-impaired people. Using a small amount of training data and adaptation approaches, 93.9% word accuracy was achieved for a 20k Japanese vocabulary dictation task. Non-audible murmur recognition in noisy environments is also investigated. In this study, further analysis of the NAM speech has been made using distance measures between hidden Markov model (HMM) pairs. It has been shown the reduced spectral space of NAM speech using a metric distance, however the location of the different phonemes of NAM are similar to the location of the phonemes of normal speech, and the NAM sounds are well discriminated. Promising results in using nonlinear features are also introduced, especially under noisy conditions.

Keywords: Speech recognition, unvoiced speech, nonlinear features, HMM distance measures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
8361 A New Time-Frequency Speech Analysis Approach Based On Adaptive Fourier Decomposition

Authors: Liming Zhang

Abstract:

In this paper, a new adaptive Fourier decomposition (AFD) based time-frequency speech analysis approach is proposed. Given the fact that the fundamental frequency of speech signals often undergo fluctuation, the classical short-time Fourier transform (STFT) based spectrogram analysis suffers from the difficulty of window size selection. AFD is a newly developed signal decomposition theory. It is designed to deal with time-varying non-stationary signals. Its outstanding characteristic is to provide instantaneous frequency for each decomposed component, so the time-frequency analysis becomes easier. Experiments are conducted based on the sample sentence in TIMIT Acoustic-Phonetic Continuous Speech Corpus. The results show that the AFD based time-frequency distribution outperforms the STFT based one.

Keywords: Adaptive fourier decomposition, instantaneous frequency, speech analysis, time-frequency distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
8360 Automatic Segmentation of the Clean Speech Signal

Authors: M. A. Ben Messaoud, A. Bouzid, N. Ellouze

Abstract:

Speech Segmentation is the measure of the change point detection for partitioning an input speech signal into regions each of which accords to only one speaker. In this paper, we apply two features based on multi-scale product (MP) of the clean speech, namely the spectral centroid of MP, and the zero crossings rate of MP. We focus on multi-scale product analysis as an important tool for segmentation extraction. The MP is based on making the product of the speech wavelet transform coefficients (WTC). We have estimated our method on the Keele database. The results show the effectiveness of our method. It indicates that the two features can find word boundaries, and extracted the segments of the clean speech.

Keywords: Speech segmentation, Multi-scale product, Spectral centroid, Zero crossings rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
8359 Performance Evaluation of Acoustic-Spectrographic Voice Identification Method in Native and Non-Native Speech

Authors: E. Krasnova, E. Bulgakova, V. Shchemelinin

Abstract:

The paper deals with acoustic-spectrographic voice identification method in terms of its performance in non-native language speech. Performance evaluation is conducted by comparing the result of the analysis of recordings containing native language speech with recordings that contain foreign language speech. Our research is based on Tajik and Russian speech of Tajik native speakers due to the character of the criminal situation with drug trafficking. We propose a pilot experiment that represents a primary attempt enter the field.

Keywords: Speaker identification, acoustic-spectrographic method, non-native speech.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640
8358 Possibilities, Challenges and the State of the Art of Automatic Speech Recognition in Air Traffic Control

Authors: Van Nhan Nguyen, Harald Holone

Abstract:

Over the past few years, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various areas of Air Traffic Control (ATC), such as air traffic control simulation and training, monitoring live operators for with the aim of safety improvements, air traffic controller workload measurement and conducting analysis on large quantities controller-pilot speech. Due to the high accuracy requirements of the ATC context and its unique challenges, automatic speech recognition has not been widely adopted in this field. With the aim of providing a good starting point for researchers who are interested bringing automatic speech recognition into ATC, this paper gives an overview of possibilities and challenges of applying automatic speech recognition in air traffic control. To provide this overview, we present an updated literature review of speech recognition technologies in general, as well as specific approaches relevant to the ATC context. Based on this literature review, criteria for selecting speech recognition approaches for the ATC domain are presented, and remaining challenges and possible solutions are discussed.

Keywords: Automatic Speech Recognition, ASR, Air Traffic Control, ATC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3217
8357 Automatic Recognition of Emotionally Coloured Speech

Authors: Theologos Athanaselis, Stelios Bakamidis, Ioannis Dologlou

Abstract:

Emotion in speech is an issue that has been attracting the interest of the speech community for many years, both in the context of speech synthesis as well as in automatic speech recognition (ASR). In spite of the remarkable recent progress in Large Vocabulary Recognition (LVR), it is still far behind the ultimate goal of recognising free conversational speech uttered by any speaker in any environment. Current experimental tests prove that using state of the art large vocabulary recognition systems the error rate increases substantially when applied to spontaneous/emotional speech. This paper shows that recognition rate for emotionally coloured speech can be improved by using a language model based on increased representation of emotional utterances.

Keywords: Statistical language model, N-grams, emotionallycoloured speech

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
8356 Subjective Evaluation of Spectral and Time Domain Cascading Algorithm for Speech Enhancement for Mobile Communication

Authors: Harish Chander, Balwinder Singh, Ravinder Khanna

Abstract:

In this paper, we present the comparative subjective analysis of Improved Minima Controlled Recursive Averaging (IMCRA) Algorithm, the Kalman filter and the cascading of IMCRA and Kalman filter algorithms. Performance of speech enhancement algorithms can be predicted in two different ways. One is the objective method of evaluation in which the speech quality parameters are predicted computationally. The second is a subjective listening test in which the processed speech signal is subjected to the listeners who judge the quality of speech on certain parameters. The comparative objective evaluation of these algorithms was analyzed in terms of Global SNR, Segmental SNR and Perceptual Evaluation of Speech Quality (PESQ) by the authors and it was reported that with cascaded algorithms there is a substantial increase in objective parameters. Since subjective evaluation is the real test to judge the quality of speech enhancement algorithms, the authenticity of superiority of cascaded algorithms over individual IMCRA and Kalman algorithms is tested through subjective analysis in this paper. The results of subjective listening tests have confirmed that the cascaded algorithms perform better under all types of noise conditions.

Keywords: Speech enhancement, spectral domain, time domain, PESQ, subjective analysis, objective analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 533
8355 Effect of Visual Speech in Sign Speech Synthesis

Authors: Zdenek Krnoul

Abstract:

This article investigates a contribution of synthesized visual speech. Synthesis of visual speech expressed by a computer consists in an animation in particular movements of lips. Visual speech is also necessary part of the non-manual component of a sign language. Appropriate methodology is proposed to determine the quality and the accuracy of synthesized visual speech. Proposed methodology is inspected on Czech speech. Hence, this article presents a procedure of recording of speech data in order to set a synthesis system as well as to evaluate synthesized speech. Furthermore, one option of the evaluation process is elaborated in the form of a perceptual test. This test procedure is verified on the measured data with two settings of the synthesis system. The results of the perceptual test are presented as a statistically significant increase of intelligibility evoked by real and synthesized visual speech. Now, the aim is to show one part of evaluation process which leads to more comprehensive evaluation of the sign speech synthesis system.

Keywords: Perception test, Sign speech synthesis, Talking head, Visual speech.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
8354 Eisenhower’s Farewell Speech: Initial and Continuing Communication Effects

Authors: B. Kuiper

Abstract:

When Dwight D. Eisenhower delivered his final Presidential speech in 1961, he was using the opportunity to bid farewell to America, but he was also trying to warn his fellow countrymen about deeper challenges threatening the country. In this analysis, Eisenhower’s speech is examined in light of the impact it had on American culture, communication concepts, and political ramifications. The paper initially highlights the previous literature on the speech, especially in light of its 50th anniversary, and reveals a man whose main concern was how the speech’s words would affect his beloved country. The painstaking approach to the wording of the speech to reveal the intent is key, particularly in light of analyzing the motivations according to “virtuous communication.” This philosophical construct indicates that Eisenhower’s Farewell Address was crafted carefully according to a departing President’s deepest values and concerns, concepts that he wanted to pass along to his successor, to his country, and even to the world.

Keywords: Eisenhower, mass communication, political speech, rhetoric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
8353 A Semi- One Time Pad Using Blind Source Separation for Speech Encryption

Authors: Long Jye Sheu, Horng-Shing Chiou, Wei Ching Chen

Abstract:

We propose a new perspective on speech communication using blind source separation. The original speech is mixed with key signals which consist of the mixing matrix, chaotic signals and a random noise. However, parts of the keys (the mixing matrix and the random noise) are not necessary in decryption. In practice implement, one can encrypt the speech by changing the noise signal every time. Hence, the present scheme obtains the advantages of a One Time Pad encryption while avoiding its drawbacks in key exchange. It is demonstrated that the proposed scheme is immune against traditional attacks.

Keywords: one time pad, blind source separation, independentcomponent analysis, speech encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
8352 A Modified Speech Enhancement Using Adaptive Gain Equalizer with Non linear Spectral Subtraction for Robust Speech Recognition

Authors: C. Ganesh Babu, P. T. Vanathi

Abstract:

In this paper we present an enhanced noise reduction method for robust speech recognition using Adaptive Gain Equalizer with Non linear Spectral Subtraction. In Adaptive Gain Equalizer method (AGE), the input signal is divided into a number of subbands that are individually weighed in time domain, in accordance to the short time Signal-to-Noise Ratio (SNR) in each subband estimation at every time instant. Instead of focusing on suppression the noise on speech enhancement is focused. When analysis was done under various noise conditions for speech recognition, it was found that Adaptive Gain Equalizer method algorithm has an obvious failing point for a SNR of -5 dB, with inadequate levels of noise suppression for SNR less than this point. This work proposes the implementation of AGE when coupled with Non linear Spectral Subtraction (AGE-NSS) for robust speech recognition. The experimental result shows that out AGE-NSS performs the AGE when SNR drops below -5db level.

Keywords: Adaptive Gain Equalizer, Non Linear Spectral Subtraction, Speech Enhancement, and Speech Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
8351 The Main Principles of Text-to-Speech Synthesis System

Authors: K.R. Aida–Zade, C. Ardil, A.M. Sharifova

Abstract:

In this paper, the main principles of text-to-speech synthesis system are presented. Associated problems which arise when developing speech synthesis system are described. Used approaches and their application in the speech synthesis systems for Azerbaijani language are shown.

Keywords: synthesis of Azerbaijani language, morphemes, phonemes, sounds, sentence, speech synthesizer, intonation, accent, pronunciation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5329
8350 TeleMe Speech Booster: Web-Based Speech Therapy and Training Program for Children with Articulation Disorders

Authors: C. Treerattanaphan, P. Boonpramuk, P. Singla

Abstract:

Frequent, continuous speech training has proven to be a necessary part of a successful speech therapy process, but constraints of traveling time and employment dispensation become key obstacles especially for individuals living in remote areas or for dependent children who have working parents. In order to ameliorate speech difficulties with ample guidance from speech therapists, a website has been developed that supports speech therapy and training for people with articulation disorders in the standard Thai language. This web-based program has the ability to record speech training exercises for each speech trainee. The records will be stored in a database for the speech therapist to investigate, evaluate, compare and keep track of all trainees’ progress in detail. Speech trainees can request live discussions via video conference call when needed. Communication through this web-based program facilitates and reduces training time in comparison to walk-in training or appointments. This type of training also allows people with articulation disorders to practice speech lessons whenever or wherever is convenient for them, which can lead to a more regular training processes.

Keywords: Web-Based Remote Training Program, Thai Speech Therapy, Articulation Disorders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
8349 Speech Acts and Politeness Strategies in an EFL Classroom in Georgia

Authors: Tinatin Kurdghelashvili

Abstract:

The paper deals with the usage of speech acts and politeness strategies in an EFL classroom in Georgia (Rep of). It explores the students’ and the teachers’ practice of the politeness strategies and the speech acts of apology, thanking, request, compliment / encouragement, command, agreeing / disagreeing, addressing and code switching. The research method includes observation as well as a questionnaire. The target group involves the students from Georgian public schools and two certified, experienced local English teachers. The analysis is based on Searle’s Speech Act Theory and Brown and Levinson’s politeness strategies. The findings show that the students have certain knowledge regarding politeness yet they fail to apply them in English communication. In addition, most of the speech acts from the classroom interaction are used by the teachers and not the students. Thereby, it is suggested that teachers should cultivate the students’ communicative competence and attempt to give them opportunities to practise more English speech acts than they do today.

Keywords: English as a foreign language, Georgia, politeness principles, speech acts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5084
8348 Blind Speech Separation Using SRP-PHAT Localization and Optimal Beamformer in Two-Speaker Environments

Authors: Hai Quang Hong Dam, Hai Ho, Minh Hoang Le Ngo

Abstract:

This paper investigates the problem of blind speech separation from the speech mixture of two speakers. A voice activity detector employing the Steered Response Power - Phase Transform (SRP-PHAT) is presented for detecting the activity information of speech sources and then the desired speech signals are extracted from the speech mixture by using an optimal beamformer. For evaluation, the algorithm effectiveness, a simulation using real speech recordings had been performed in a double-talk situation where two speakers are active all the time. Evaluations show that the proposed blind speech separation algorithm offers a good interference suppression level whilst maintaining a low distortion level of the desired signal.

Keywords: Blind speech separation, voice activity detector, SRP-PHAT, optimal beamformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092
8347 A proposed High-Resolution Time-Frequency Distribution for the Analysis of Multicomponent and Speech Signals

Authors: D. Boutana, B. Barkat , F. Marir

Abstract:

In this paper, we propose a novel time-frequency distribution (TFD) for the analysis of multi-component signals. In particular, we use synthetic as well as real-life speech signals to prove the superiority of the proposed TFD in comparison to some existing ones. In the comparison, we consider the cross-terms suppression and the high energy concentration of the signal around its instantaneous frequency (IF).

Keywords: Cohen's Class, Multicomponent signal, SeparableKernel, Speech signal, Time- frequency resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
8346 Evaluation of a Multi-Resolution Dyadic Wavelet Transform Method for usable Speech Detection

Authors: Wajdi Ghezaiel, Amel Ben Slimane Rahmouni, Ezzedine Ben Braiek

Abstract:

Many applications of speech communication and speaker identification suffer from the problem of co-channel speech. This paper deals with a multi-resolution dyadic wavelet transform method for usable segments of co-channel speech detection that could be processed by a speaker identification system. Evaluation of this method is performed on TIMIT database referring to the Target to Interferer Ratio measure. Co-channel speech is constructed by mixing all possible gender speakers. Results do not show much difference for different mixtures. For the overall mixtures 95.76% of usable speech is correctly detected with false alarms of 29.65%.

Keywords: Co-channel speech, usable speech, multi-resolutionanalysis, speaker identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1120
8345 Various Speech Processing Techniques For Speech Compression And Recognition

Authors: Jalal Karam

Abstract:

Years of extensive research in the field of speech processing for compression and recognition in the last five decades, resulted in a severe competition among the various methods and paradigms introduced. In this paper we include the different representations of speech in the time-frequency and time-scale domains for the purpose of compression and recognition. The examination of these representations in a variety of related work is accomplished. In particular, we emphasize methods related to Fourier analysis paradigms and wavelet based ones along with the advantages and disadvantages of both approaches.

Keywords: Time-Scale, Wavelets, Time-Frequency, Compression, Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
8344 Narrowband Speech Hiding using Vector Quantization

Authors: Driss Guerchi, Fatiha Djebbar

Abstract:

In this work we introduce an efficient method to limit the impact of the hiding process on the quality of the cover speech. Vector quantization of the speech spectral information reduces drastically the number of the secret speech parameters to be embedded in the cover signal. Compared to scalar hiding, vector quantization hiding technique provides a stego signal that is indistinguishable from the cover speech. The objective and subjective performance measures reveal that the current hiding technique attracts no suspicion about the presence of the secret message in the stego speech, while being able to recover an intelligible copy of the secret message at the receiver side.

Keywords: Speech steganography, LSF vector quantization, fast Fourier transform

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
8343 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns

Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim

Abstract:

In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.

Keywords: Binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 642
8342 On SNR Estimation by the Likelihood of near Pitch for Speech Detection

Authors: Young-Hwan Song, Doo-Heon Kyun, Jong-Kuk Kim, Myung-Jin Bae

Abstract:

People have the habitual pitch level which is used when people say something generally. However this pitch should be changed irregularly in the presence of noise. So it is useful to estimate SNR of speech signal by pitch. In this paper, we obtain the energy of input speech signal and then we detect a stationary region on voiced speech. And we get the pitch period by NAMDF for the stationary region that is not varied pitch rapidly. After getting pitch, each frame is divided by pitch period and the likelihood of closed pitch is estimated. In this paper, we proposed new parameter, NLF, to estimate the SNR of received speech signal. The NLF is derived from the correlation of near pitch periods. The NLF is obtained for each stationary region in voiced speech. Finally we confirmed good performance of the estimation of the SNR of received input speech in the presence of noise.

Keywords: Likelihood, pitch, SNR, speech.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
8341 Speech Impact Realization via Manipulative Argumentation Techniques in Modern American Political Discourse

Authors: Zarine Avetisyan

Abstract:

The present paper presents the discussion of scholars concerning speech impact, peculiarities of its realization, speech strategies and techniques in particular. Departing from the viewpoints of many prominent linguists, the paper suggests that manipulative argumentation be viewed as a most pervasive speech strategy with a certain set of techniques which are to be found in modern American political discourse. The precedence of their occurrence allows us to regard them as pragmatic patterns of speech impact realization in effective public speaking.

Keywords: Manipulative argumentation, political discourse, speech impact, technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
8340 Investigation of Combined use of MFCC and LPC Features in Speech Recognition Systems

Authors: К. R. Aida–Zade, C. Ardil, S. S. Rustamov

Abstract:

Statement of the automatic speech recognition problem, the assignment of speech recognition and the application fields are shown in the paper. At the same time as Azerbaijan speech, the establishment principles of speech recognition system and the problems arising in the system are investigated. The computing algorithms of speech features, being the main part of speech recognition system, are analyzed. From this point of view, the determination algorithms of Mel Frequency Cepstral Coefficients (MFCC) and Linear Predictive Coding (LPC) coefficients expressing the basic speech features are developed. Combined use of cepstrals of MFCC and LPC in speech recognition system is suggested to improve the reliability of speech recognition system. To this end, the recognition system is divided into MFCC and LPC-based recognition subsystems. The training and recognition processes are realized in both subsystems separately, and recognition system gets the decision being the same results of each subsystems. This results in decrease of error rate during recognition. The training and recognition processes are realized by artificial neural networks in the automatic speech recognition system. The neural networks are trained by the conjugate gradient method. In the paper the problems observed by the number of speech features at training the neural networks of MFCC and LPC-based speech recognition subsystems are investigated. The variety of results of neural networks trained from different initial points in training process is analyzed. Methodology of combined use of neural networks trained from different initial points in speech recognition system is suggested to improve the reliability of recognition system and increase the recognition quality, and obtained practical results are shown.

Keywords: Speech recognition, cepstral analysis, Voice activation detection algorithm, Mel Frequency Cepstral Coefficients, features of speech, Cepstral Mean Subtraction, neural networks, Linear Predictive Coding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589
8339 Speech Enhancement Using Kalman Filter in Communication

Authors: Eng. Alaa K. Satti Salih

Abstract:

Revolutions Applications such as telecommunications, hands-free communications, recording, etc. which need at least one microphone, the signal is usually infected by noise and echo. The important application is the speech enhancement, which is done to remove suppressed noises and echoes taken by a microphone, beside preferred speech. Accordingly, the microphone signal has to be cleaned using digital signal processing DSP tools before it is played out, transmitted, or stored. Engineers have so far tried different approaches to improving the speech by get back the desired speech signal from the noisy observations. Especially Mobile communication, so in this paper will do reconstruction of the speech signal, observed in additive background noise, using the Kalman filter technique to estimate the parameters of the Autoregressive Process (AR) in the state space model and the output speech signal obtained by the MATLAB. The accurate estimation by Kalman filter on speech would enhance and reduce the noise then compare and discuss the results between actual values and estimated values which produce the reconstructed signals.

Keywords: Autoregressive Process, Kalman filter, Matlab and Noise speech.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3769
8338 Optimum Cascaded Design for Speech Enhancement Using Kalman Filter

Authors: T. Kishore Kumar

Abstract:

Speech enhancement is the process of eliminating noise and increasing the quality of a speech signal, which is contaminated with other kinds of distortions. This paper is on developing an optimum cascaded system for speech enhancement. This aim is attained without diminishing any relevant speech information and without much computational and time complexity. LMS algorithm, Spectral Subtraction and Kalman filter have been deployed as the main de-noising algorithms in this work. Since these algorithms suffer from respective shortcomings, this work has been undertaken to design cascaded systems in different combinations and the evaluation of such cascades by qualitative (listening) and quantitative (SNR) tests.

Keywords: LMS, Kalman filter, Speech Enhancement and Spectral Subtraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
8337 Recognition of Isolated Speech Signals using Simplified Statistical Parameters

Authors: Abhijit Mitra, Bhargav Kumar Mitra, Biswajoy Chatterjee

Abstract:

We present a novel scheme to recognize isolated speech signals using certain statistical parameters derived from those signals. The determination of the statistical estimates is based on extracted signal information rather than the original signal information in order to reduce the computational complexity. Subtle details of these estimates, after extracting the speech signal from ambience noise, are first exploited to segregate the polysyllabic words from the monosyllabic ones. Precise recognition of each distinct word is then carried out by analyzing the histogram, obtained from these information.

Keywords: Isolated speech signals, Block overlapping technique, Positive peaks, Histogram analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
8336 Speech Data Compression using Vector Quantization

Authors: H. B. Kekre, Tanuja K. Sarode

Abstract:

Mostly transforms are used for speech data compressions which are lossy algorithms. Such algorithms are tolerable for speech data compression since the loss in quality is not perceived by the human ear. However the vector quantization (VQ) has a potential to give more data compression maintaining the same quality. In this paper we propose speech data compression algorithm using vector quantization technique. We have used VQ algorithms LBG, KPE and FCG. The results table shows computational complexity of these three algorithms. Here we have introduced a new performance parameter Average Fractional Change in Speech Sample (AFCSS). Our FCG algorithm gives far better performance considering mean absolute error, AFCSS and complexity as compared to others.

Keywords: Vector Quantization, Data Compression, Encoding, , Speech coding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
8335 Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy

Authors: Nazaket Gazieva

Abstract:

Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.

Keywords: Biometric voice prints, fundamental frequency, phonogram, speech signal, temporal characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 234
8334 High-Individuality Voice Conversion Based on Concatenative Speech Synthesis

Authors: Kei Fujii, Jun Okawa, Kaori Suigetsu

Abstract:

Concatenative speech synthesis is a method that can make speech sound which has naturalness and high-individuality of a speaker by introducing a large speech corpus. Based on this method, in this paper, we propose a voice conversion method whose conversion speech has high-individuality and naturalness. The authors also have two subjective evaluation experiments for evaluating individuality and sound quality of conversion speech. From the results, following three facts have be confirmed: (a) the proposal method can convert the individuality of speakers well, (b) employing the framework of unit selection (especially join cost) of concatenative speech synthesis into conventional voice conversion improves the sound quality of conversion speech, and (c) the proposal method is robust against the difference of genders between a source speaker and a target speaker.

Keywords: concatenative speech synthesis, join cost, speaker individuality, unit selection, voice conversion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652