Search results for: Chebyshev Pseudospectral collocation method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8105

Search results for: Chebyshev Pseudospectral collocation method

8105 A Comparison of Recent Methods for Solving a Model 1D Convection Diffusion Equation

Authors: Ashvin Gopaul, Jayrani Cheeneebash, Kamleshsing Baurhoo

Abstract:

In this paper we study some numerical methods to solve a model one-dimensional convection–diffusion equation. The semi-discretisation of the space variable results into a system of ordinary differential equations and the solution of the latter involves the evaluation of a matrix exponent. Since the calculation of this term is computationally expensive, we study some methods based on Krylov subspace and on Restrictive Taylor series approximation respectively. We also consider the Chebyshev Pseudospectral collocation method to do the spatial discretisation and we present the numerical solution obtained by these methods.

Keywords: Chebyshev Pseudospectral collocation method, convection-diffusion equation, restrictive Taylor approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
8104 Generalized Chebyshev Collocation Method

Authors: Junghan Kim, Wonkyu Chung, Sunyoung Bu, Philsu Kim

Abstract:

In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower degree polynomial. The constructed algorithm controls both the error and the time step size simultaneously and further the errors at each integration step are embedded in the algorithm itself, which provides the efficiency of the computational cost. For the assessment of the effectiveness, numerical results obtained by the proposed method and the Radau IIA are presented and compared.

Keywords: Generalized Chebyshev Collocation method, Generalized Chebyshev Polynomial, Initial value problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639
8103 4D Flight Trajectory Optimization Based on Pseudospectral Methods

Authors: Kouamana Bousson, Paulo Machado

Abstract:

The optimization and control problem for 4D trajectories is a subject rarely addressed in literature. In the 4D navigation problem we define waypoints, for each mission, where the arrival time is specified in each of them. One way to design trajectories for achieving this kind of mission is to use the trajectory optimization concepts. To solve a trajectory optimization problem we can use the indirect or direct methods. The indirect methods are based on maximum principle of Pontryagin, on the other hand, in the direct methods it is necessary to transform into a nonlinear programming problem. We propose an approach based on direct methods with a pseudospectral integration scheme built on Chebyshev polynomials.

Keywords: Pseudospectral Methods, Trajectory Optimization, 4DTrajectories

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
8102 An Optimization of Orbital Transfer for Spacecrafts with Finite-thrust Based on Legendre Pseudospectral Method

Authors: Yanan Yang, Zhigang Wang, Xiang Chen

Abstract:

This paper presents the use of Legendre pseudospectral method for the optimization of finite-thrust orbital transfer for spacecrafts. In order to get an accurate solution, the System-s dynamics equations were normalized through a dimensionless method. The Legendre pseudospectral method is based on interpolating functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This is used to transform the optimal control problem into a constrained parameter optimization problem. The developed novel optimization algorithm can be used to solve similar optimization problems of spacecraft finite-thrust orbital transfer. The results of a numerical simulation verified the validity of the proposed optimization method. The simulation results reveal that pseudospectral optimization method is a promising method for real-time trajectory optimization and provides good accuracy and fast convergence.

Keywords: Finite-thrust, Orbital transfer, Legendre pseudospectral method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
8101 Computable Function Representations Using Effective Chebyshev Polynomial

Authors: Mohammed A. Abutheraa, David Lester

Abstract:

We show that Chebyshev Polynomials are a practical representation of computable functions on the computable reals. The paper presents error estimates for common operations and demonstrates that Chebyshev Polynomial methods would be more efficient than Taylor Series methods for evaluation of transcendental functions.

Keywords: Approximation Theory, Chebyshev Polynomial, Computable Functions, Computable Real Arithmetic, Integration, Numerical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3086
8100 Design of Nonlinear Observer by Using Chebyshev Interpolation based on Formal Linearization

Authors: Kazuo Komatsu, Hitoshi Takata

Abstract:

This paper discusses a design of nonlinear observer by a formal linearization method using an application of Chebyshev Interpolation in order to facilitate processes for synthesizing a nonlinear observer and to improve the precision of linearization. A dynamic nonlinear system is linearized with respect to a linearization function, and a measurement equation is transformed into an augmented linear one by the formal linearization method which is based on Chebyshev interpolation. To the linearized system, a linear estimation theory is applied and a nonlinear observer is derived. To show effectiveness of the observer design, numerical experiments are illustrated and they indicate that the design shows remarkable performances for nonlinear systems.

Keywords: nonlinear system, nonlinear observer, formal linearization, Chebyshev interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1593
8099 Septic B-Spline Collocation Method for Numerical Solution of the Kuramoto-Sivashinsky Equation

Authors: M. Zarebnia, R. Parvaz

Abstract:

In this paper the Kuramoto-Sivashinsky equation is solved numerically by collocation method. The solution is approximated as a linear combination of septic B-spline functions. Applying the Von-Neumann stability analysis technique, we show that the method is unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The global relative error and L∞ in the solutions show the efficiency of the method computationally.

Keywords: Kuramoto-Sivashinsky equation, Septic B-spline, Collocation method, Finite difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
8098 An Application of the Sinc-Collocation Method to a Three-Dimensional Oceanography Model

Authors: Y. Mohseniahouei, K. Abdella, M. Pollanen

Abstract:

In this paper, we explore the applicability of the Sinc- Collocation method to a three-dimensional (3D) oceanography model. The model describes a wind-driven current with depth-dependent eddy viscosity in the complex-velocity system. In general, the Sinc-based methods excel over other traditional numerical methods due to their exponentially decaying errors, rapid convergence and handling problems in the presence of singularities in end-points. Together with these advantages, the Sinc-Collocation approach that we utilize exploits first derivative interpolation, whose integration is much less sensitive to numerical errors. We bring up several model problems to prove the accuracy, stability, and computational efficiency of the method. The approximate solutions determined by the Sinc-Collocation technique are compared to exact solutions and those obtained by the Sinc-Galerkin approach in earlier studies. Our findings indicate that the Sinc-Collocation method outperforms other Sinc-based methods in past studies.

Keywords: Boundary Value Problems, Differential Equations, Sinc Numerical Methods, Wind-Driven Currents

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
8097 Cubic B-spline Collocation Method for Numerical Solution of the Benjamin-Bona-Mahony-Burgers Equation

Authors: M. Zarebnia, R. Parvaz

Abstract:

In this paper, numerical solutions of the nonlinear Benjamin-Bona-Mahony-Burgers (BBMB) equation are obtained by a method based on collocation of cubic B-splines. Applying the Von-Neumann stability analysis, the proposed method is shown to be unconditionally stable. The method is applied on some test examples, and the numerical results have been compared with the exact solutions. The L∞ and L2 in the solutions show the efficiency of the method computationally.

Keywords: Benjamin-Bona-Mahony-Burgers equation, Cubic Bspline, Collocation method, Finite difference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3692
8096 Optimal Control of Volterra Integro-Differential Systems Based On Legendre Wavelets and Collocation Method

Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh

Abstract:

In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet together with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.

Keywords: Collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2894
8095 Multi-objective Optimization of Vehicle Passive Suspension with a Two-Terminal Mass Using Chebyshev Goal Programming

Authors: Chuan Li, Ming Liang, Qibing Yu

Abstract:

To improve the dynamics response of the vehicle passive suspension, a two-terminal mass is suggested to connect in parallel with the suspension strut. Three performance criteria, tire grip, ride comfort and suspension deflection, are taken into consideration to optimize the suspension parameters. However, the three criteria are conflicting and non-commensurable. For this reason, the Chebyshev goal programming method is applied to find the best tradeoff among the three objectives. A simulation case is presented to describe the multi-objective optimization procedure. For comparison, the Chebyshev method is also employed to optimize the design of a conventional passive suspension. The effectiveness of the proposed design method has been clearly demonstrated by the result. It is also shown that the suspension with a two-terminal mass in parallel has better performance in terms of the three objectives.

Keywords: Vehicle, passive suspension, two-terminal mass, optimization, Chebyshev goal programming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
8094 Collocation Assessment between GEO and GSO Satellites

Authors: A. E. Emam, M. Abd Elghany

Abstract:

The change in orbit evolution between collocated satellites (X, Y) inside +/-0.09° E/W and +/- 0.07° N/S cluster, after one of these satellites is placed in an inclined orbit (satellite X) and the effect of this change in the collocation safety inside the cluster window has been studied and evaluated. Several collocation scenarios had been studied in order to adjust the location of both satellites inside their cluster to maximize the separation between them and safe the mission.

Keywords: Satellite, GEO, collocation, risk assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
8093 Solution of First kind Fredholm Integral Equation by Sinc Function

Authors: Khosrow Maleknejad, Reza Mollapourasl, Parvin Torabi, Mahdiyeh Alizadeh,

Abstract:

Sinc-collocation scheme is one of the new techniques used in solving numerical problems involving integral equations. This method has been shown to be a powerful numerical tool for finding fast and accurate solutions. So, in this paper, some properties of the Sinc-collocation method required for our subsequent development are given and are utilized to reduce integral equation of the first kind to some algebraic equations. Then convergence with exponential rate is proved by a theorem to guarantee applicability of numerical technique. Finally, numerical examples are included to demonstrate the validity and applicability of the technique.

Keywords: Integral equation, Fredholm type, Collocation method, Sinc approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2754
8092 Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature

Authors: Kourosh Parand, Zahra Delafkar, Fatemeh Baharifard

Abstract:

The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.

Keywords: Tau method, semi-infinite, nonlinear ODE, rational Chebyshev, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
8091 Septic B-spline Collocation Method for Solving One-dimensional Hyperbolic Telegraph Equation

Authors: Marzieh Dosti, Alireza Nazemi

Abstract:

Recently, it is found that telegraph equation is more suitable than ordinary diffusion equation in modelling reaction diffusion for such branches of sciences. In this paper, a numerical solution for the one-dimensional hyperbolic telegraph equation by using the collocation method using the septic splines is proposed. The scheme works in a similar fashion as finite difference methods. Test problems are used to validate our scheme by calculate L2-norm and L∞-norm. The accuracy of the presented method is demonstrated by two test problems. The numerical results are found to be in good agreement with the exact solutions.

Keywords: B-spline, collocation method, second-order hyperbolic telegraph equation, difference schemes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
8090 Numerical Solution of Riccati Differential Equations by Using Hybrid Functions and Tau Method

Authors: Changqing Yang, Jianhua Hou, Beibo Qin

Abstract:

A numerical method for Riccati equation is presented in this work. The method is based on the replacement of unknown functions through a truncated series of hybrid of block-pulse functions and Chebyshev polynomials. The operational matrices of derivative and product of hybrid functions are presented. These matrices together with the tau method are then utilized to transform the differential equation into a system of algebraic equations. Corresponding numerical examples are presented to demonstrate the accuracy of the proposed method.

Keywords: Hybrid functions, Riccati differential equation, Blockpulse, Chebyshev polynomials, Tau method, operational matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2588
8089 Grid Computing for the Bi-CGSTAB Applied to the Solution of the Modified Helmholtz Equation

Authors: E. N. Mathioudakis, E. P. Papadopoulou

Abstract:

The problem addressed herein is the efficient management of the Grid/Cluster intense computation involved, when the preconditioned Bi-CGSTAB Krylov method is employed for the iterative solution of the large and sparse linear system arising from the discretization of the Modified Helmholtz-Dirichlet problem by the Hermite Collocation method. Taking advantage of the Collocation ma-trix's red-black ordered structure we organize efficiently the whole computation and map it on a pipeline architecture with master-slave communication. Implementation, through MPI programming tools, is realized on a SUN V240 cluster, inter-connected through a 100Mbps and 1Gbps ethernet network,and its performance is presented by speedup measurements included.

Keywords: Collocation, Preconditioned Bi-CGSTAB, MPI, Grid and DSM Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1683
8088 A Note on the Numerical Solution of Singular Integral Equations of Cauchy Type

Authors: M. Abdulkawi, Z. K. Eshkuvatov, N. M. A. Nik Long

Abstract:

This manuscript presents a method for the numerical solution of the Cauchy type singular integral equations of the first kind, over a finite segment which is bounded at the end points of the finite segment. The Chebyshev polynomials of the second kind with the corresponding weight function have been used to approximate the density function. The force function is approximated by using the Chebyshev polynomials of the first kind. It is shown that the numerical solution of characteristic singular integral equation is identical with the exact solution, when the force function is a cubic function. Moreover, it also shown that this numerical method gives exact solution for other singular integral equations with degenerate kernels.

Keywords: Singular integral equations, Cauchy kernel, Chebyshev polynomials, interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
8087 An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon

Authors: Haniye Dehestani, Yadollah Ordokhani

Abstract:

In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective.

Keywords: Collocation method, fractional partial differential equations, Legendre-Laguerre functions, pseudo-operational matrix of integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022
8086 Numerical Inverse Laplace Transform Using Chebyshev Polynomial

Authors: Vinod Mishra, Dimple Rani

Abstract:

In this paper, numerical approximate Laplace transform inversion algorithm based on Chebyshev polynomial of second kind is developed using odd cosine series. The technique has been tested for three different functions to work efficiently. The illustrations show that the new developed numerical inverse Laplace transform is very much close to the classical analytic inverse Laplace transform.

Keywords: Chebyshev polynomial, Numerical inverse Laplace transform, Odd cosine series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1402
8085 Hybrid Function Method for Solving Nonlinear Fredholm Integral Equations of the Second Kind

Authors: jianhua Hou, Changqing Yang, and Beibo Qin

Abstract:

A numerical method for solving nonlinear Fredholm integral equations of second kind is proposed. The Fredholm type equations which have many applications in mathematical physics are then considered. The method is based on hybrid function  approximations. The properties of hybrid of block-pulse functions and Chebyshev polynomials are presented and are utilized to reduce the computation of nonlinear Fredholm integral equations to a system of nonlinear. Some numerical examples are selected to illustrate the effectiveness and simplicity of the method.

Keywords: Hybrid functions, Fredholm integral equation, Blockpulse, Chebyshev polynomials, product operational matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
8084 Using Hermite Function for Solving Thomas-Fermi Equation

Authors: F. Bayatbabolghani, K. Parand

Abstract:

In this paper, we propose Hermite collocation method for solving Thomas-Fermi equation that is nonlinear ordinary differential equation on semi-infinite interval. This method reduces the solution of this problem to the solution of a system of algebraic equations. We also present the comparison of this work with solution of other methods that shows the present solution is more accurate and faster convergence in this problem.

Keywords: Collocation method, Hermite function, Semi-infinite, Thomas-Fermi equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
8083 A Comparison of Some Splines-Based Methods for the One-dimensional Heat Equation

Authors: Joan Goh, Ahmad Abd. Majid, Ahmad Izani Md. Ismail

Abstract:

In this paper, collocation based cubic B-spline and extended cubic uniform B-spline method are considered for solving one-dimensional heat equation with a nonlocal initial condition. Finite difference and θ-weighted scheme is used for time and space discretization respectively. The stability of the method is analyzed by the Von Neumann method. Accuracy of the methods is illustrated with an example. The numerical results are obtained and compared with the analytical solutions.

Keywords: Heat equation, Collocation based, Cubic Bspline, Extended cubic uniform B-spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
8082 Edge Detection in Low Contrast Images

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey

Abstract:

The edges of low contrast images are not clearly distinguishable to human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.

Keywords: Chebyshev polynomials, Fractional order differentiator, Laplacian of Gaussian (LoG) method, Low contrast image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3274
8081 Constant Order Predictor Corrector Method for the Solution of Modeled Problems of First Order IVPs of ODEs

Authors: A. A. James, A. O. Adesanya, M. R. Odekunle, D. G. Yakubu

Abstract:

This paper examines the development of one step, five hybrid point method for the solution of first order initial value problems. We adopted the method of collocation and interpolation of power series approximate solution to generate a continuous linear multistep method. The continuous linear multistep method was evaluated at selected grid points to give the discrete linear multistep method. The method was implemented using a constant order predictor of order seven over an overlapping interval. The basic properties of the derived corrector was investigated and found to be zero stable, consistent and convergent. The region of absolute stability was also investigated. The method was tested on some numerical experiments and found to compete favorably with the existing methods.

Keywords: Interpolation, Approximate Solution, Collocation, Differential system, Half step, Converges, Block method, Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
8080 Comparing the Efficiency of Simpson’s 1/3 and 3/8 Rules for the Numerical Solution of First Order Volterra Integro-Differential Equations

Authors: N. M. Kamoh, D. G. Gyemang, M. C. Soomiyol

Abstract:

This paper compared the efficiency of Simpson’s 1/3 and 3/8 rules for the numerical solution of first order Volterra integro-differential equations. In developing the solution, collocation approximation method was adopted using the shifted Legendre polynomial as basis function. A block method approach is preferred to the predictor corrector method for being self-starting. Experimental results confirmed that the Simpson’s 3/8 rule is more efficient than the Simpson’s 1/3 rule.

Keywords: Collocation shifted Legendre polynomials, Simpson’s rule and Volterra integro-differential equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
8079 Spline Collocation for Solving System of Fredholm and Volterra Integral Equations

Authors: N. Ebrahimi, J. Rashidinia

Abstract:

In this paper, numerical solution of system of Fredholm and Volterra integral equations by means of the Spline collocation method is considered. This approximation reduces the system of integral equations to an explicit system of algebraic equations. The solution is collocated by cubic B-spline and the integrand is approximated by the Newton-Cotes formula. The error analysis of proposed numerical method is studied theoretically. The results are compared with the results obtained by other methods to illustrate the accuracy and the implementation of our method.

Keywords: Convergence analysis, Cubic B-spline, Newton- Cotes formula, System of Fredholm and Volterra integral equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
8078 Best Coapproximation in Fuzzy Anti-n-Normed Spaces

Authors: J. Kavikumar, N. S. Manian, M. B. K. Moorthy

Abstract:

The main purpose of this paper is to consider the new kind of approximation which is called as t-best coapproximation in fuzzy n-normed spaces. The set of all t-best coapproximation define the t-coproximinal, t-co-Chebyshev and F-best coapproximation and then prove several theorems pertaining to this sets. 

Keywords: Fuzzy-n-normed space, best coapproximation, co-proximinal, co-Chebyshev, F-best coapproximation, orthogonality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
8077 Rigid Registration of Reduced Dimension Images using 1D Binary Projections

Authors: Panos D. Kotsas, Tony Dodd

Abstract:

The purpose of this work is to present a method for rigid registration of medical images using 1D binary projections when a part of one of the two images is missing. We use 1D binary projections and we adjust the projection limits according to the reduced image in order to perform accurate registration. We use the variance of the weighted ratio as a registration function which we have shown is able to register 2D and 3D images more accurately and robustly than mutual information methods. The function is computed explicitly for n=5 Chebyshev points in a [-9,+9] interval and it is approximated using Chebyshev polynomials for all other points. The images used are MR scans of the head. We find that the method is able to register the two images with average accuracy 0.3degrees for rotations and 0.2 pixels for translations for a y dimension of 156 with initial dimension 256. For y dimension 128/256 the accuracy decreases to 0.7 degrees for rotations and 0.6 pixels for translations.

Keywords: binary projections, image registration, reduceddimension images.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
8076 A Numerical Solution Based On Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem

Authors: Rajeev, N. K. Raigar

Abstract:

In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate.

Keywords: Operational matrix of differentiation, Similarity transformation, Shifted second kind Chebyshev wavelets, Stefan problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001