**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31103

##### Solution of First kind Fredholm Integral Equation by Sinc Function

**Authors:**
Khosrow Maleknejad,
Reza Mollapourasl,
Parvin Torabi,
Mahdiyeh Alizadeh,

**Abstract:**

**Keywords:**
Integral Equation,
collocation method,
Fredholm type,
Sinc approximation

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1334816

**References:**

[1] M. Muhammad, A. Nurmuhammad, M. Mori, M. Sugihara, Numerical solution of integral equations by means of the Sinc collocation method based on the double exponential transformation, Journal of Computational and Applied Mathematics 177 (2005) 269-286.

[2] K. Maleknejad, K. Nouri, M. Nosrati Sahlan, Convergence of approximate solution of nonlinear Fredholm-Hammerstein integral equations, Communications in Nonlinear Science and Numerical Simulation, (In Press).

[3] M. Rasty, M. Hadizadeh, A product integration approach based on new orthogonal polynomials for nonlinear weakly singular integral equations, Acta Appl. Math. (In Press).

[4] K. Maleknejad, M. Nosrati, The Method of Moments for Solution of Second Kind Fredholm Integral Equations Based on B-Spline Wavelets International Journal of Computer Mathematics, (In Press).

[5] Adel Mohsen and Mohamed El-Gamel, A Sinc-Collocation method for the linear Fredholm integro-differential equations, Z. Angew. Math. Phys. 58 (2007) 380-390.

[6] K. Maleknejad, K. Nouri, R. Mollapourasl, Existence of solutions for some nonlinear integral equations, Communications in Nonlinear Science and Numerical Simulation, 14 (2009), 2559-2564.

[7] W. Volk, The iterated Galerkin methods for linear integro-differential equations, J. Comp. Appl. Math. 21 (1988), 63-74.

[8] K. Maleknejad, F. Mirzaee, Using rationalized Haar wavelet for solving linear integral equations, Appl. Math. Comp., 160 (2005), 579-587.

[9] A. Avudainayagam , C. Vani, Wavelet Galerkin method for integrodifferential equations, Appl. Numer. Math. 32 (2000), 247-254.

[10] F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, Springer, New York, 1993.

[11] M. Sugihara, T. Matsuo, Recent developments of the Sinc numerical methods, J. Comput. Appl. Math. 164-165 (2004) 673-689.

[12] M.Sugihara, Near optimality of the Sinc approximation, Math. Comput. 72 (2003) 768-786.

[13] X. Shang, D. Han, Numerical solution of Fredholm integral equations of the first kind by using linear Legendre multi-wavelets, Applied Mathematics and Computation, 191, (2007), 440-444.

[14] E. Babolian, Z. Masouri, Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions, Journal of Computational and Applied Mathematics, 220, (2008), 51-57.

[15] E. Babolian, T. Lotfi, M. Paripour, Wavelet moment method for solving Fredholm integral equations of the first kind, Applied Mathematics and Computation, 186, (2007), 1467-1471.

[16] C.T.H. Baker, The numerical treatment of integral equations , Clarendon Press, Oxford, 1969.

[17] Kendall E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge University Press, 1997.

[18] R. Kress, Linear Integral Equation, Springer-Verlag, New York, 1998.

[19] A. Karoui, Wavelets: Properties and approximate solution of a second kind integral equation, Computers & Mathematics with Applications, 46 (2003), 263-277