Search results for: Balanced and unbalanced faults
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 376

Search results for: Balanced and unbalanced faults

346 Towards a Compliance Reporting using a Balanced Scorecard

Authors: Michael Amberg, Dipl. Kfm. Johannes C. Panitz

Abstract:

Compliance requires an effective communication within an enterprise as well as towards a company-s external environment. This requirement commences with the implementation of compliance within large scale compliance projects and still persists in the compliance reporting within standard operations. On the one hand the understanding of compliance necessities within the organization is promoted. On the other hand reduction of asymmetric information with compliance stakeholders is achieved. To reach this goal, a central reporting must provide a consolidated view of different compliance efforts- statuses. A concept which could be adapted for this purpose is the balanced scorecard by Kaplan / Norton. This concept has not been analyzed in detail concerning its adequacy for a holistic compliance reporting starting in compliance projects until later usage in regularly compliance operations. At first, this paper evaluates if a holistic compliance reporting can be designed by using the balanced scorecard concept. The current status of compliance reporting clearly shows that scorecards are generally accepted as a compliance reporting tool and are already used for corporate governance reporting. Additional specialized compliance IT - solutions exist in the market. After the scorecard-s adequacy is thoroughly examined and proofed, an example strategy map as the basis to derive a compliance balanced scorecard is defined. This definition answers the question on proceeding in designing a compliance reporting tool.

Keywords: Balanced Scorecard, Compliance, ComplianceReporting, Compliance Scorecard.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3310
345 Diagnosis of Induction Machine Faults by DWT

Authors: Hamidreza Akbari

Abstract:

In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.

Keywords: Induction machine, Fault, DWT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
344 A Combined Practical Approach to Condition Monitoring of Reciprocating Compressors using IAS and Dynamic Pressure

Authors: M. Elhaj, M. Almrabet, M. Rgeai, I. Ehtiwesh

Abstract:

A Comparison and evaluation of the different condition monitoring (CM) techniques was applied experimentally on RC e.g. Dynamic cylinder pressure and crankshaft Instantaneous Angular Speed (IAS), for the detection and diagnosis of valve faults in a two - stage reciprocating compressor for a programme of condition monitoring which can successfully detect and diagnose a fault in machine. Leakage in the valve plate was introduced experimentally into a two-stage reciprocating compressor. The effect of the faults on compressor performance was monitored and the differences with the normal, healthy performance noted as a fault signature been used for the detection and diagnosis of faults. The paper concludes with what is considered to be a unique approach to condition monitoring. First, each of the two most useful techniques is used to produce a Truth Table which details the circumstances in which each method can be used to detect and diagnose a fault. The two Truth Tables are then combined into a single Decision Table to provide a unique and reliable method of detection and diagnosis of each of the individual faults introduced into the compressor. This gives accurate diagnosis of compressor faults.

Keywords: Condition Monitoring, Dynamic Pressure, Instantaneous Angular Speed, Reciprocating Compressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3263
343 Balanced k-Anonymization

Authors: Sabah S. Al-Fedaghi

Abstract:

The technique of k-anonymization has been proposed to obfuscate private data through associating it with at least k identities. This paper investigates the basic tabular structures that underline the notion of k-anonymization using cell suppression. These structures are studied under idealized conditions to identify the essential features of the k-anonymization notion. We optimize data kanonymization through requiring a minimum number of anonymized values that are balanced over all columns and rows. We study the relationship between the sizes of the anonymized tables, the value k, and the number of attributes. This study has a theoretical value through contributing to develop a mathematical foundation of the kanonymization concept. Its practical significance is still to be investigated.

Keywords: Balanced tables, k-anonymization, private data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178
342 High Impedance Fault Detection using LVQ Neural Networks

Authors: Abhishek Bansal, G. N. Pillai

Abstract:

This paper presents a new method to detect high impedance faults in radial distribution systems. Magnitudes of third and fifth harmonic components of voltages and currents are used as a feature vector for fault discrimination. The proposed methodology uses a learning vector quantization (LVQ) neural network as a classifier for identifying high impedance arc-type faults. The network learns from the data obtained from simulation of a simple radial system under different fault and system conditions. Compared to a feed-forward neural network, a properly tuned LVQ network gives quicker response.

Keywords: Fault identification, distribution networks, high impedance arc-faults, feature vector, LVQ networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
341 Using the Schunt Active Power Filter for Compensation of the Distorted and Umbalanced Power System Voltage

Authors: I. Habi, M. Bouguerra, D. Ouahdi, H. Meglouli

Abstract:

In this paper, we apply the PQ theory with shunt active power filter in an unbalanced and distorted power system voltage to compensate the perturbations generated by non linear load. The power factor is also improved in the current source. The PLL system is used to extract the fundamental component of the even sequence under conditions mentioned of the power system voltage.

Keywords: Converter, power filter, harmonies, non-linear load, pq theory, PLL, unbalanced voltages, distorted voltages.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
340 Project Objective Structure Model: An Integrated, Systematic and Balanced Approach in Order to Achieve Project Objectives

Authors: Mohammad Reza Oftadeh

Abstract:

The purpose of the article is to describe project objective structure (POS) concept that was developed on research activities and experiences about project management, Balanced Scorecard (BSC) and European Foundation Quality Management Excellence Model (EFQM Excellence Model). Furthermore, this paper tries to define a balanced, systematic, and integrated measurement approach to meet project objectives and project strategic goals based on a process-oriented model. In this paper, POS is suggested in order to measure project performance in the project life cycle. After using the POS model, the project manager can ensure in order to achieve the project objectives on the project charter. This concept can help project managers to implement integrated and balanced monitoring and control project work.

Keywords: Project objectives, project performance management, PMBOK, key performance indicators, integration management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 747
339 Software Maintenance Severity Prediction for Object Oriented Systems

Authors: Parvinder S. Sandhu, Roma Jaswal, Sandeep Khimta, Shailendra Singh

Abstract:

As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.

Keywords: Neural Network, Software faults, Software Metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
338 Value Analysis Dashboard in Supply Chain Management: Real Case Study from Iran

Authors: Seyedehfatemeh Golrizgashti, Seyedali Dalil

Abstract:

The goal of this paper is proposing a supply chain value dashboard in home appliance manufacturing firms to create more value for all stakeholders via balanced scorecard approach. Balanced scorecard is an effective approach that managers have used to evaluate supply chain performance in many fields but there is a lack of enough attention to all supply chain stakeholders, improving value creation and, defining correlation between value indicators and performance measuring quantitatively. In this research the key stakeholders in home appliance supply chain, value indicators with respect to create more value for stakeholders and the most important metrics to evaluate supply chain value performance based on balanced scorecard approach have been selected via literature review. The most important indicators based on expert’s judgment acquired by in survey focused on creating more value for. Structural equation modelling has been used to disclose relations between value indicators and balanced scorecard metrics. The important result of this research is identifying effective value dashboard to create more value for all stakeholders in supply chain via balanced scorecard approach and based on an empirical study covering ten home appliance manufacturing firms in Iran. Home appliance manufacturing firms can increase their stakeholder's satisfaction by using this value dashboard.

Keywords: Supply chain management, balanced scorecard, value, Structural modeling, Stakeholders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
337 Robust Fault Diagnosis for Wind Turbine Systems Subjected to Multi-Faults

Authors: Sarah Odofin, Zhiwei Gao, Sun Kai

Abstract:

Operations, maintenance and reliability of wind turbines have received much attention over the years due to the rapid expansion of wind farms. This paper explores early fault diagnosis technique for a 5MW wind turbine system subjected to multiple faults, where genetic optimization algorithm is employed to make the residual sensitive to the faults, but robust against disturbances. The proposed technique has a potential to reduce the downtime mostly caused by the breakdown of components and exploit the productivity consistency by providing timely fault alarms. Simulation results show the effectiveness of the robust fault detection methods used under Matlab/Simulink/Gatool environment.

Keywords: Disturbance robustness, fault monitoring and detection, genetic algorithm and observer technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
336 A Balanced Scorecard for Identifying Factors of Strategic Fit of National R&D Program on the Creative Economy Policy

Authors: Jieun Kim, Haejin Cho, Yongtae Park, Yoonjo Kim, Jeonghwan Jeon

Abstract:

As creative economy is important theme for national policy, many countries have been raising investments through national R&D programs. Since not all of programs are aligned with the ultimate vision and R&D investment is one of the most decisive elements, the strategic fit of national R&D programs should be evaluated for effective resource allocation. This study aims at identifying the factors of strategic fit of national R&D program on the creative economy policy. For this purpose, the balanced scorecard (BSC) model for R&D is utilized to translate national strategic objectives into a set of coherent performance factors.

Keywords: Balanced scorecard, Creative economy, National R&D program, Strategic fit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2778
335 High Impedance Faults Detection Technique Based on Wavelet Transform

Authors: Ming-Ta Yang, Jin-Lung Guan, Jhy-Cherng Gu

Abstract:

The purpose of this paper is to solve the problem of protecting aerial lines from high impedance faults (HIFs) in distribution systems. This investigation successfully applies 3I0 zero sequence current to solve HIF problems. The feature extraction system based on discrete wavelet transform (DWT) and the feature identification technique found on statistical confidence are then applied to discriminate effectively between the HIFs and the switch operations. Based on continuous wavelet transform (CWT) pattern recognition of HIFs is proposed, also. Staged fault testing results demonstrate that the proposed wavelet based algorithm is feasible performance well.

Keywords: Continuous wavelet transform, discrete wavelet transform, high impedance faults, statistical confidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
334 Fault Detection and Isolation using RBF Networks for Polymer Electrolyte Membrane Fuel Cell

Authors: Mahanijah Md Kamal., Dingli Yu

Abstract:

This paper presents a new method of fault detection and isolation (FDI) for polymer electrolyte membrane (PEM) fuel cell (FC) dynamic systems under an open-loop scheme. This method uses a radial basis function (RBF) neural network to perform fault identification, classification and isolation. The novelty is that the RBF model of independent mode is used to predict the future outputs of the FC stack. One actuator fault, one component fault and three sensor faults have been introduced to the PEMFC systems experience faults between -7% to +10% of fault size in real-time operation. To validate the results, a benchmark model developed by Michigan University is used in the simulation to investigate the effect of these five faults. The developed independent RBF model is tested on MATLAB R2009a/Simulink environment. The simulation results confirm the effectiveness of the proposed method for FDI under an open-loop condition. By using this method, the RBF networks able to detect and isolate all five faults accordingly and accurately.

Keywords: Polymer electrolyte membrane fuel cell, radial basis function neural networks, fault detection, fault isolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
333 Balancing Neural Trees to Improve Classification Performance

Authors: Asha Rani, Christian Micheloni, Gian Luca Foresti

Abstract:

In this paper, a neural tree (NT) classifier having a simple perceptron at each node is considered. A new concept for making a balanced tree is applied in the learning algorithm of the tree. At each node, if the perceptron classification is not accurate and unbalanced, then it is replaced by a new perceptron. This separates the training set in such a way that almost the equal number of patterns fall into each of the classes. Moreover, each perceptron is trained only for the classes which are present at respective node and ignore other classes. Splitting nodes are employed into the neural tree architecture to divide the training set when the current perceptron node repeats the same classification of the parent node. A new error function based on the depth of the tree is introduced to reduce the computational time for the training of a perceptron. Experiments are performed to check the efficiency and encouraging results are obtained in terms of accuracy and computational costs.

Keywords: Neural Tree, Pattern Classification, Perceptron, Splitting Nodes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1186
332 Mathematical Modeling of Wind Energy System for Designing Fault Tolerant Control

Authors: Patil Ashwini, Archana Thosar

Abstract:

This paper addresses the mathematical model of wind energy system useful for designing fault tolerant control. To serve the demand of power, large capacity wind energy systems are vital. These systems are installed offshore where non planned service is very costly. Whenever there is a fault in between two planned services, the system may stop working abruptly. This might even lead to the complete failure of the system. To enhance the reliability, the availability and reduce the cost of maintenance of wind turbines, the fault tolerant control systems are very essential. For designing any control system, an appropriate mathematical model is always needed. In this paper, the two-mass model is modified by considering the frequent mechanical faults like misalignments in the drive train, gears and bearings faults. These faults are subject to a wear process and cause frictional losses. This paper addresses these faults in the mathematics of the wind energy system. Further, the work is extended to study the variations of the parameters namely generator inertia constant, spring constant, viscous friction coefficient and gear ratio; on the pole-zero plot which is related with the physical design of the wind turbine. Behavior of the wind turbine during drive train faults are simulated and briefly discussed.

Keywords: Mathematical model of wind energy system, stability analysis, shaft stiffness, viscous friction coefficient, gear ratio, generator inertia, fault tolerant control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1860
331 Balanced Scorecard in SMEs – A Proposal for Small Gas Stations in Portugal

Authors: Ana Paula Monte, Christiane Fontenete

Abstract:

As current business environment is demanding a constant adaptation of companies, the planning and strategic management should be an ongoing and natural process in all kind of organizations. The use of management and monitoring strategic performance tools such as the Balanced Scorecard (BSC) have been popular; even to Small and Medium-sized Enterprises. This paper aims to investigate whether the BSC is being used in monitoring the performance of small businesses, particularly in small fuel retailers companies, which are competing in co-branding; and if not, it aims to identify its strategic orientation in order to recommend a possible strategy map for those managers that are willing to adopt this model as an alternative to traditional ones for organizational performance evaluation, which often focus only on evaluation of the organizational financial performance.

Keywords: Balanced Scorecard, Performance Management and Evaluation, SMEs, Strategy Maps

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4125
330 Fault-Tolerant Optimal Broadcast Algorithm for the Hypercube Topology

Authors: Lokendra Singh Umrao, Ravi Shankar Singh

Abstract:

This paper presents an optimal broadcast algorithm for the hypercube networks. The main focus of the paper is the effectiveness of the algorithm in the presence of many node faults. For the optimal solution, our algorithm builds with spanning tree connecting the all nodes of the networks, through which messages are propagated from source node to remaining nodes. At any given time, maximum n − 1 nodes may fail due to crashing. We show that the hypercube networks are strongly fault-tolerant. Simulation results analyze to accomplish algorithm characteristics under many node faults. We have compared our simulation results between our proposed method and the Fu’s method. Fu’s approach cannot tolerate n − 1 faulty nodes in the worst case, but our approach can tolerate n − 1 faulty nodes.

Keywords: Fault tolerance, hypercube, broadcasting, link/node faults, routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
329 Optimal Planning of Dispatchable Distributed Generators for Power Loss Reduction in Unbalanced Distribution Networks

Authors: Mahmoud M. Othman, Y. G. Hegazy, A. Y. Abdelaziz

Abstract:

This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm. 

Keywords: Distributed generation, heuristic approach, Optimization, planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1768
328 Optimal Planning of Voltage Controlled Distributed Generators for Power Loss Reduction in Unbalanced Distribution Systems

Authors: Mahmoud M. Othman, Yasser G. Hegazy

Abstract:

This paper proposes a novel heuristic algorithm that aims to determine the best size and location of distributed generators in unbalanced distribution networks. The proposed heuristic algorithm can deal with the planning cases where power loss is to be optimized without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power factor node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37 -node feeder. The results obtained show the effectiveness of the proposed algorithm.

Keywords: Distributed generation, heuristic approach, Optimization, planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
327 Maintenance Function's Performance Evaluation Using Adapted Balanced Scorecard Model

Authors: A. Bakhtiar, B. Purwanggono, N. Metasari

Abstract:

PT XYZ is a bottled drinking water company. To preserve production resources owned by the company so that the resources could be utilized well, it has implemented maintenance management system, which has important role in company's profitability, and is one of the factors influenced overall company's performance. Yet, up to now the company has never measured maintenance activities' contribution to company's performance. Performance evaluation is done according to adapted Balanced Scorecard model fitted to maintenance function context. This model includes six perspectives: innovation and growth, production, maintenance, environment, costumer, and finance. Actual performance measurement is done through Analytic Hierarchy Process and Objective Matrix. From the research done, we can conclude that the company's maintenance function is categorized in moderate performance. But, there are some indicators which has high priority but low performance, which are: costumers' complain rate, work lateness rate, and Return on Investment.

Keywords: Maintenance, performance, balanced scorecard, objective matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2670
326 Efficient Dimensionality Reduction of Directional Overcurrent Relays Optimal Coordination Problem

Authors: Fouad Salha , X. Guillaud

Abstract:

Directional over current relays (DOCR) are commonly used in power system protection as a primary protection in distribution and sub-transmission electrical systems and as a secondary protection in transmission systems. Coordination of protective relays is necessary to obtain selective tripping. In this paper, an approach for efficiency reduction of DOCRs nonlinear optimum coordination (OC) is proposed. This was achieved by modifying the objective function and relaxing several constraints depending on the four constraints classification, non-valid, redundant, pre-obtained and valid constraints. According to this classification, the far end fault effect on the objective function and constraints, and in consequently on relay operating time, was studied. The study was carried out, firstly by taking into account the near-end and far-end faults in DOCRs coordination problem formulation; and then faults very close to the primary relays (nearend faults). The optimal coordination (OC) was achieved by simultaneously optimizing all variables (TDS and Ip) in nonlinear environment by using of Genetic algorithm nonlinear programming techniques. The results application of the above two approaches on 6-bus and 26-bus system verify that the far-end faults consideration on OC problem formulation don-t lose the optimality.

Keywords: Backup/Primary relay, Coordination time interval (CTI), directional over current relays, Genetic algorithm, time dial setting (TDS), pickup current setting (Ip), nonlinear programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
325 A New Performance Characterization of Transient Analysis Method

Authors: José Peralta, Gabriela Peretti, Eduardo Romero, Carlos Marqués

Abstract:

This paper proposes a new performance characterization for the test strategy intended for second order filters denominated Transient Analysis Method (TRAM). We evaluate the ability of the addressed test strategy for detecting deviation faults under simultaneous statistical fluctuation of the non-faulty parameters. For this purpose, we use Monte Carlo simulations and a fault model that considers as faulty only one component of the filter under test while the others components adopt random values (within their tolerance band) obtained from their statistical distributions. The new data reported here show (for the filters under study) the presence of hard-to-test components and relatively low fault coverage values for small deviation faults. These results suggest that the fault coverage value obtained using only nominal values for the non-faulty components (the traditional evaluation of TRAM) seem to be a poor predictor of the test performance.

Keywords: testing, fault analysis, analog filter test, parametric faults detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
324 Assessing Semantic Consistency of Business Process Models

Authors: Bernhard G. Humm, Janina Fengel

Abstract:

Business process modeling has become an accepted means for designing and describing business operations. Thereby, consistency of business process models, i.e., the absence of modeling faults, is of upmost importance to organizations. This paper presents a concept and subsequent implementation for detecting faults in business process models and for computing a measure of their consistency. It incorporates not only syntactic consistency but also semantic consistency, i.e., consistency regarding the meaning of model elements from a business perspective.

Keywords: Business process modeling, model analysis, semantic consistency, Semantic Web

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
323 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to prevent deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network. 

Keywords: Accident risks estimation, artificial neural network, deep learning, K-mean, road safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864
322 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Authors: Ghada A. Alfattni

Abstract:

Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates. 

Keywords: Imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281
321 Fuzzy Logic Controller Based Shunt Active Filter with Different MFs for Current Harmonics Elimination

Authors: Shreyash Sinai Kunde, Siddhang Tendulkar, Shiv Prakash Gupta, Gaurav Kumar, Suresh Mikkili

Abstract:

One of the major power quality concerns in modern times is the problem of current harmonics. The current harmonics is caused due to the increase in non-linear loads which is largely dominated by power electronics devices. The Shunt active filtering is one of the best solutions for mitigating current harmonics. This paper describes a fuzzy logic controller based (FLC) based three Phase Shunt active Filter to achieve low current harmonic distortion (THD) and Reactive power compensation. The performance of fuzzy logic controller is analysed under both balanced sinusoidal and unbalanced sinusoidal source condition. The above controller serves the purpose of maintaining DC Capacitor Voltage constant. The proposed shunt active filter uses hysteresis current controller for current control of IGBT based PWM inverter. The simulation results of model in Simulink MATLAB reveals satisfying results.

Keywords: Shunt active filter, Current harmonics, Fuzzy logic controller, Hysteresis current controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2676
320 A Linear Relation for Voltage Unbalance Factor Evaluation in Three-Phase Electrical Power System Using Space Vector

Authors: Dana M. Ragab, Jasim A Ghaeb

Abstract:

The Voltage Unbalance Factor (VUF) index is recommended to evaluate system performance under unbalanced operation. However, its calculation requires complex algebra which limits its use in the field. Furthermore, one system cycle is required at least to detect unbalance using the VUF. Ideally unbalance mitigation must be performed within 10 ms for 50 Hz systems. In this work, a linear relation for VUF evaluation in three-phase electrical power system using space vector (SV) is derived. It is proposed to determine the voltage unbalance quickly and accurately and to overcome the constraints associated with the traditional methods of VUF evaluation. Aqaba-Qatrana-South Amman (AQSA) power system is considered to study the system performance under unbalanced conditions. The results show that both the complexity of calculations and the time required to evaluate VUF are reduced significantly.

Keywords: Power quality, space vector, unbalance evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
319 Fail-safe Modeling of Discrete Event Systems using Petri Nets

Authors: P. Nazemzadeh, A. Dideban, M. Zareiee

Abstract:

In this paper the effect of faults in the elements and parts of discrete event systems is investigated. In the occurrence of faults, some states of the system must be changed and some of them must be forbidden. For this goal, different states of these elements are examined and a model for fail-safe behavior of each state is introduced. Replacing new models of the target elements in the preliminary model by a systematic method, leads to a fail-safe discrete event system.

Keywords: Discrete event systems, Fail-safe, Petri nets, Supervisory control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
318 Implementation of an Innovative Simplified Sliding Mode Observer-Based Robust Fault Detection in a Drum Boiler System

Authors: L. Khoshnevisan, H. R. Momeni, A. Ashraf-Modarres

Abstract:

One of the robust fault detection filter (RFDF) designing method is based on sliding-mode theory. The main purpose of our study is to introduce an innovative simplified reference residual model generator to formulate the RFDF as a sliding-mode observer without any manipulation package or transformation matrix, through which the generated residual signals can be evaluated. So the proposed design is more explicit and requires less design parameters in comparison with approaches requiring changing coordinates. To the best author's knowledge, this is the first time that the sliding mode technique is applied to detect actuator and sensor faults in a real boiler. The designing procedure is proposed in a drum boiler in Synvendska Kraft AB Plant in Malmo, Sweden as a multivariable and strongly coupled system. It is demonstrated that both sensor and actuator faults can robustly be detected. Also sensor faults can be diagnosed and isolated through this method.

Keywords: Boiler, fault detection, robustness, simplified sliding-mode observer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
317 CompleX-Machine: An Automated Testing Tool Using X-Machine Theory

Authors: E. K. A. Ogunshile

Abstract:

This paper is aimed at creating an Automatic Java X-Machine testing tool for software development. The nature of software development is changing; thus, the type of software testing tools required is also changing. Software is growing increasingly complex and, in part due to commercial impetus for faster software releases with new features and value, increasingly in danger of containing faults. These faults can incur huge cost for software development organisations and users; Cambridge Judge Business School’s research estimated the cost of software bugs to the global economy is $312 billion. Beyond the cost, faster software development methodologies and increasing expectations on developers to become testers is driving demand for faster, automated, and effective tools to prevent potential faults as early as possible in the software development lifecycle. Using X-Machine theory, this paper will explore a new tool to address software complexity, changing expectations on developers, faster development pressures and methodologies, with a view to reducing the huge cost of fixing software bugs.

Keywords: Conformance testing, finite state machine, software testing, X-Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162