
 

 

  
Abstract—This paper presents a new method of fault detection 

and isolation (FDI) for polymer electrolyte membrane (PEM) fuel 
cell (FC) dynamic systems under an open-loop scheme. This method 
uses a radial basis function (RBF) neural network to perform fault 
identification, classification and isolation. The novelty is that the 
RBF model of independent mode is used to predict the future outputs 
of the FC stack. One actuator fault, one component fault and three 
sensor faults have been introduced to the PEMFC systems experience 
faults between -7% to +10% of fault size in real-time operation. To 
validate the results, a benchmark model developed by Michigan 
University is used in the simulation to investigate the effect of these 
five faults. The developed independent RBF model is tested on 
MATLAB R2009a/Simulink environment. The simulation results 
confirm the effectiveness of the proposed method for FDI under an 
open-loop condition. By using this method, the RBF networks able to 
detect and isolate all five faults accordingly and accurately. 
 

Keywords—Polymer electrolyte membrane fuel cell, radial basis 
function neural networks, fault detection, fault isolation.  

I. INTRODUCTION 
OWADAYS there is a great demand and interest in the 
renewable energy technology which gives motivation and 

encouragement to the researchers to conduct a research in this 
area. Among the renewable energy, fuel cell (FC) has received 
a lot of attention due to its potential as a future energy. 
Polymer electrolyte membrane fuel cell (PEMFC) is based on 
hydrogen technology and operates at low temperatures 
between the ranges of 60°C-100°C which allows the use of 
PEMFC in many applications such as for transportation, 
telecommunication and also as power generator. PEMFC 
gives a zero CO2 emission which reduces the effect of 
pollutant directly towards the earth.  

If faults occurred in the process plant, they have the ability 
to affect the productivity and the overall performance of the 
process plant. Therefore, it is important to identify, detect and 
isolate these faults from the process plant in order to maintain 
the systems operation and minimum the cost and maintenance. 

The ability of neural networks to overcome the nonlinear 
behavior has been proposed by a few authors as a method to 
do fault diagnosis.  Bayesian network has been proposed by 
[1] as an early alert to diagnose faults in the air reaction fan, 
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inside the cooling system and also in the hydrogen feed line. 
The authors also used it to diagnose the growth of the fuel 
crossover and internal loss current. To improve reliability and 
durability of PEMFC systems, [2] presents a flooding 
diagnosis based on a black-box model of elman neural 
network (ENN). Here, ENN is used to do a comparison 
between measured and calculated pressure drops where the 
ENN is trained with a flooding-free condition and the 
difference between calculated and experimental pressure drop 
is used as the residual. In this paper, to make the FDI 
monitoring system more efficient and robust to five types of 
faults in the PEMFC systems, an independent RBF network is 
used for fault identification, detection and isolation. The aim 
of this work is to develop a FDI scheme during the online 
operation of PEMFC dynamic systems using an independent 
RBF network model which able to detect five faults and can 
isolate them accordingly. 

II.  POLYMER ELECTROLYTE MEMBRANE FUEL CELL DYNAMIC 
SYSTEMS  

A FC is an electrochemical energy conversion device which 
converts the chemical reaction of hydrogen and oxygen into 
water and this produces electricity. It is constructed like a 
sandwich, with an electrolyte between two electrodes, known 
as anode and cathode as shown in Fig. 1. In this diagram the 
hydrogen is supplied to the anode side while the oxygen is 
supplied to the cathode side. During the chemical reaction the 
hydrogen atoms separate into protons and electrons. The 
electrons pass through the load circuit and create a flow of 
electricity whereby the protons migrate through the electrolyte 
and reunite with oxygen which produced water and heat. 

 

 
Fig. 1 PEMFC chemical reaction 

A. Compressor Model 
The flow and temperature out of the compressor (Wcp and 

Tcp) depend on the compressor rotational speed ωcp. A lumped 
rotational model is used to represent the dynamic behavior of 
the compressor [3]: 
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cpcm
J dt

d
cp

cp ττ
ω

−=                                                       (1) 

 
where τcm(vcm,ωcp) is the compressor motor (CM) torque and 
τcp is the load torque. The compressor motor torque is 
calculated using a static motor equation: 
 

( )cpvcm
cm

t
cm kVR

k
cm ωητ −=                                                             (2) 

 
where kt, Rcm and kv are motor constants and ηcm is the motor 
mechanical efficiency. The torque required to drive the 
compressor is calculated using the thermodynamic equation: 
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where γ is the ratio of the specific heats of air (=1.4), cp is the 
constant pressure specific heat capacity of air (=1004 J.kg-1.K-

1), ηcp is the motor compressor efficiency, psm is the pressure 
inside the supply manifold and patm and Tatm are the 
atmospheric pressure and temperature, respectively.  

B. Supply Manifold Model 

 
Fig. 2 The fuel cell supply system 

 
The cathode supply manifold (sm) includes pipe and stack 

manifold volumes between the compressor and the fuel cells 
as shown in Fig. 2. The supply manifold pressure, psm, is 
governed by mass continuity and energy conservation 
equations [4]: 
 

outsm
W

cp
Wdt

dm sm

,
−=                                                         (4) 

⎟
⎠
⎞⎜

⎝
⎛ −= smToutsmWcpTcpW

smV
aR

dt
dp sm

,

γ                                 (5) 

 
where R is the universal gas constant and atm

a
M is the molar 

mass atmospheric air at 
atm

φ , Vsm is the manifold volume 

and 
sm

atm
asmsm

sm Rm
MvpT = is the supply manifold gas 

temperature. 

III. RADIAL BASIS FUNCTION NEURAL NETWORKS 
A neural network provides a general way to model a 

nonlinear system with memory and it has been used by many 

researchers to describe the relationship between the input and 
output of monitored systems. Radial basis function (RBF) 
neural networks is a forward network consist of three layers 
which are the input layer, hidden layer and output layer. RBF 
networks used a k-means clustering algorithm which the 
incoming weights from the input layer become centre of 
clusters of input vectors. The k-means clustering algorithm 
determines the closest centre of the RBF networks. The input-
output mapping for the RBF network can be described as: 

 

( ) ( )xiiw
K

i
xy φ∑

=
=

1                                                             (6)                 
 

The Gaussian function is the most common equation used 
in the RBF neural network. 
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where c is the radial basis centre, ρ is the variance of the 
Gaussian function, and x is the input vector.  

The training session of the RBF network uses the error in 
the output values to update the weights connecting the layers 
until a minimal error is achieved. The minimal error is in the 
index of mean square error (MSE) [5] defined by the 
following equation: 

 

( )∑
=

−=
N

j
ee

N
MAE

1
2ˆ1                                                          (8) 

 
where e is true value and ê is the estimated value. 

 

  

Fig. 3 The independent RBF networks 
 
The basic structure of an independent RBF networks for 

PEMFC dynamic systems proposed in this work can be 
referred to Fig. 3. Here, two inputs and three outputs of the 
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process with their delayed values form the 13 inputs of the 
RBF model, while the three process outputs are the model 
outputs [6]. The chosen input output orders are according to 
the training experience and checking the process dynamics. 
The model prediction errors are generated to implement the 
FDI procedure. 

IV. SIMULATING FAULTS 
In this work, five faults are introduced to a known test-

bench PEMFC based on the model developed in Michigan 
University. First one is an actuator fault, which is simulated 
having a -7% change of the compressor motor voltage 
measurement. The second is the air leak in the supply 
manifold which is a typical component fault also at -7%. The 
sensor faults for the three outputs, which having a +10% 
change measurements of net power and λO2 while a +5% 
change in stack voltage. The PEMFC simulator was modified 
to include five possible fault scenarios which may occur 
during the normal operation of PEMFC systems. Fig. 4 shows 
the five faults introduced to the overall PEMFC systems [6]. 

 

 

Fig. 4 The schematic of PEMFC systems with five types of faults 

A. Actuator Fault 
Most centrifugal compressor is used in FCs are susceptible 

to surge and choke that limit the efficiency and performance 
of the compressor. The air flow must be ensure that the partial 
pressure of oxygen does not fall below a critical level at the 
cathode, on the other hand, it must also minimize the parasitic 
losses of the air compressor. The compressor voltage will be 
changed if the compressor experience surge and choke and 
affected the air flow in the supply manifold. The compressor 
motor performance is reduced by -7% of the total compressor 
motor voltage from the sample intervals, T=500-600 to reflect 
the scenario of the fault which happens at the actuator part. 

B. Component Fault 
Air leakage in the supply manifold makes the pressure in 

the cathode decrease. Therefore to collect the FC stack data 
subjected to the air leak fault, equation (5) is modified to: 

 

( )lTWTW
V
R

dt smoutsmcpcp
sm

asmdp
Δ−−= ,

γ                      (9) 

  

where ∆l is used to simulate the leakage from the air manifold, 
which is subtracted to increase the air outflow from the supply 
manifold. ∆l=0 represents that there is no air leakage in the 
supply manifold.  The air leakage is simulated by -7% change 
of the pressure inside the supply manifold. The fault occurs at 
the sample intervals, k = 1500-1600.  

C. Sensor Faults 
Net power, λO2 and stack voltage sensors are considered 

experiencing over-reading faults. The faulty sensor data has a 
change of +10% at the measured net power over the sample 
interval, k = 2500-2600, a +10% change of the measured λO2 
over the sample intervals, k = 3500-3600 and a +5% change of 
the measured stack voltage over the sample intervals, k = 
4500-4600. 

V. FAULT DETECTION AND ISOLATION 
The implementation of FDI is done in the MATLAB 

R2009a/Simulink environment. In this work, a data set with 
5000 samples is acquired from the plant when the five faults 
are simulated to the plant. The block diagram of FDI proposed 
in this work is displayed in Fig. 5. 
 

 
Fig. 5 Block diagram of the proposed FDI using the RBF networks 

A. Fault Detection 
By applying fault detection, it determines that problems 

have occurred in the PEMFC systems. In order to do this, the 
filtered squared model prediction error for each output is used 
as fault detection signal, where a residual signal is generated 
by the combination of these prediction errors. The sensitivity 
of the residual to each fault can be significantly enhanced, and 
consequently the false alarm rate would be reduced. The 
residual error in this work is defined as [7]:  
 

22
2

2
SVONP eeere ++= λ

                                               (10) 
 

where eNP is the filtered modeling error of net power, eλO2 is 
the filtered modeling error of λO2 and eSV is the filtered 
modeling error of stack voltage. 
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B. Fault Isolation 
RBF classifier is used to perform fault isolation. The five 

outputs are arranged in this way: The target for any one output 
is arranged to be “1” when the corresponding single fault 
occurs, and to be “0” when this single fault does not occur. In 
this study, 5000 samples of data were collected with the first 
fault occurring during k = 500~600, the second fault occurring 
during k = 1500-1600, etc. Then, the generated filtered squared 
model prediction error vector from the fault detection part was 
used as the input data of the RBF classifier. Correspondingly, 
the target matrix X0 has 5000 rows and 5 columns. The entries 
from the 500th row to the 600th row in the first column are “1”, 
while the other entries are “0”. The arrangement for the column 
2 to 5 is done in the same way. This is shown as in Table I. 
 

TABLE I 
THE TARGET MATRIX IN TRAINING THE RBF CLASSIFIER 

Rows Xo 

500-600 [1 0 0 0 0] 
1500-1600 [0 1 0 0 0] 
2500-2600 [0 0 1 0 0] 
3500-3600 [0 0 0 1 0] 
4500-4600 [0 0 0 0 1] 

VI. SIMULATING RESULTS 
The random amplitude signals (RAS) of stack current used 

as disturbances to the PEMFC systems has been injected to the 
FC stack. The RAS excitation signals of stack current are 
generated randomly to cover the whole range of frequencies 
and the entire operating amplitude in the PEMFC systems. 
The simulation result of three PEMFC outputs and the 
corresponding five faults is shown in Fig. 6. It shows the 
squared filtered model prediction errors for the three output 
variables. As can be seen, there are more than one faults 
occurred in these three outputs. 

 

 
Fig. 6 Filtered model predicted errors 

 

Based on the result obtained in Fig. 6, in order to identify 
the types of faults occurred, the residual generator as stated in 
equation (10) was applied. Here, the fault occurrence can 
clearly identified and detected with their respective threshold 
after the implementation. It is observed in Fig. 7 that all five 
faults of three sensors, component and actuator faults are 
clearly detected. 

 

 
Fig. 7 Fault detection of five faults using the residual generator 
 
The target matrix in Table I was used in training of the RBF 

classifier. After training, a similar data set with also 5000 
samples, with the same five faults simulated, was collected. 
These data was applied to the fault detection part and then to 
the isolation part with the trained RBF classifier. The five 
outputs of the classifier are displayed in Fig. 8.  
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Fig. 8 The fault isolation for five faults during the training process 

 
The output of this signals are filtered and the filtered signals 

are displayed in Fig. 9. By implemented the RBF classifier, 
the five faults are isolated according to individual fault with 
respect to certain threshold value.  

 

 
Fig. 9 The location of five faults in the PEMFC systems 

VII. CONCLUSION 
This work presents the development of FDI using an 

independent RBF network model which has been investigated 
under an open-loop scheme. Here, the RBF network has been 
used to perform fault identification, classification and 

isolation. The simulation results show that the -7% faults in 
the actuator, component, +5% fault in sensorSV and +10% 
two other sensors are successfully detected and isolated. It is 
important to isolate the malfunction devices in the systems for 
easy troubleshooting and maintenance purposes. By doing this 
step, the device can easily be replaced and any appropriate 
action can be taken quickly and therefore it can save time and 
increase productivity. 
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