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Abstract—Covering-based rough sets is an extension of rougiough sets have been done by many researchers. For examples,

sets and it is based on a covering instead of a partition of thge equivalence relations of rough sets were extended to such

universe. Therefore it is more powerful in describ_ing some practic, leneralized binary relations as compatibility relations [11]
problems than rough sets. However, by extending the rough s ’

covering-based rough sets can increase the roughness of each b similar relations [13], [14]. Correspondingly, a partition

in recognizing objects. How to obtain better approximations froff Universe in rough sets was extended to a covering [15]-{17].
the models of a covering-based rough sets is an important issueCovering-based rough sets is an extensive study of Pawlak’s

In this paper, two concepts, determinate elements and indetermingiggh sets. It extends a partition in rough sets to a covering of a

elements in a universe, are proposed and given precise definitiongyerse. Becauseunlike a parititiona covering does not results
respectively. This research makes a reasonable refinement of the

covering-element from a new viewpoint. And the refinement m )50”_] a rigid eqw_v_alen_ce relatlon,_ So It is more conS|Stent_ W_'th
generate better approximations of covering-based rough sets mod@ality than partition is when a judgement and a description
To prove the theory above, it is applied to eight major coverings given to an object. But it also enlarges the boundary set

based rough sets models which are adapted from other literatusgtween lower and upper approximations at the same time. In
The result is, in all these models, the lower approximation increasggition. the problem of the redundancy of covering-element

effectively. Correspondingly, in all models, the upper approximation . | der t the b d ¢ del
decreases with exceptions of two models in some special situatioflgSes- [N order to narrow the boundary Set, Some new moaels

Therefore, the roughness of recognizing objects is reduced. TRiscovering-based rough sets have been proposed [15], [16],
research provides a new approach to the study and application[b8]-[27] by many scholars after they have made lots of
covering-based rough sets. studies about this field . Moreover, Moreover, a very important

Keywords—Determinate element, indeterminate element, refingvork in solving the redundancy of covering-element has been
ment of covering-element, refinement of covering, covering-basédne by Zhu [28]. This work stimulates the development
rough sets. and application of covering-based rough sets. Nowadays, the
| INTRODUCTION covering-based rough sets models are usually studied through

' ] defining a new one by many scholars. Actually, different
R OUGH sets theory proposed by Pawlak [1] is @ mathnodels may be applicable to different situations. And in
I\ ematical tool which is used to deal with the uncertaityifferent coverings, the results of comparisons between the
inaccurate an_d vague data. It apprOX|mater_deS_CrleS a tafg@ler and upper approximation generated from these models
set via a pair of lower and upper approximations. In thigiay pe different, so it is difficult to judge which model is
way, it gives a good description of the fuzzy idea proposgshiter than others. Hence, different from the research done
by G. Frege. The rough sets has a powerful objectivity {iyeviously, this paper, from a new point of view, studies how
recognizing the target' set through a partition that is gotten frq@ get a pair of preferable lower and upper approximations in
_the equivalence relaﬂo_n _between elements of unl\{erse_ancgh%h model. By refining the covering-elements in a covering-
independent of any priori knowledge. Therefore, since it Wagsed rough sets, the lower approximation can be increased
proposed, the rough sets theory has drawn much attentionyj the upper approximation can be decreased. In this way, the
many scholars and has been widely applied into many fielggject recognition capability of each model is fundamentally
in both academia and industry such as data mining, machifgyroved. Basing on the refinement of covering-element, we
learning, pattern recognition, and so on [2]-[10]. Howevepaye studied and analyzed eight main models of covering-
due to the rigid binary relation of the equivalence relation ig55eq rough sets. We found that the size of the lower ap-
_rough sets, it limits the development_of the rqugh sets itself_aBPoximation of each model after the refinement of covering-
its application. So, plenty of extensive studies on generalizggbment is not smaller than the one which covering-element
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are analyzed; some basic concepts of refinementVsFedvtidgExample 2.1:Let U = {a,b,¢,d}, K1 = {a,b}, Ky =
element are defined; After a study of the relation betwedh,c}, K3 = {b,c,d}, and C = {K;,K,, K3} be the
refinement and reduction has been conducted, some signifigamtering of U. The minimal description ob is Md(b) =
conclusions are drawn; And an algorithm of refinement df{a, b}, {b,c}} = { K1, K1},
covering-element is also presented in this section. In sectiorDefinition 2.3: (Covering lower approximation set family,
4, several major models of covering-based rough sets a@vering lower approximation and so on) [15] L€t be a
introduced and a comparative study on each model's lowesvering of universé/ and X C U, then:
and upper approximations which arise from a covering andSet family C,(z) = {K € C|K C X} is called the
refinement of the covering is made. Finally, the study isovering lower approximation set family of;

concluded in section 5 with remarks for future works. SetX, = JC.(z) is called the covering lower approxima-
tion of X;
Il. BACKGROUND Set X = X — X, is called the covering boundary

To better understand the content of the following sectioApproximation ofX; _
we will introduce some fundamental concepts of rough sets. Set family Bn(X) = {Md(z)lz € X} is called the
covering boundary approximation set family &f;
A. The basic concepts of rough sets Set familyC* (X) = C.(z) U Bn(X) is called the covering

Let U be a nonempty finite set which is called universgpspz: ;Epioxm;tlgp ‘Q’igtcfglrln |(ij tﬁr;coverin R —
U. R is a cluster of equivalence relation of univer§e A mation of)_('U (X) ed the 9 upp PP

pair § = (U, It) is called approximation space of universe Definition 2.4: (Reducible element, irreducible element)

U1, [29]. If P € R and P # @, then P is still an ) .
equivalence relation of univerdé and is called indiscernible .[28] Lgt C be a covering of a univers#, K €C. i .K
is a union of some sets i — { K}, we sayK is a reducible

relation, which denoted by ND(P) [30]. U/IND(P) is a ) . . .

partition of equivalence relatioAN D(P) to universeU and element c_>f_C, oth§M|seK 'S an |rredu0|blg element df

: . . : L Proposition 2.1: [28] Let C' be a covering of a universe
is a basic knowledge of univergéin the approximation space If K is a reducible element af'. thenC' — (K is still a
S = (U, R). Each element of partition is called a equivalencgc; erin IofU uct ' —{K}is st
class abouf ND(P). The elements of the same equivalenc% ;rolpgsition. 2.2: [28] Let C be a covering of a univerde
class are indiscernible. We dendt& D(P) as P simply. K €C, K is a reducible element of, and K, € C' — {K}.

An equivalence relationP can produce a partition of . . ) L
universeU and is considered as knowledge we master. Fg}en [.(1 is a reducible element of” if and only if it is a
reducible element of — {K}.

all X C U, itis hard to precisely describ& according to L i .
the knowledge. Then, for any target s€f we can employ a . Def'”'“of‘ 2.5: (Reduct of cover-mg) [28] Le€" be a cover-
of a universd/, the new covering come from the reducing

pair of approximation sets to approach to it and to describe P

roughly. The pair of approximation sets is defined as follow8/ 0¢€sS of proposition 2.1 and proposition 2.2 is called the
apr(X) = U{K|K € U/P A K C X} reduct ofC, and denoted byeduct(C).
apr(X) = U{K|K € U/P A (K?WX £ 0)} The definition of reducible element solves effectively the

f problem of redundant covering-element in covering rough sets.
Q] the next section, we will explore the problem of refinement
of covering-element by the concept of reduct of covering.

We call them the lower and upper approximations.o,
respectively. And the subtraction of upper and lower appro
imations is called the boundary region &f [1], and it is
denoted aBnp(X), that is, Bnp(X)=apr(X) — apr(X).

For any subsek of universeU, if apr(X) = apr(X), then I1l. THE REFINEMENT OF COVERINGELEMENT
the partition ofU generated byP can describeX accurately. A. The origin and analysis of the refinement of covering-
On the contrary, the partition éf generated by’ can describe element

X roughly, and the ordered pair ¢ipr(X),apr(X)) is called  according to the definition of partition and covering in the

the rough set with respect t&. same universe, we know that the similarity between partition
and covering is that the union of all equivalent classes in

B. The fundamental concepts of covering-based rough setgartition is the same as the union of all covering-elements in

Definition 2.1: (Covering, covering approximation spacefovering, thatis, the two union is equal to the universeAnd

[15] Let U be a universe(' is a family of subsets of/. the difference between partition and covering is that join of

If all subsets inC are non-empty anduC = U, thenC' any two equivalence classes in partition is empty, but, the join

is a covering. We call the ordered pair U,C' > covering of any two covering-elements in covering maybe not empty. A

approximation space. covering is a partition when the join of all covering-elements is
Definition 2.2: (Minimal description) [15] Let< P,C > null set. In covering-based rough sets, an elemasftuniverse

be a covering approximation spadé: € U, could be from several covering-elements, thatsishelongs
Md(z)={KeClre KAVSeCAxze SASC K= to several covering-elements. And this increases the difficulty

K =25)} of distinguishingz exactly. Certainly, there are also some

is called the minimal description aof. elements of universe only appear in one covering-element, but

In the following example, we can better understand the
conception of minimal description.
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some other elements of this covering-element mé§eNaSpe interesting results after refining covering-element. Paper
in another covering-elements, so it also increases the difficulB1] studies a special covering which is called the fined
of distinguishing these elements which only appear in omevering. In a fined covering, the join of any two covering-
covering-element. These will cause a too small lower approglements is equal to the union of some covering-elements.
imation and a too large upper approximation when recognizihg paper [31], the author defines a concept named neighbor
target set. And the recognition capability of covering-basddmily. We will borrow the concept in this paper. But, in order
rough sets is reduced. to vividly describe the idea of the refinement of covering-

For these reasons, we introduce a new method to refielement, we will call this concept family of membership and
covering-element. The main idea of the method is as followtie definition as follows:

According to the definition of lower and upper approx- Definition 3.1: (Family of membership) Lek U,C > be
imations in rough sets, we know that the less number af covering approximation space, € U, we call {K|z €
elements of equivalence class to a partition of universe, theAK € C} the family of membership of to coveringC, and
larger lower approximation and the larger upper approximatiaenote as#"M (z), namely,FM (z) = {K|x € K ANK € C}.
may be generated. That is, this partition has more strongExample 3.1:Let U = {a,b,c,d,e} be a universe(' =
recognition capability to target set. This idea is also applfa,b,c},{b,c},{b,d},{e}} is a covering ofU, then:
to covering-based rough sets. It is that the smaller the sizeF'M (a) = {{a,b,c}}, FM(b) = {{a,b,c},{b,c}, {b,d}},
of covering-element, the more strong recognition capability &fM (¢) = {{a,b,c}, {b,c}}, FM(d) = {{b,d}}, FM(e) =
the covering-based rough sets. So, if we can reduce the sizg of}}.
covering-element effectively, the recognition capability of the Proposition 3.1:Let U be a universeC' is a covering of
covering-based rough sets would be improved. How to reduariverselU. For anyz € U, we haveMd(x) C FM (x).
the size of covering-element? Proof: Let C = {Ki,K,,...,K,}, FM(z) =

Let universeU = a,b,c,d, C = {K1,K3, K3, K4} = {Ki,Ks,...,K,}, wherel <p <m.ForanyK; € FM(x),
{{a,b,c}, {b,c},{b,d}, {e}} is a covering ofU. It is easy if there is not existk; € FM(z)—{K;} such thatk; C K,
to see that elememtappears in covering-elemeft;, K> and then Md(x) = FM(z). On the contrary, if there exists
K3, elementc appears in covering-elemeif; and K». And K, € FM(x)—{K;} such that; C K, thenK; ¢ Md(x),
a,d and e appear inK,, K3 and K, respectively. Thus, we that is,Md(xz) C FM (z). According to the above results, we
can consideb and ¢ as indeterminate element andd, e as get thatMd(z) C FM(z). [
determinate element. Then take out the determinate elemenDefinition 3.2: (Determinate element, indeterminate ele-
from each covering-element to form a new covering-elememient) LetU be a universe(C' is a covering ofU. For any
respectively, and combine every indeterminate element withe U, z is a determinate element if and only M (z)| = 1.
determinate element of each covering-element to form n&therwise,z is indeterminate element.
covering-element. If all elements of a covering-element areln example 2,a,d, e are determinate elements ahd: are
determinate element or indeterminate element, then we led@vdeterminate elements.
it as it is. By doing this, a covering-element is refined. In Definition 3.3: (Determinate element set, indeterminate ele-
the coveringC' given above, for instance, is a determinate ment set) Let/ be a universeC' = K, Ks, ..., K,, is a cov-
element andb, ¢ are indeterminate element t&;. So, we ering ofU. We call DS(K;) = {z|x € K; A(|[FM(z)| =1)}
take outa as a new covering-elemeriz}, and combine the determinate element set &f;, and IDS(K;) = {z|z €
respectively withh andc to form two covering-elemenrfla, b}, K; A (|JFM(x)| > 1)} the indeterminate element set Af;.

{a, c}. Similarly, K5 can be refined ab, c}, {c}. And leave We suppose thabS(K;) =@, |DS(K;)| = 0.

K, and K, as them are because all the element of them areExample 3.2:Let U = {a,b,¢,d,e} be a universe(C =
determinate or indeterminate. Finally, we get a new covef{a,b,c},{b,c},{b,d},{e}} is a covering ofU, then,

ing {{a}, {a,b},{a,c},{b,c}, {b,d},{d},{e}}. As shownin  DS(K;) = {a}, DS(K;) = O, DS(K3) = {d},
Fig.1, the upper level are the covering-elements of the primaB/S(Ky4) = {e};

covering and the lower level are the refinement of covering-IDS(K1) = {b,c}, IDS(K>) = {b,c}, IDS(K3) = {b},
elements of the primary covering-elements. The bold italieDS(K,) = .

letters of each covering-element are determinate elements. Definition 3.4: (Combination of covering-element) Let
U ={z1,22,...,2n} be a universeC = { K, K»,..., K}

is a covering, whereé = 1,2,....mandj = 1,2,... n. If

Refi f the covering: (o z; € K;, then
efinement of the covering [ “ i (2] ’

—————————————————————— (DG DS(K) U {z;}, |DS(K)| >0
CCE(l‘j):
Fig. 1. The refinement of covering-element . I_DS_(K}), ‘DS(K1)| =0
is called the combination of covering-element about

covering-elemenfy;.
. ) In example 3, for covering-elemert’;, we can get that
B. The concepts of the refinement of covering-element CCE(a) = {a}U{a} = {a}, CCE®D) = {a}U{b} =
In this subsection, we will define some new concept$a,b}, and CCE(c) = {a}U{c} = {a,c}. For covering-
Through these concepts, we will propose the definition of tldementk,, becausé andc are both indeterminate elements,
refinement of covering-element. Meanwhile, we will discusten|DS(K5)| = 0, CCE(b) = CCE(c) = {b,c}.

The original covering: |
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Definition 3.5: (Refinement of covering-elementY 9&x &8 8. For anyz € U, if |FM(x)| > 1, then, the refinement

a universe,C = {K;,K,,..., K,,} is a covering ofU. of coveringC is itself.

For any K; € C(i = 1,2,...,m), we call RCE(K;) = Proof: If Vo € U, |[FM(x)| > 1. Then, according to

{CCE(z)| = € K;} the refinement of covering-elemeft;.  definition 3.1 and 3.2, we can know that all element of universe
Example 3.3:Let U = {a,b,c,d,e}. C = U are indeterminate element. From definition 3.3, we get

{{a,b,c},{b,c},{b,d},{e}} is a covering of universe that the indeterminate element set of each covering-element
U, where Ki={a,b,c}, Ky={b,c}, K3z={b,d}, K,={e}. in covering is itself and determinate element set is empty.

Then, According to definition 3.4 and 3.5, we get that the refinement
RCE(K)= {{a},{a,b},{a,c}}, RCE(K2)={{b,c}}, of each covering-element is itself. Lastly, according to 11, we

RCE(K3)={{b,d},{d}}, RCE(K4)={{e}}. can know that the refinement of coveriqgis itself. [ |
Proposition 3.2:Let U be a universe, C = For convenience, Lef\/d(x) and RMd(x) represent the

{K1,K>,...,K,} is a covering ofU. For any K; € C, minimal description ofr on reduct(C) and RC(reduct(C))

K; = URCE(K;). respectively. The proposition 3.7 can be obtained as follows:

Proof: According to definition 3.4 and 3.5, we can Proposition 3.7:Let U is a universe and’ is a covering
easily get thatU{CCE(z)|z € K;} = K;, that is,K; = of U. For anyz € U, |RMd(z)| > |Md(z)|.
URCE(K;). [ ] Proof: Let C = {Ki,Ka,...,K,},Md(z) =
Definition 3.6: (Refinement of covering). Let/ be a uni- {K;, Ks,...,K,}, wherel <p <m. For anyK; € Md(z),
verse,C = {K,, K»,...,K,,} is a covering ofU. RC(C) = we suppose thaRCE(K;) = {Ti1,Ti,...,T;q}, Where
U{RCE(K;)|K; € C} is called the refinement of coveringg > 1. According to definition 3.3and 3.4, we can get that
C. For anyzx € U, we call RMd(xz) = {K € RC(C)|z € there at least exist¥;; € RCE(K,)(1 < j < ¢) such that
KAN(NVSeRC(CNeSANSCK = K =_5)} the minimal z € T;;. So,|RMD(x)| > |Md(z)|. [ |
description ofz to RC(C). Let U be a universe, and’ = {K;,Ks,...,K,,} is a
In example 4, according to definition 3.6, we can get thatovering of U. I is an index set and,j,p,q,r,s € I.
RC(C) ={{a},{a,b},{a,c}} U{{b,c}} U{{b,d},{d}} U Let the reduction ofX is reduct(C) = {K1,Ks,...,Kp},

{{e}} = {{a},{a, b}, {a,c},{b,c}, {b,d},{d},{e}}; Md(z) and RMd(x) are respectively the minimal description
RMd(a) = {{a,b},{a,c}}, RMd(b) = of z in reduct(C) and RC(reduct(C). Then, we can get

{{a,b},{b,c},{b,d}}, RMd(c) = {{a,c}, {b,c}}, proposition 3.8, 3.9 and corollary 3.1.

RMd(d) = {{b,d}}, RMd(e) = {{e}}. Proposition 3.8:Let U be a universe(' is a covering of
Proposition 3.3:Let U be a universe and' be a covering U, K; € reduct(C), z € K;, K; € Md(z), if there exists

of U. ThenRC(C) is a covering of universé’. K; € reduct(C) such thatk; C K, then there existg € K

Proof: Let U be a universe an@' = {K1, Ko, ..., K,,} suchthatFM(y)| = lifand onlyif| JRMd(z) C |J Md(x).
be a covering of/. According to proposition 3.2, we get that Proof: Sufficiency. Becausek; C K, according to
RCE(K;) = K;. MeanwhileUK; UK, U...UK,, =U. So, definition 2.2, we can know thaf{; ¢ Md(x). While
(URCE(K;)) U (URCE(K3))U...U(URCE(K,,)) = U, there existsy € K,, and |[FM(x)| = 1, according to

that is ,URC(C) =U. m definition 3.2 we can know thaj is a determinate element
Proposition 3.4:Let U be a universe andC = in reduct(C). So,y ¢ UMd(z), We can get thatk;, ¢
{Ky,Ks,...,K,} be a covering of U. RC(C) = RC(reduct(C)) according to definition 3.3, 3.4, 3.5. Let
{Th,T»,...,T,} is arefinement o€'. For anyT; € RC(C), RCE(K;) = Tj1,Tj2,...,Tjs(¢g > 2). Then, there at least
there existsk; € C such thatT; C K;. exists an element;, in RCE(K;)(1 < r < q) such that

Proof: According to definition 3.3 and 3.4, we get thaty € T}, andy € T},. According to definition 3.6, we can know
for any T; € RC(C), there existskK; € C such thatT; € thatT;, € RMd(z). So,y € URMd(x), thatis,y ¢ UMd(z)
RCE(Kj). From proposition 3.2, we get thatRCFE(K;) = andy € URMd(z). Therefore, JRMd(z)

K;. So,T; C K;. [ | Necessity. BecauseR M d(z)and there existg € RMd(x)
Proposition 3.5:Let U be a universe and’ be a covering andy ¢ Md(z). Lety ¢ K, — K;, foranyK, € C, if z,y €
of U. If C is a partition, then the refinement of coveri6gis K, then these surely exist&; € C such thatK, C K,

itself. x € Ky andy ¢ K. Then,y ¢ URMd(z). This is contract to
Proof: WhenC' is a partition ofU, namely,z € U, z only y € RMd(x). The hypothesis is not hold. Thugc K; — K;,
appears in one covering-element. According to definition 3.that is,y is only in K;. Then|FM (y)| = 1. [ ]

we can know thatF'M(z) has only one element. Then Proposition 3.9:Let U be a universe(' is a covering of

|FM(x)| = 1. According to definition 3.2, we know thatU, K; € reduct(C), z € K;, K; € Md(x), if there exists

every element of covering-element is determinate elemeif; € reduct(X) such thatX; C K, then there existg € K

From definition 3.3, we get that the determinate elemestich that FM (y)| > 1 if and only if RMd(x) C Md(x).

set of every covering-element in covering is itself and the Proof: Sufficiency. For anyy € K;j,|FM(y)| > 1,

indeterminate element set is empty. From the definition 3a¢cording to definition 3.2 we can know that all elements of

and 3.5, we can know that the refinement of every covering; are indeterminate elements. We get thgt= RCE(K})

element in covering is itself. Finally, we get that the refinemefiiom definition 3.3, 3.4 and 3.5. Thu&}; € RC(reduct(C)).

of coveringC'is itself according to definition 3.6. m For K; C K;, if K, € Md(z), thenK; ¢ Md(z), that is,
Proposition 3.6:Let U is a universe and’ is a covering K; € RMd(x) and K; ¢ RMd(z). For any K, € Md(x),
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we suppose thaRCE(K,) = {Tp1,Tp2, -, Ty} WP&YES Einposed by all indeterminate elements of covetihgrhen,
q > L If o € Tp,Tpo,...,Tps(1 < s < gq), then Vz e Hj, |FM(z)| > 1. K, (1 <r <mn)is composed by such

Tp1, Tp2, ..., Tps € RMd(z). Let Ay, = {T},1, Ty, ..., Tps}, elements of covering” that there at least one determinate
thenuA, C K,. Thus, if Md(z) = {K1, K>,...,K,}, then element and indeterminate element in the same covering
there correspondingly exisBMd(z) = {41 UA,U...UA,} element, thatis, there existsy € K, such tha{ FM (z)| > 1
such thatu4d; C K;, UAs C Ky, ..., UA, C K,. and|FM(y)|=1. We suppose thab = {D;,Ds,..., D},
Accordingly, URMd(z) C UMd(x). H = {Hy,H,,...,H,}, K = {Ky,K,,...,K,}. For own

Necessity. FOrURM d(z) C UMd(z), if Yy € RMd(x), convenience, we regaidF M (x) as the family of membership
theny € UMd(xz). Lety € K; — K, if y € UMd(z), then =z corresponding to coveringC(C).
K; ¢ Md(z), for K; C K;. There surely exist¥, € C such According to definition 3.4 and 3.6, we can know that
thatz,y € K, andK,, € Md(x) , that is,y € K; andy € DRC(C), HRC(C). From definition 3.5 we geRCFE(K}),
K,. So,|FM(z)| > 1. Of course, ify ¢ Md(z), assume that RCE(K3), ..., RCE(K,). So, RC(C) = DU H U
y is a determinate element, according to definition 3.4, we gRCE(K,)URCE(K>)U...URCE(K,). For any element
thaty U RMd(x). This is contract taJRMd(x) C UMd(x). of K,, if |[FM(z)| = 1, then, according to definition 3.5,
So, y is an indeterminate element. TheAM (z)| > 1. If we get that|RFM(z) > 1|. If |FM(z)| > 1. Similarly,
y ¢ K;— K, andy € K;, theny € K, thatis,|[FM(z)| > 1. we get that|RFM(z) > 1|. That is, for anyz € UK
Of course, ify € K;, theny € K;. Therefore, the abovein RC(C), |RFM(z)| > 1. From definition 3.4 and 3.5
results hold. B again, we get thaD C RC(RC(C)), H C RC(RC(C)),
Corollary 3.1: Let U be a universe(' is a covering ofy, RCE(K,) C RC(RC(C)). Therefore, RC(RC(C)) =
K; € reduct(C), x € K; and K; € Md(x), if there is not DU H U RCE(K;)U...U RCE(K,), namely, RC(C) =
exist K; € reduct(X) such thatk; C K, thenuRMd(z) €  RC(RC(C)).
UMd(x). n
Proof: Because there is not exi#{; € reduct(C) such  Accordingly, it will not produce a new covering to refine a
that K; C K;. Then, for anyK, € reduct(C), if z € K, refined covering. Hence, it is not necessary to refine a refined
then K, € Md(z). Let RCE(K,) = {Tp1,Tp2,---, Tpq} covering.
wherep > 1. If z € Tp1,Tp2,...,Tps(1 < s < gq), then
Tpl;TpQwHans € RMd(SE) Let Ap = {Tplan%Tps}y .
then, UA, C K,. So, if Md(x) — {Ky Ko ... K.} C reduction _
then RMd(z) = {A; U A, U...U A,}, correspondingly. Thr_ough reducing .of a covering, we can reduce redundant
S0, UA; C Ki,UAs C Ko,...,UA, C K,. We get that coyenng—element. It_ is necessary t_o reduce before or after_the
URMd(z) C UMd(). m 'efinement of covering-element. Sine we get a new covering

We maybe consider that two different coverings of the sarféier the refinement of covering-element, then this new cover-

universe whether produce the same refinement. Let us seelfigesatisfies all the properties of covering and reduction [28].
following example. Now, the problem is that whether the new covering reduce

Example 3.4:Let U={a,b,c,d}, C; andC, are two cover- before refing is the same as it is reduced after refined. Or, .u_nder
ing of U, andCy={{a, b, c},{b}, {bc}, {b,d},{c,d}}, Cy = what conditions does they are the same under what conditions.
{{a},{a,b,c,d},{a,c},{c,d}}, please computer the refine- Please read an example first.
ment of C; and Cs. Example 3.5:Let U = {a,b,c,d}, be a universeC =

Solve: According to the definition 3.62C(C,) = {{a}, {K1, K2, K3, K4, K5} ={{a,b, c}, {a,b}, {b,c}, {b,c,d},
{a,b}, {a,c}, {b}, {b,c}, {b,d}, {c,d}}, RC(Cs) = {{a}, {a,b;c,d}}isacoveringol. Please computer the refinement
{a,b},{a,c}, {b},{b,c}, {b,d},{c,d}}. of C in a different order of reduct and refinement.

Accordingly, RC(C,) = RC(C,).Therefore, two different ~ Solve: (1) Reduct before refinement.
coverings of the same univergé maybe produce the same BecauseK; = K|J K3, K5 = K1 K2 UKs UKy,
refinement. according to the definition 2.4, we know thaf; and K5

Whether we can continue to refine the covering after tt@&€e two reducible element. With definition 2.5 shows that
refinement of covering? Or, what we do is meaning? Throudku and K5 can be reduct, seeduct(C) = {Ka, K3, K4}.
studying and analyzing, we discover that it will not produc&hen according to definition 3.5, we know thAU F(K,) =
a covering when refine a covering has been refined. Namelya}, {a,b}}, RCE(K3) = {{b,c}}, RCE(K,) = {{b,d},
RC(C) = RC(RC(C)). Therefore, we can get the following{c,d}, {d}}. At last, according to definition 3.6, we can

theorem. work out RC'(reduct(C)), that is, RC(reduct(C)) = {{a},
Theorem 3.2:Let U be a universe and' be a covering of {a,b},{b,c}, {b,d}, {c,d},{d}}.
universeU, then RC(C) = RC(RC(C)). (2) Refinement before reduct.

Proof: Let U be a universe and’ is a covering of  According to definition 3.1, we can know that, for any
U. I is an index set andm,p, n,i, j, » € I. Let z € U/|FM(x)| > 1,thatisto say, all elements 6f are inde-
C = {D1,Ds,....,Dp,Hi,Hy,... . H, Ki,K>,...K,}, terminate elements. From definition 3.3 we get that the refine-
wherem > 0,p > 0,n > 0andm+n+p > 1. D;(1 <i <m) mentofC isitself. Thatis,RC(C) = {K1, Ko, K3, K4, K5}.
is composed by all determinate elements of coverihghat After reducing of RC(C), we get thatreduct(RC(C)) =
is, Vo € D;(1 <i<m), |[FM(z)| =1. Hj(1 < j <p)is {Ka, K3, Ks}. Thus, RC(reduct(C)) # reduct(RC(C)).
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Here, we can see that if the order of reductionVatd Yefir@8vering would be reduced in the order of refinement before
ment is different, then the new covering is different. reduct. Then, what result would be in the order of reduct before

The result in the above is different, for the reason is thetfinement?
we produce new determinate elementsnd d after reduce  Proposition 3.11:Let U be a universe and’ be a covering
C, which bring about the changing of refinement. If the cowf U. The refinement after reduction of coveridagwill not
ering isC = {{a,b, c},{a,b},{a,c},{b,c},{b,c,d}} and the produce new reducible element, that is to J&;(reduct(C))
order is refinement after reduction, theR( (reduct(C)) = has not reducible element.
{{a,b},{b,c},{b,d},{c,d},{d}}. If the order is reduction af- Proof: Let reduct(C) = Ki,Kas,...,K,. For any
ter refinement, themeduct(RC(C)) = {{a,b},{b,c},{b,d}, K, € reduct(C), assumeRCE(K;) = {Ti1,T;2,...,.Tip},
{c,d},{d}}. Hence,RC (reduct(C)) = reduct(RC(C)). The where p > 1. Then T;; € RCE(K;),1 < j < p.
appearance of this result is that the number of determinaecording to definition 3.3, 3.4, 3.5, we get that there is
element after reduces; is not change in the process ofot existT;, ¢ RCE(K;) — {T;;} such thatT;,, C T;;.
refinement after reduction. Accordingly, we can get prop&o, T;; is irreducible inRCE(K;). Let RC(reduct(C)) =
sition 3.10. {Tll,Tlg, Ce ,Tla,Tgl,TQQ, . ,Tgb, . ,Tml,TmQ, - ,Tmc}((l >

Proposition 3.10:Let U be a universe and' be a covering 1,b > 1,¢ > 1). If there at least exists a determinate element
of U. C is the new covering of refinement after reductiony in K;, according to definition 3.1 and 3.2, we get that
C, is the new covering of reduction after refinementCland y ¢ U(reduct(C) — {K;}). So, T;; is irreducible in
reduce(C') has the same number of determinate element, th®t (reduct(C)). If there exists indeterminate element in

C;1 = (5. Otherwise,C; # Cs. K;, according to definition 3.3, 3.4, 3.5 and 3.6, we get
Proof: Let U = zl,22,,zn be a universe.C' = that K; € RC(reduct(C)). Let there existTy., Ty, €

K1,K2,,Km is a covering ofU. I is an index set and RC(reduct(C))(1<d<m,1 < f <m,e>1,g>1) such

07,0, g, € 1. that K; = T4 U T}, thenT,. and Ty, are composed by

(1) C and reduce(C) have the same number of determinathdeterminate elements. According to definition 3.3, 3.4, 3.5
elements. Firstly, we analyze the condition of refinement aftgnd proposition 3.2, we get thak,., 7y, € reduct(C).
reduction. For anyK; € C, if K; is a reducible element , This is contract toK; € reduct(C). So, there are not exist
then there at least exists more than two covering-elememts 7, € RC(reduct(C)) such thatK; = Ty U Ty,.
Ki,K,...,K.(r > 2)in C —{K;} such thatk; = K; U Accordingly, the refinement after reduction of coverigy
K> U K,.. K; will be deleted after reductiot. If there still  will not produce new reducible element,. [
exists reducible elemert, in C, we will delete it according  Proposition 3.12:Let U be a universe and' is a covering
to definition 2.5 until there is not reducible elementdh of U. If each covering-element af at least has one determi-
Here, we get the reductioreduct(C) of C. After refining of nate element, the® is irreducible.
reduct(C), we get a new covering; = RC(reduct(C)). Proof: Let C = {K;,K,,...,K;}. For anyK; € C,
On the contrary, if we reduce after refir®€, according if » ¢ K; and [FM(z)| = 1, according to definition 3.1
to some related definition, we can g&CE(K;) = K; and 3.2, we get that ¢ (C — {K;}). So, there are not
for K; is a reducible element. Similarly, if there still ex-exist two or more covering-element @— { K, } such that the
ists other reducible elemenk,, then RCE(K,) = K,. union of them equal td<,. That is to sayk; is a irreducible
From definition 3.6, we can know that;, K, € RC(C). element. Similarly, we get that each covering-element'aé
In the following, we can getRCE(K;), RCE(K3),..., irreducible. Then( is irreducible. ]
RCE(K,) after refining K, K>, ..., K,. And RCE(K) C Proposition 3.13:Let U be a universe and' be a covering
RC(C),RCE(K;) € RC(C),...,RCE(K,) € RC(C). ofU.K < C,if K is areducible element, then for amyc K,
So, K; = RCE(K;) = RCE(K:1) U RCE(Kz) U ... U |FM(z)| > 1.
RCE(K,). Then, according to the definition of reducible ele-  Proof: Let C' = K1, Ko, ..., K,,. For anyK; € C, if K

ment and reduction , we delet§; from RC(C). Similarly, K, is an irreducible element, then there exigt, K», ..., K, €
can also be deleted froC'(C'). Here, reduct(RC(C)) = C—{K;}(P > 2) such thatk; = K; UK,U...UK,. Accord-
Co. ing to definition 3.1, we get that, for amyKi, |FM (z)| > 1.

BecauseC' and reduct(C) have the dame determinate ]

element, that is to say, foK; € C,K; € reduct(C), if
From definition 3.4, we get that; = Cs.

(2) The number of determinate elements @& and According to proposition 3.10, we get that the result that
reduce(C) are different. reduce a covering which has been refined is different from the

When the number of determinate elements Gh and refined covering of reduction. When the two results are differ-
reduce(C)) are different, that is to say, there at least exis@nt, according to the process of proofing in proposition 3.10,
K; € C and K; € reduct(C) such thatk; = K, and We can know that the number of covering elements of the
DS(K;) # DS(K;). ThenREC(K;) # REC(K;). Accord- former result is not greater than the later. This means that
ing to definition 3.6, we get that} # Cs. m the judgment of later is stronger than former. When the two

Now, let we think about a problem. For a covering we knowesults are the same, according to definition 3.6 we can know
that the redundant covering-element of the refinement of tH@t the number of covering elements is not greater than the

D. The algorithm of the refinement of covering-element
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number of covering-element after refined coveringFY¥FHABL THE COMPARISON OF COVERINGBASED ROUGH SETS

point we can say that reducing a covering is convenient than MODEL
a reduction of refined covering. For this reason, we will give | this section, we will compare some mainly covering-
the algorithm of refinement after reducing a covering. based rough sets based on the refinement of covering-element.

The algorithm we give includes two parts: reduction anBy comparing, we discover that the lower approximation of
refinement. Zhu [32], [33] give a algorithm of reduction. Afteall models in original covering are not greater than the lower
we analyze the properties of reduction: (1) for ally € C, approximation in the refinement of covering-element. And the
if K; is a reducible element, then there at least exists tw@per approximation of all models in original covering are

or more covering-element&’;, K», ..., K, such thatK; = not less than the upper approximation in the refinement of
KiUKyU...UK,; (2) if K; = KUK, U...UK,, then covering-element. This means that the judgment of each model
|Ki| > |Kql, | K| > |Ksl,...,|K;| > |K,|, that is to say, to object is stronger on the basis of refinement of covering-

the number of element of reducible elementAq is surely element.

greater than the number of any proper subset. We improve the

algorlthm of redu.ctlon about Zhu [32], [33], on which we 9Ver The model of covering-based rough sets
the refined algorithm.

Part |- reduction In this section, we will mainly introduce eight main models

Input: universel/ and covering® = {K;, Ko, ..., Ky} of covering-based rough sets. In order to better understand
Output: reduct(C) o some model, we introduce some new concepts.

S1 initialization: reduct(C) = C, i = 3; Definition 4.1: (Neighbor [25], [34], friend [27], enemy
S2temp = 0, j = 1; [18]) Let < U,C > be a covering approximation space, for

S3 we sort the number of element in covering C intBNY« € U, Neighbor(z) = ({{K|z € KA K € C} is called

nondecreasing order and gét= {P,, P, ..., P,y }: the neighbor ofx an_d denote a¥v(x); U{K|z € K ANK €
S4 if m < 3, then jump to S14; C} is ‘called the friend ofr and denote asF'riends(zx);
S5 if P; C P, , thentemp = temp U Pj; UBF(zgnds(x) s called the enemy of and denote as f ().
S6j=j+1; efinition 4.2: (Eight models of coyermg—basgd rough sets)
S7if j < I, then jump to S5: [15], [16], [18]—[25]. LetC be a covering of a univerdg, for
S8 if temp # P;, then jump to S12 any setX C U, define: o
SO reduct(C) = reduct(C) — {P;} The_: lower approximation ofX in _e|ght mode_ls of
S10 we rearrange the number framP; = Pi.1, Piyy = covering-based rough sets from the first to the eighth are
Prro... Pyy = Pr: X, X, Xg, Xa, X4, Xg, Xog, Xg. And X, = X = X, =
S11j =1, jump to S5 Xo = Xy = Xy = Xe = U{KIK € ONK C X},
S12i =i+ 1 X = {z|N(z) C X}. The upper approximation of in eight
S13ifi < m, jump to S11 models of covering-based rough sets are defined respectively
S14 the end. as follows:
Part Il refinement The first is [;5]:X*f X UUUMd(2)|z € X — X, });
Input: a reductionreduct(C) of universelU; The second is [19JX={{K|K € C AKX # O}
Output: the refinemenkC (reduct(C)) of reduct(C); The third '5,[ZO]:X#@T WU Md(2)|z € X7
S1 initialization: RC (reduct(C)) = @,i = 1,h = 1; The fourth is [27]: X* = Xo U{K|K € CAK(X —
S2 if i > r, then jump to S13; Xa) # O);
Sam = |T)|; The sixth is [21], [23],(7[25]:X = {x|N(x) ﬂX # 0},
S5 computeF M (z;); The seventh is [22]X 7 = Xy U(~ U{Friends(y)|z €
S6 if [FM(z;)| = 1, thenDS(T) = a5, j = j + 1, jump X = X%,y € e-f(2)});
to S8: The eighthisX® = Xg J(U{ N Kz € X—Xg});
S7TIDS(Ty) = wj,j = j+1; (remark: symbol 2" means oéiSi]\r{iﬁa) complementary set.)
S8 if j < m, then jump to SS; According to the above definitionwe find that the eight
SO if [DS(Ty)| = 0, then RC(reduct(C)) = models’s lower approximation are the same except the sixth.
RC(reduct(C)) UIDS(T;),i =i+ 1, jJump to S2; While the upper approximation of the eight models are
S10  RC(reduct(C)) = RC(reduct(C)) U different. To these models, we can't estimate which one is
{IDS(T;){xn}},h = h+1; better or worse than others because different models may
S11if h <'m, jump to S10; be applicable to different places. Zhu [25], [27], [35] study
Sl2h=1i=i+1; the upper approximation of them from the point of view of
S13 the end. containable relation.

(x; is the jth element off;)
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B. The comparison of covering-based rough setsV©:5 No:8, 28y ct(X) is not less than it is tRC (reduct(C)).

In this section, we will propose position 16, 17 and 18, and Proof. Let reduct(C) = {K1,K,....Km}. I'is an
give the proofs of them in detail. Some concepts of this secti(l)r}ldex setand, j, p, qr, h.’ 5 € L
(1)The upper approximatioX = U{K|K e CAKNX #

such asMd(z), N(z), Friend(z) are defined omeduct(C). (O} of the 2th type of covering-based rough sets.

Proposition 4.1:Let U be a universe, and’ is a covering — .
. : ; Let RX = U{K|K € RC(reduct(C))NKNX # O} is
X C . A .
of U. X C U is an arbitrary subset @f. In the eight models of the upper approximation ok in RC(reduct(X)).

covering ba}sed rough sets d_eflned in de_f|n|t|on 4.2, the IowerFor any K; € reduct(C), assume RCE(K;) =
approximation ofX produced inreduct(C) is not greater than . — :
. X {Tn,Ti2,...,Tip}, i K, C X and there exists
it produced inRC(reduct(C)). P
. = . . Ti1, Tio, . .. 7Tis(1 <s< p) such thafl;; N X #* D, TixNX 7&
Proof: Let redct(C) = {K1, Ko, ..., Ky, }. I'is an index
.o . . @,...,ESQX # 0. Let AZ = {ﬂ17n27...,TL‘s}, then
set andi, j,p,q,7,s,h € I. For convenience, leX, is the — .
. . : = K. If X = Ky UKy U ... U Kj, correspondingly,
lower approximation of other seven models of covering-bas . = I = .
rough sets that except the 6th type of model and it bases oh. {Aglg = 1,2,...,5} and RX C X. That is, the
upper approximation ofX in the 2th type of model of

reduct(C). CorrespondinglyR X, is the lower approximation . . o
of the (se\)/en modgls of cgoi//ering—based roughpan it bases Q! yering-based rough sets teduct(C) is not less than it is
tO%C’(reduct(C)).

RC(reduct(C)). (2) The upper approximatioN ® = XqU{K|K € CAKN

For any K; € reduct(C), RCE(K;) is the refinement of :
K, and we suppose tha®CE(K) = {Tu, Tia, ..., Ty} If ngjg_h)ggt)s# @} of the 4th type of model of covering-based

; C i initi . ; C X.. . . .
K, € X, according to definition 4.2, we get thaf; C X Let RXq is the lower approximation o and RX© =

Since URCE(K;) = K;, thenT;; C K; wherel < j <
. RXa U{K|K € RC(reduct(C)) N KN (X — RXa) # O}
A e NT.. C
r. Accordingly, for eachT;, RCE(K;),Ti; € RX.. is the upper ofX in RC(reduct(X)), respectively.

Similarly, if X, = K; UKy U...U K,, then the union . .
of RCE%I(K ) RCE(Kl) QRCE(K ) fhat correspond to According to proposition 4.1, we géfe C RXa. Because

1) 2)50 1, Kp X — Xo = (X — RXa) + (RXa — Xa), then {K|K €
K, K,,..., K, equals toRX,, that is,RX, = RCE(K;)U CONKN(X —X@) %0V ={KIK e CAKN(X — RX,
RCE(Kj5) U ...U RCE(K)). Here, if there at least exists@ + Klf(( _C A);m (}R}§ | XE) £ 0 (For_an I@() 7
Ky € reduct(C) — {K1, Ks, ..., K} and Ty, € RCE(K,) ];g {t C . eRCE K@ _ T@ T ; T; I)f/Kl rew
such thatT,, C X, thenRX, C X,. Of course, ifK, or T,; "¢ (€), assum (Ki) = {Tix, Tia, ..., Tip }- ‘

7 (X — RXa) # O, then there existd}1, Tia, ..., Tis(1 < s <

are not exist, thelR X, = X,.. Accordingly, the result holds.
In the following, we prove that the 6th type of model of?) Such thafiy N (Xa — RXa) # O, TixN(Xe — RXa) £ O,

covering-based rough sets also satisfies proposition. - LisN(Xa —RXa) # 0. f A; = {Tin, Tin, ... Tia}, then

. . UA; C K;. Similarly, if K1, Ks,...,K; € CandK1N(Xa—

Let reduct(C) = {K1, Ka, ..., K, }. I is an index set and RXa) £ 0, K>N(Xa—RXa) £ 0 J K:N(Xa—RXa) £
i,3,p,q,7,h,s,e, f €I RN(x)isthe neighbor of produced a) # 0, KyN(Xe—RXa R A ik

in RC (reduct(C)). RXg is the 6th type of model of the lower O»_then there existsd;, A,,..., K; such thatu{UA,|q =

L : 1,2,...,7} C U{K,l¢g = 1,2,...,5}. Accordingly, we can
approximation ofX produced inRC (reduct(C)). i d
In reduct(C), if = € Ki K, then N(z) = K, N get that:{ K|K € RC(reduct(C))ANKN(X —RXa) # O} C

K,. Let RCE(K)) = {Ti.Te...., Ty}, RCE(K,) — {K|K € reduct(C) N K N (X — RXa) # @} On the other
{Tj1,Tja,...,Tj,}- If there existss(1 < s < p) elements in hand EXa—Xa C {K|K € reduct(C)AKN(RXa—Xa) #

: . 0}.S0,(RXa —Xe)H{K|K € RC(reduct(C)) NKN (X —
RCE(K;) andh(1 < h < q) elements inRCE(K;) contain
v Let A= Ty NToN... AT B =Ty NTnn.. NTy. LToe)#OYCKIK € reducl(C) N KN (X — RXa) # O}
Then A C K;, B C K;. Accordingly, ;%N(x]) _Anpc HEIKEreduct(C)NKN(RXa—Xa) # O} Consequently,
KN K, = N(z), that is, RN(z) C N(x). Similarly, in ZXe+{E|K € RC(reduct(C)) A KN (X — RXa) # O}C
RC(reduct(C)), if © € Ky, Ko, ..., Ky, then RN(2)N(z) ~0 1 KK € reduct(C) AK N (X~ RXa) # O}, namely,

@ (@)
still holds. So, ifN(z) C X, then RN(x) C X. That is, for R)(;)T%eXu S0, the result hotds. (N e X
anyz € U, if z € Xg , thenz € RXg. Here, if there at least PPer app o e

’ X} of the 5th type of model of covering;
existsy € U — Xg such thatRN (y) C X, thenXg C RXj. If * .
there is not exist such or RN (y), thenXg = RXs. Thus, in In RC(reduct(C)), we suppose thaki X, is the lower

the 6th type of model of covering-based rough sets, the Iow"’lr':’rOX'm""tlon ofX, EN(z) is the neighborhood of, and

e B )
approximation ofX produced inreduct(C) is not greater than a;;roxaw;'zfrr U{RN(z)lz € X — RX,} s the upper
it produce m.RC(Ted“Ct(C))' . . . According to proposition 4.1, we get thaf, C RX,.
In conclusion, we get that, in the eight models of covermgi:-Or an € U, we have thatRN(z) C N(z). Since
based rough sets defined in definition 4.2, the lower approx- Xy m_ ¥ ' BX4(RX Xm) then (]";Cf('
imation of X produced inreduct(C)) is not greater than it X B X+ }:{](V(xia: e%(( R—;(_}+€_sz,(x)|x {e ];3))(‘1:
; - Xyp= - + +
produce '.n.RC(TeC_ZUCt(C))' . . - X}. BecauseX; C RX,, then {RN(z)lz € X
Proposition 4.2:Let U be a universe, and’ is a covering RXC{N@)z € X — RX)}. As RX: — X
of U. X C U is an arbitrary subset df. In the eight models N+ = ];CX“T . then EX x ++RN N
of covering-based rough sets defined in definition 4.2, besi (@) € RXy — X}, (RXy. — X )+{ BN ()|

L — RX,}C{N(z)lx € X — RX;}+{N(z)|r € RX
the 1th and the 3th types, the upper approximationXofo X.}. ConsequentlyRX  +{RN(z)|z € X — RX.}CX,

m

+ I miN |
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{N(z)lz € X — Xy}, thatis ,RX, C X . Therefs}t&; \¢& Bikause

get the result.

(4) The upper approximatioX ® = {z|N(z) N X # @} of
the 6th type of model of covering;

Let RN(z) = n{K|z € K A K € RC(reduct(C))} is the
neighbor ofz in RC(reduct(C)). RX® = {z| RN (z) N X #
(@} is the upper approximation of in RC(reduct(C)). For
anyz € U, we get thatRN(z) C N(z). If RN(x)NX # @,
thenN(z)NX # @. So,{z|RN(x)NX # O} C {z|N(z)N
X # @}, that is, RX® C X%. Thereby, the result holds.

(5) The upper approximationX” = X¢ U {~
U{Friends(y)|x € X — Xo,y € Re.f(x)}} of the Tth type
of model of covering;RX ¢ is the lower approximation ok
in RC(reduct(C)). RFriend(x) and Re. f(z) are the friend
and enemy ofz in RC(reduct(C)). RX” = RX¢ U {~
U{Friends(y)|r € X — RXy,y € Re.f(x)}} is the upper
approximation ofX in RC(reduct(C)).

From proposition 4.1, we get thaX,, C RXy. Then,

X—RXoy C X—Xg,thatis,Vz € X — RXqy. There surely be (b,d}, {c,d}, {d}}
thatz € X — Xv. On the contrary, we could not hold that. WeRdeE [

suppose thaRCE(K;) = {Ti1,Ti2,...,Tip}. FOr anyz €

X—RXy andK; C Friends(z), if x € Tj1, Tia, ..., Tis(1 <

s < p), thenT;1, T, ..., Tis € RFriends(x). Assume
A; = {Ti1, Ty, ..., Tis}, thenUA; C K,;. Consequently, if
Friends(x) = U{K1, Ko, ..
RFriends(xz) = U{A1UA2U...UA,} andRFriends(x) C
Friends(x). According to definition 4.1, we get thatf (z) C
Re.f(x). So, U{Friends(y)|z € X — RXo,y € e.f(z)}C
U{RFriends(y)|lx € X — RXg,y € Re.f(z)}. In the
following, we get that~ U{RFriends(y)lxr € X —
RXy,y € Re.f(z)}C~ U{Friends(y)|r € X — RXq,y €

., K;}, correspondingly, there is pyrq4

of RXe — Xe S U Niemae
K|J) S RXg — X&}, then (RX& — X&§
*UH{Nxerma@ Klz € X — RXe}CUH{Ngepax) Kl €

X - RX&}+U{ﬂKeMd(a:) K|l’ € RXg — X&}. So,
RXyg +U{ﬂRMd(z)K|x € X — RXg}C Xg +
U{Nkermaw Klz € X — Xg}, that is, RX® C X%
Thereby, the above result holds. Accordingly, we prove the
proposition 4.2. [ ]

For the first and third models of covering-based rough sets,
proposition does not hold. We can get it from the following
example.

Example 4.1:Let U = {a,b,c,d} be a universeC =
{{a},{a,b,c},{a,b,c,d}} is a covering ofU, X = {a,b,d}
is a subset of/. In the first and the third model of covering-
based rough sets, Please computer the upper approximation of
X onreduct(C) and RC(reduct(C)) respectively.

According to known conditions,
reduct(C)=CRC(reduct(C)) = {{a}, {a,b,c} {a,d},
for any + € U, Md(z) and
x) represent the minimal description of on
reduct(C) and RC(reduct(C)) respectively. Then,
Md(a) = {{a}}, Md(b) = {{a,b,c}}, Md(c) = {{a,b,c}},
Md(d) = {{a,bc,d}}, RMd(a) =  {{a}},
RMd(b) = {{a,b,c}, {b,d}}, RMd(c) = {{a,b,c},{c,d}},

(d) = {{d}}.

(1) In the first model:

The upper approximation ok on reduct(C) is:

X = XUUUMd)le e X - X.}) =
{a,b} U{a,b,c} ={a,b,c};

The upper approximation aX on RC(reduct(C)) is:

X* = X, UU{URMd(x)|z € X — X.}) = {a.b} U (U

e.f(x)}. For anyxz € RX¢ — Xy, there surely be that {{a,b,c} Ule,d}}) = {a, b, c,d};

x ¢ e.f(x). Thereby,x ¢ U{Friends(y)lx € RXy —
Xo,y € ef(x)}. Thenz € (~ U{Friends(y)|lzr €
RXq — Xo,y € e.f(x)}). Further more, RXoy — Xoy C{~
U{Friends(y)|r € RXy — Xg,y € e.f(x)}}. Therefore,
(RXy, — Xo;) + (~ U{RFriends(z)|lx € X — RXy,y €
Re.f(z)})C(~ U{Friends(y)|x € X —RXy,y € e.f(x)})+
(~ U{Friends(y)|lz € RXy — Xo,y € e.f(z)}). Accord-
ingly, RXy + (~ U{RFriends(z)|lx € X — RXy,y €
Re.f(z)})C Xo + (~ U{Friends(y)lz € X — Xo,y €
e.f(x)}), that is, RX”* C X*. So, the result holds.

(6) The wupper approximation X% =  Xg U
(ANkemaq) Klz € X — Xe}) of the 8th type of
model of covering.

Let RX, andRMd(z) in RC(reduct(C)) are respectively
the lower approximation and minimal descriptioX.¢ =
Xe U (UH{Nxermaw) Klz € X — RXg}) is the upper
approximation ofX in RC(reduct(C)).

According to proposition 4.1, we get thafg, C RXg.
During the proof of (1), we get thatuA, C K.
If  Md(z) = {K1,K,,...,K;}, correspondingly,
there is RMd(x) = {A; U Ay U ... U A;} such
that (;_,(U4,) C =1 g S0, U{Nkermag
K|z € X — RXe} € U{Nkenraw Kle € X — RXc}.
Moreover, X — Xg¢=(X — RXg)+(RXg — Xg). Then,
HNkemaw Klz € X — Xeb =U{Ngenmaw Klr €
X - RX&}+U{mKeMd(x)K|x € RXy — Xg}-
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(2) In the third model:

The upper approximation oK on reduct(C) is: X# =
UH{UMd(z)|z € X} = U{{a}, {a,b,c}} = {a,b, ¢}

The upper approximation of X on
RC(reduct(C))is: X# = |J{URMd(z)lx € X}
= {a7 b} U(U{{a7b7 C} U{C7 d}}) = {a7 b,c, d}

From the above example we find that the upper approxima-
tion of X on reduct(C) is larger than it onRC (reduct(C)),
that is, proposition 4.2 is not hold in the first and the third
model.

Next, we will illustrate and validate proposition 4.2 by
another example.

Example 4.2:Let U = {a,b,c,d,e, f,g} be a uni-
verse, C = {{a,b}, {b,c,e}, {c,d,f}, {bce f g},
{a,b,c,e, f,g}} is a covering ofU, X = {a,b,d,e} is a
subset of/. Please computer and compare the lower and upper
approximations ofX on reduct(C) and RC(reduct(C)) in
eight models.

According to definiton 2.5, we know that
reduct(C) = {{a,b}, {b,c e}, {c,d, [}, {b,ce f,g}}
Then with definition 3.6 shows thaRC(reduct(C)) =
{{a},{a,b}, {b,c,e}{c,d}, {d},{d, f}, {b.g},{c g},
{e.9}. 1/, 9} {9}}.

(1) The lower approximation ofX on reduct(C) and
RC(reduct(C)).
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According to definition 4.2, we know that the upp@Fapsre3iunid(z)|z € X — X, }). Thus, RX* C X*. Therefore,

imation of X on reduct(C) in eight models are: we get that the upper approximation &fin reduct(C) is not
X,=X=X4=Xa=2X; = Xg = Xe = U{KIK € less than it is inRC (reduct(C)) to the 1th type of model of
CANKCX}={a,b}; covering-based rough sets.
Xg = {z|N(z) C X} = {a,b}; (2) The upper approximatioX # = U{UMd(z)|r € X}
The lower approximation ok on RC(reduct(C)) in eight 0of X is the 3th type of model of covering-based rough
models are: sets. Becaus@& RMd(z) C UMd(x), then U{ URMd(x)]
X,=X=X4=Xa=2X, =Xg =Xe = {K|K € =€ X}CU{UMd(z)|z € X}, thatis ,RX# C X#. Thus,
CANK CX}={a,b,d}; we prove that the upper approximation &fin reduct(C') is
Xg = {z|N(z) C X} = {a,b,d,e}. not less than it is iNRC(reduct(C)) to the third model of
Thus, the lower approximation of on RC(reduct(C)) is covering-based rough sets. ]
larger than it onreduct(C) in eight models. Proposition 4.1, 4.2 and 4.3 based on theluct(C) of
(2) The upper approximation o on reduct(C) and coveringC are discussed the lower and upper approximations
RC(reduct(C)). of the eight models of covering and are compared the upper
According to definition 4.2, we know that the upper approxand lower approximation before the refinement and after the
imation of X on reduct(C') in eight models are: refinement. The reason we do that is that: for one thing, by
X* =X, U{Md(z)|xz € X — X.} ={a,b,c,d,e, f}; reducing the covering’, we can delete redundant information,
X={KIKe CANKNX # @} ={a,b,c,d,e, f,g}; and thereby get a better lower and upper approximations and
X# = {Md(z)|x € X} = {a,b,c,d,e, f}; increase the capacity of discernment. For another, the number
X® = XoU{K|K € CANKN(X — Xa) # O} = of new covering-elements to refine the reduction of covering
{a,b,c,d,e, f,q}; is more than it is directly refined this covering. The reason
XT=X, U{N@)|re X - X} ={a,b,c,de, f}; is that the determinate elements maybe increase after delete
X% ={z|N(z)N X # O} = {a,b,c,d,e, f,g}; some reducible elements, which will bring to more covering
X” = XgU(~ U{Friends(y)lz € X — X,y € elements. This means that the capacity of discernment to this
e.f(x)}) ={a,b,c,d,e, f,g}; model will enhance. If we directly discuss this problem in
XY = XeUWU{ N Klz € X — Xg}) = covering, we still get the same result.
KeMd(x
{a,b,¢,d e, f}; v
The upper approximation of on RC(reduct(C)) in eight V. CONCLUSIONS AND FUTURE WORK
models are: Covering-based rough sets is an important extension of
X* = X, J{RMd(z)|z € X — X} = {a,b,c,d,e, g}, rough sets and there are more and more applications and
X=U{K|IK e CAKNX # 0} ={a,b,c,d,e, f,g}; studies about it. In this paper, covering-based rough sets
X# = | J{RMd(z)|x € X} = {a,b,c,d, e, g}; is studied from a new point of view of the refinement of
X? = XoU{K|K € CAKN(X — Xa) # O} = covering-element. On the basis of refinement of covering-
{a,b,¢,d,e, g}; elements, the lower approximations of the eight models of
Xt =X  U{N@)ze X —X;}=/{a,b,cde}; covering-based rough sets are not greater than the original
X8 = {2|N(@z)N X # 0O} = {a,b,d,e}; lower approximations. Correspondingly, all the upper approxi-
X% = XgU(~ U{Friends(y)lx € X — Xy,y € mations of the eight models are not less than the original upper
e.f(x)}) ={a,b,d,e}; approximations with exceptions of two models (the first and

Thus, in the eight models, all of the upper approximatiortee third models) in some special situations. The refinement
of X on RC(reduct(C)) are not larger than it oneduct(C) of covering-element enhances the capacity of discernment

except the first and the third model. fundamentally to each of covering-based rough sets models.
Then, on what conditions proposition 4.2 is true to the firgthis is very meaningful to the study of rough sets theory and
and the third model? application. Meanwhile, the algorithms of Zhu [32], [33] is

Proposition 4.3:Let U be a universe, and’' is a covering improved. And the algorithm of the refinement of covering-
of U. X C U, foranyz € U, if URMd(z) C UMd(x), elementis proposed. In the future work, we will continue study
then the upper approximation df in reduct(C') is not less the properties of the refinement of covering-element. And we
than it is in RC(reduct(C)) to the first and third models of will use partially ordered set and lattice to study the refinement

covering-based rough sets. of covering-element.
Proof: (1) To the 1th type of model of covering-
based rough sets, the upper approximati¥ri = X, U VI. ACKNOWLEDGEMENTS

(U{uMd(z)|z € X — X,.}). BecauseJRMd(x) C UM d(z),
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that is , RX, U (U{URMd(z)lz € X — RX,})CX, U
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