Search results for: Acidic catalyst.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 302

Search results for: Acidic catalyst.

182 Hydrogen and Biofuel Production from 2-Propanol Over Ru/Al2O3 Catalyst in Supercritical Water

Authors: Ekin Kıpçak, Yağmur Karakuş, Mesut Akgün

Abstract:

Hydrogen is an important chemical in many industries and it is expected to become one of the major fuels for energy generation in the future. Unfortunately, hydrogen does not exist in its elemental form in nature and therefore has to be produced from hydrocarbons, hydrogen-containing compounds or water.

Above its critical point (374.8oC and 22.1MPa), water has lower density and viscosity, and a higher heat capacity than those of ambient water. Mass transfer in supercritical water (SCW) is enhanced due to its increased diffusivity and transport ability. The reduced dielectric constant makes supercritical water a better solvent for organic compounds and gases. Hence, due to the aforementioned desirable properties, there is a growing interest toward studies regarding the gasification of organic matter containing biomass or model biomass solutions in supercritical water.

In this study, hydrogen and biofuel production by the catalytic gasification of 2-Propanol in supercritical conditions of water was investigated. Ru/Al2O3 was the catalyst used in the gasification reactions. All of the experiments were performed under a constant pressure of 25 MPa. The effects of five reaction temperatures (400, 450, 500, 550 and 600oC) and five reaction times (10, 15, 20, 25 and 30 s) on the gasification yield and flammable component content were investigated.

Keywords: 2-Propanol, Gasification, Ru/Al2O3, Supercritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
181 Investigation of the Flow Characteristics in a Catalytic Muffler with Perforated Inlet Cone

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

Emission regulations for diesel engines are being strengthened and it is impossible to meet the standards without exhaust after-treatment systems. Lack of the space in many diesel vehicles, however, make it difficult to design and install stand-alone catalytic converters such as DOC, DPF, and SCR in the vehicle exhaust systems. Accordingly, those have been installed inside the muffler to save the space, and referred to the catalytic muffler. However, that has complex internal structure with perforated plate and pipe for noise and monolithic catalyst for emission reduction. For this reason, flow uniformity and pressure drop, which affect efficiency of catalyst and engine performance, respectively, should be examined when the catalytic muffler is designed. In this work, therefore, the flow uniformity and pressure drop to improve the performance of the catalytic converter and the engine have been numerically investigated by changing various design parameters such as inlet shape, porosity, and outlet shape of the muffler using the three-dimensional turbulent flow of the incompressible, non-reacting, and steady state inside the catalytic muffler. Finally, it can be found that the shape, in which the muffler has perforated pipe inside the inlet part, has higher uniformity index and lower pressure drop than others considered in this work.

Keywords: Catalytic muffler, Perforated inlet cone, Catalysts, Perforated pipe, Flow uniformity, Pressure drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2854
180 Kinetic Modeling of the Fischer-Tropsch Reactions and Modeling Steady State Heterogeneous Reactor

Authors: M. Ahmadi Marvast, M. Sohrabi, H. Ganji

Abstract:

The rate of production of main products of the Fischer-Tropsch reactions over Fe/HZSM5 bifunctional catalyst in a fixed bed reactor is investigated at a broad range of temperature, pressure, space velocity, H2/CO feed molar ratio and CO2, CH4 and water flow rates. Model discrimination and parameter estimation were performed according to the integral method of kinetic analysis. Due to lack of mechanism development for Fisher – Tropsch Synthesis on bifunctional catalysts, 26 different models were tested and the best model is selected. Comprehensive one and two dimensional heterogeneous reactor models are developed to simulate the performance of fixed-bed Fischer – Tropsch reactors. To reduce computational time for optimization purposes, an Artificial Feed Forward Neural Network (AFFNN) has been used to describe intra particle mass and heat transfer diffusion in the catalyst pellet. It is seen that products' reaction rates have direct relation with H2 partial pressure and reverse relation with CO partial pressure. The results show that the hybrid model has good agreement with rigorous mechanistic model, favoring that the hybrid model is about 25-30 times faster.

Keywords: Fischer-Tropsch, heterogeneous modeling, kinetic study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
179 Amino Acid Coated Silver Nanoparticles: A Green Catalyst for Methylene Blue Reduction

Authors: Abhishek Chandra, Man Singh

Abstract:

Highly stable and homogeneously dispersed amino acid coated silver nanoparticles (ANP) of ≈ 10 nm diameter, ranging from 420 to 430 nm are prepared on AgNO3 solution addition to gum of Azadirachta indica solution at 373.15 K. The amino acids were selected based on their polarity. The synthesized nanoparticles were characterized by UV-Vis, FTIR spectroscopy, HR-TEM, XRD, SEM and 1H-NMR. The coated nanoparticles were used as catalyst for the reduction of methylene blue dye in presence of Sn(II) in aqueous, anionic and cationic micellar media. The rate of reduction of dye was determined by measuring the absorbance at 660 nm, spectrophotometrically and followed the order: Kcationic > Kanionic > Kwater. After 12 min and in absence of the ANP, only 2%, 3% and 6% of the dye reduction was completed in aqueous, anionic and cationic micellar media respectively while, in presence of ANP coated by polar neutral amino acid with non-polar -R group, the reduction completed to 84%, 95% and 98% respectively. The ANP coated with polar neutral amino acid having non-polar -R group, increased the rate of reduction of the dye by 94, 3205 and 6370 folds in aqueous, anionic and cationic micellar media respectively. Also, the rate of reduction of the dye increased by three folds when the micellar media was changed from anionic to cationic when the ANP is coated by a polar neutral amino acid having a non-polar -R group.

Keywords: Silver nanoparticle, surfactant, methylene blue, amino acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476
178 Probiotic Potential and Antimicrobial Activity of Enterococcus faecium Isolated from Chicken Caecal and Fecal Samples

Authors: Salma H. Abu Hafsa, A. Mendonca, B. Brehm-Stecher, A. A. Hassan, S. A. Ibrahim

Abstract:

Enterococci are important inhabitants of the animal intestine and are widely used in probiotic products. A probiotic strain is expected to possess several desirable properties in order to exert beneficial effects. Therefore, the objective of this study was to isolate, characterize and identify Enterococcus sp. from chicken cecal and fecal samples to determine potential probiotic properties. Enterococci were isolated from chicken ceca and feces of thirty three clinically healthy chickens from a local farm. In vitro studies were performed to assess antibacterial activity of the isolated LAB (using agar well diffusion and cell free supernatant broth technique against Salmonella enterica serotype Enteritidis), survival in acidic conditions, resistance to bile salts, and their survival during simulated gastric juice conditions at pH 2.5. Isolates were identified by biochemical carbohydrate fermentation patterns using an API 50 CHL kit and API ZYM kits and by sequenced 16S rDNA. An isolate belonging to E. faecium species exhibited inhibitory effect against S. enteritidis. This isolate producing a clear zone as large as 10.30 mm or greater and was able to grow in the coculture medium and at the same time, inhibited the growth S. enteritidis. In addition, E. faecium exhibited significant resistance under highly acidic conditions at pH 2.5 for 8 h and survived well in bile salt at 0.2% for 24 h and showing ability to survive in the presence of simulated gastric juice at pH 2.5. Based on these results, E. faecium isolate fulfills some of the criteria to be considered as a probiotic strain and therefore, could be used as a feed additive with good potential for controlling S. Enteritidis in chickens. However, in vivo studies are needed to determine the safety of the strain.

Keywords: Acid tolerance, antimicrobial activity, Enterococcus faecium, probiotic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2853
177 Numerical Investigation of the Evaporation and Mixing of UWS in a Diesel Exhaust Pipe

Authors: Tae Hyun Ahn, Gyo Woo Lee, Man Young Kim

Abstract:

Because of high thermal efficiency and low CO2 emission, diesel engines are being used widely in many industrial fields although it makes many PM and NOx which give both human health and environment a negative effect. NOx regulations for diesel engines, however, are being strengthened and it is impossible to meet the emission standard without NOx reduction devices such as SCR (Selective Catalytic Reduction), LNC (Lean NOx Catalyst), and LNT (Lean NOx Trap). Among the NOx reduction devices, urea-SCR system is known as the most stable and efficient method to solve the problem of NOx emission. But this device has some issues associated with the ammonia slip phenomenon which is occurred by shortage of evaporation and thermolysis time, and that makes it difficult to achieve uniform distribution of the injected urea in front of monolith. Therefore, this study has focused on the mixing enhancement between urea and exhaust gases to enhance the efficiency of the SCR catalyst equipped in catalytic muffler by changing inlet gas temperature and spray conditions to improve the spray uniformity of the urea water solution. Finally, it can be found that various parameters such as inlet gas temperature and injector and injection angles significantly affect the evaporation and mixing of the urea water solution with exhaust gases, and therefore, optimization of these parameters are required.

Keywords: Evaporation, Injection, Selective Catalytic Reduction (SCR), Thermolysis, UWS (Urea-Water-Solution).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2850
176 Production of Hydrogen and Carbon Nanofiber via Methane Decomposition

Authors: Zhi Zhang, Tao Tang, Guangda Lu, Cheng Qin, Huogen Huang, Shaotao Zheng

Abstract:

High purity hydrogen and the valuable by-product of carbon nanotubes (CNTs) can be produced by the methane catalytic decomposition. The methane conversion and the performance of CNTs were determined by the choices of catalysts and the condition of decomposition reaction. In this paper, Ni/MgO and Ni/O-D (oxidized diamond) catalysts were prepared by wetness impregnation method. The effects of reaction temperature and space velocity of methane on the methane conversion were investigated in a fixed-bed. The surface area, structure and micrography were characterized with BET, XPS, SEM, EDS technology. The results showed that the conversion of methane was above 8% within 150 min (T=500) for 33Ni/O-D catalyst and higher than 25% within 120 min (T=650) for 41Ni/MgO catalyst. The initial conversion increased with the increasing temperature of the decomposition reaction, but their catalytic activities decreased rapidly while at too higher temperature. To decrease the space velocity of methane was propitious to promote the methane conversion, but not favor of the hydrogen yields. The appearance of carbon resulted from the methane decomposition lied on the support type and the condition of catalytic reaction. It presented as fiber shape on the surface of Ni/O-D at the relatively lower temperature such as 500 and 550, but as grain shape stacked on and overlayed on the surface of the metal nickel while at 650. The carbon fiber can form on the Ni/MgO surface at 650 and the diameter of the carbon fiber increased with the decreasing space velocity.

Keywords: methane, catalytic decomposition, hydrogen, carbon nanofiber

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
175 Single-Walled Carbon Nanotube Synthesis by Chemical Vapor Deposition Using Platinum-Group Metal Catalysts

Authors: T. Maruyama, T. Saida, S. Naritsuka, S. Iijima

Abstract:

Single-walled carbon nanotubes (SWCNTs) are generally synthesized by chemical vapor deposition (CVD) using Fe, Co, and Ni as catalysts. However, due to the Ostwald ripening of metal catalysts, the diameter distribution of the grown SWCNTs is considerably wide (>2 nm), which is not suitable for electronics applications. In addition, reduction in the growth temperature is desirable for fabricating SWCNT devices compatible with the LSI process. Herein, we performed SWCNT growth by alcohol catalytic CVD using platinum-group metal catalysts (Pt, Rh, and Pd) because these metals have high melting points, and the reduction in the Ostwald ripening of catalyst particles is expected. Our results revealed that web-like SWCNTs were obtained from Pt and Rh catalysts at growth temperature between 500 °C and 600 °C by optimizing the ethanol pressure. The SWCNT yield from Pd catalysts was considerably low. By decreasing the growth temperature, the diameter and chirality distribution of SWCNTs from Pt and Rh catalysts became small and narrow. In particular, the diameters of most SWCNTs grown using Pt catalysts were below 1 nm and their diameter distribution was considerably narrow. On the contrary, SWCNTs can grow from Rh catalysts even at 300 °C by optimizing the growth condition, which is the lowest temperature recorded for SWCNT growth. Our results demonstrated that platinum-group metals are useful for the growth of small-diameter SWCNTs and facilitate low-temperature growth.

Keywords: Carbon nanotube, chemical vapor deposition, catalyst, Pt, Rh, Pd.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
174 Wine Grape Residues Gasification in Supercritical Water

Authors: D. Selvi Gökkaya, M. Yüksel, M. Sağlam, T. Güngören Madenoğlu, N. Cengiz, T. Çokkuvvetli, L. Ballice

Abstract:

In this study, production possibilities of hydrogen and/or methane via SCWG from black grape residues have been investigated. For this aim, grape residues which remain as a byproduct of the wine making process have been used. Since utilization from grape residues is limited due to the high moisture content, supercritical water gasification is the most convenient method. The effect of the gasification temperature and type of catalyst on supercritical water gasification have been investigated. Gasification experiments were performed in a batch autoclave at four different temperatures 300, 400, 500 and 600°C. K2CO3 and Trona (NaHCO3.Na2CO3·2H2O) were used as catalyst. Real biomass types of black grape residues have been successfully gasified and the product gas (hydrogen, methane, carbon dioxide, carbon monoxide and a small amount of ethane and ethylene) were identified by using gas chromatography. A TOC analyzer was used to determine total organic carbon (TOC) content of aqueous phase. The amounts of carboxylic acids, aldehydes, ketones, furfurals and phenols present in the aqueous solutions were analyzed by high performance liquid chromatography. When the temperature increased from 300°C to 600°C, mol% of H2 in gas products increased. The presence of catalysts improves the hydrogen yield. Trona showed gasification activity to be similar to that of K2CO3. It may be concluded that the use of Trona instead of commercially produced catalysts, can be preferably used in the gasification of biomass in supercritical water.

Keywords: Biomass, hydrogen, grape residues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
173 Development of Indwelling Wireless pH Telemetry of Intraoral Acidity

Authors: Jung-hoon Ro, Soo-young Ye, Jae-hee Jung, Ah-young Jeon, Yun-jin KimIn-cheol Kim, Chul-han Kim, Gye-rok Jeon

Abstract:

As the increase of intraoral acidity due to ingestion of sweet foods and acidic beverages usually bring forth a dental caries and a erosion, the measurement of intraoral pH is essential in the study of oral environment. The indwelling intraoral pH telemetry for lasting longer than 24 hours in the mouth was developed to overcome the limits of conventional wire electrode method previously used for salivary and plaque pH measurement, and to assess its effectiveness.

Keywords: pH telemetry, intraoral acidity, wireless.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683
172 Alumina Supported Copper-Manganese Catalysts for Combustion of Exhaust Gases: Effect of Preparation Method

Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov

Abstract:

The development of active and stable catalysts without noble metals for low temperature oxidation of exhaust gases remains a significant challenge. The purpose of this study is to determine the influence of the preparation method on the catalytic activity of the supported copper-manganese mixed oxides in terms of VOCs oxidation. The catalysts were prepared by impregnation of γ- Al2O3 with copper and manganese nitrates and acetates and the possibilities for CO, CH3OH and dimethyl ether (DME) oxidation were evaluated using continuous flow equipment with a four-channel isothermal stainless steel reactor. Effect of the support, Cu/Mn mole ratio, heat treatment of the precursor and active component loading were investigated. Highly active alumina supported Cu-Mn catalysts for CO and VOCs oxidation were synthesized. The effect of preparation conditions on the activity behavior of the catalysts was discussed. The synergetic interaction between copper and manganese species increases the activity for complete oxidation over mixed catalysts. Type of support, calcination temperature and active component loading along with catalyst composition are important factors, determining catalytic activity. Cu/Mn molar ratio of 1:5, heat treatment at 450oC and 20 % active component loading are the best compromise for production of active catalyst for simultaneous combustion of CO, CH3OH and DME.

Keywords: Copper-manganese catalysts, Preparation methods, Exhaust gases oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2285
171 Treatment of Paper and Pulp Mill Effluent by Coagulation

Authors: Pradeep Kumar, Tjoon Tow Teng, Shri Chand, Kailas L. Wasewar

Abstract:

The pulp and paper mill effluent is one of the high polluting effluent amongst the effluents obtained from polluting industries. All the available methods for treatment of pulp and paper mill effluent have certain drawbacks. The coagulation is one of the cheapest process for treatment of various organic effluents. Thus, the removal of chemical oxygen demand (COD) and colour of paper mill effluent is studied using coagulation process. The batch coagulation process was performed using various coagulants like: aluminium chloride, poly aluminium chloride and copper sulphate. The initial pH of the effluent (Coagulation pH) has tremendous effect on COD and colour removal. Poly aluminium chloride (PAC) as coagulant reduced COD to 84 % and 92 % of colour was removed at an optimum pH 5 and coagulant dose of 8 ml l-1. With aluminium chloride at an optimum pH = 4 and coagulant dose of 5 g l-1, 74 % COD and 86 % colour removal were observed. The results using copper sulphate as coagulant (a less commercial coagulant) were encouraging. At an optimum pH 6 and mass loading of 5 g l-1, 76 % COD reduction and 78 % colour reduction were obtained. It was also observed that after addition of coagulant, the pH of the effluent decreases. The decrease in pH was highest for AlCl3, which was followed by PAC and CuSO4. Significant amount of COD reductions was obtained by coagulation process. Since the coagulation process is the first stage for treatment of effluent and some of the coagulant cations usually remain in the treated effluents. Thus, cation like copper may be one of the good catalyst for second stage of treatment process like wet oxidation. The copper has been found to be good oxidation catalyst then iron and aluminum.

Keywords: Aluminium based coagulants, Coagulation, Copper, PAC, Pulp and paper mill effluent, Wastewater treatment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6939
170 Study on the Particle Removal Efficiency of Multi Inner Stage Cyclone by CFD Simulation

Authors: Sang Won Han, Won Joo Lee, Sang Jun Lee

Abstract:

A new multi inner stage (MIS) cyclone was designed to remove the acidic gas and fine particles produced from electronic industry. To characterize gas flow in MIS cyclone, pressure and velocity distribution were calculated by means of CFD program. Also, the flow locus of fine particles and particle removal efficiency were analyzed by Lagrangian method. When outlet pressure condition was –100mmAq, the efficiency was the best in this study.

Keywords: Cyclone, SiO2 particle, Particle removal efficiency, CFD simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
169 Inhibition Kinetic Determination of Trace Amounts of Ruthenium(III) by the Spectrophotometric method with Rhodamine B in Micellar Medium

Authors: Mohsen Keyvanfard

Abstract:

A new, simple and highly sensitive kinetic spectrophotometric method was developed for the determination of trace amounts of Ru(III) in the range of 0.06-20 ng/ml .The method is based on the inhibitory effect of ruthenium(III) on the oxidation of Rhodamine B by bromate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decreasing in absorbance of Rhodamine B at 554 nm with a fixedtime method..The limit of detection is 0.04 ng/ml Ru(III).The relative standard deviation of 5 and 10 ng/ml Ru(III) was 2.3 and 2.7 %, respectively. The method was applied to the determination of ruthenium in real water samples

Keywords: Ruthenium ;Inhibitory; Rhodamine B; bromate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
168 Thermodynamic Study of Seed Oil Extraction by Organic Solvents

Authors: Zhila Safari, Ali Ashrafizadeh, Najaf Hedayat

Abstract:

Thermodynamics characterization Sesame oil extraction by Acetone, Hexane and Benzene has been evaluated. The 120 hours experimental Data were described by a simple mathematical model. According to the simulation results and the essential criteria, Acetone is superior to other solvents but under certain conditions where oil extraction takes place Hexane is superior catalyst.

Keywords: Liquid-solid extraction, seed oil, ThermodynamicStudy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
167 Investigation of Nickel as a Metal Substitute of Palladium Supported on HBeta Zeolite for Waste Tire Pyrolysis

Authors: Lalita Saeaeh, Sirirat Jitkarnka

Abstract:

Pyrolysis of waste tire is one of alternative technique to produce petrochemicals, such as light olefins, mixed C4, and monoaromatics. Noble metals supported on acid zeolite catalysts were reported as potential catalysts to produce the high valuable products from waste tire pyrolysis. Especially, Pd supported on HBeta gave a high yield of olefins, mixed C4, and mono-aromatics. Due to the high prices of noble metals, the objective of this work was to investigate whether or not a non-noble Ni metal can be used as a substitute of a noble metal, Pd, supported on HBeta as a catalyst for waste tire pyrolysis. Ni metal was selected in this work because Ni has high activity in cracking, isomerization, hydrogenation and the ring opening of hydrocarbons Moreover, Ni is an element in the same group as Pd noble metal, which is VIIIB group, aiming to produce high valuable products similarly obtained from Pd. The amount of Ni was varied as 5, 10, and 20% by weight, for comparison with a fixed 1 wt% Pd, using incipient wetness impregnation. The results showed that as a petrochemical-producing catalyst, 10%Ni/HBeta performed better than 1%Pd/HBeta because it did not only produce the highest yield of olefins and cooking gases, but the yields were also higher than 1%Pd/HBeta. 5%Ni/HBeta can be used as a substitute of 1%Pd/HBeta for similar crude production because its crude contains the similar amounts of naphtha and saturated HCs, although it gave no concentration of light mono-aromatics (C6-C11) in the oil. Additionally, 10%Ni/HBeta that gave high olefins and cooking gases was found to give a fairly high concentration of the light mono-aromatics in the oil.

Keywords: Catalytic pyrolysis; Waste tire; Pd; Ni; HBeta

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801
166 Design and Development of Graphene Oxide Modified by Chitosan Nanosheets Showing pH-Sensitive Surface as a Smart Drug Delivery System for Controlled Release of Doxorubicin

Authors: Parisa Shirzadeh

Abstract:

Drug delivery systems in which drugs are traditionally used, multi-stage and at specified intervals by patients, do not meet the needs of the world's up-to-date drug delivery. In today's world, we are dealing with a huge number of recombinant peptide and protean drugs and analogues of hormones in the body, most of which are made with genetic engineering techniques. Most of these drugs are used to treat critical diseases such as cancer. Due to the limitations of the traditional method, researchers sought to find ways to solve the problems of the traditional method to a large extent. Following these efforts, controlled drug release systems were introduced, which have many advantages. Using controlled release of the drug in the body, the concentration of the drug is kept at a certain level, and in a short time, it is done at a higher rate. Graphene is a natural material that is biodegradable, non-toxic, natural and wide surfaces of graphene plates makes it more effective to modify graphene than carbon nanotubes. Graphene oxide is often synthesized using concentrated oxidizers such as sulfuric acid, nitric acid, and potassium permanganate based on Hummer method. graphene oxide is very hydrophilic and easily dissolves in water and creates a stable solution. Graphene oxide (GO) has been modified by chitosan (CS) covalently, developed for control release of doxorubicin (DOX). In this study, GO is produced by the hummer method under acidic conditions. Then, it is chlorinated by oxalyl chloride to increase its reactivity against amine. After that, in the presence of CS, the amino reaction was performed to form amide transplantation, and the DOX was connected to the carrier surface by π-π interaction in buffer phosphate. GO, GO-CS, and GO-CS-DOX were characterized by FT-IR and TGA to recognize new functional groups which show the new bonding of CS to GO, RAMA and SEM to recognize size of layers that show changing in size and number of layers. The ability to load and release is determined by UV-Visible spectroscopy. The loading result showed a high capacity of DOX absorption (99%) and pH dependence identified as a result of DOX release from GO-CS nanosheet at pH 5.3 and 7.4, which show a fast release rate in acidic conditions.

Keywords: Graphene oxide, chitosan, nanosheet, controlled drug release, doxorubicin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162
165 Ionic Liquid Promoted One-pot Synthesis of Benzo[b][1,4]oxazines

Authors: Ebrahim Soleimani, Afsaneh Taheri Kal koshvandi

Abstract:

benzo[b][1,4]oxazines have been synthesized in good to excellent yields in the presence of the ionic liquid 1-butyl-3- methylimidazolium bromide [bmim]Br under relatively mild conditions without any added catalyst, the reaction workup is simple and the ionic liquid can be easily separated from the product and reused.

Keywords: Isocyanide, Benzo[b][1, 4]oxazines, Multi-componentreactions, [bmim]Br, Ionic Liquid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
164 The Role of Fluid Catalytic Cracking in Process Optimisation for Petroleum Refineries

Authors: Chinwendu R. Nnabalu, Gioia Falcone, Imma Bortone

Abstract:

Petroleum refining is a chemical process in which the raw material (crude oil) is converted to finished commercial products for end users. The fluid catalytic cracking (FCC) unit is a key asset in refineries, requiring optimised processes in the context of engineering design. Following the first stage of separation of crude oil in a distillation tower, an additional 40 per cent quantity is attainable in the gasoline pool with further conversion of the downgraded product of crude oil (residue from the distillation tower) using a catalyst in the FCC process. Effective removal of sulphur oxides, nitrogen oxides, carbon and heavy metals from FCC gasoline requires greater separation efficiency and involves an enormous environmental significance. The FCC unit is primarily a reactor and regeneration system which employs cyclone systems for separation.  Catalyst losses in FCC cyclones lead to high particulate matter emission on the regenerator side and fines carryover into the product on the reactor side. This paper aims at demonstrating the importance of FCC unit design criteria in terms of technical performance and compliance with environmental legislation. A systematic review of state-of-the-art FCC technology was carried out, identifying its key technical challenges and sources of emissions.  Case studies of petroleum refineries in Nigeria were assessed against selected global case studies. The review highlights the need for further modelling investigations to help improve FCC design to more effectively meet product specification requirements while complying with stricter environmental legislation.

Keywords: Design, emissions, fluid catalytic cracking, petroleum refineries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794
163 High-Temperature X-Ray Powder Diffraction of Secondary Gypsum

Authors: D. Gazdič, I. Hájková, M. Fridrichová

Abstract:

This paper involved the performance of a hightemperature X-Ray powder diffraction analysis (XRD) of a sample of chemical gypsum generated in the production of titanium white; this gypsum originates by neutralizing highly acidic water with limestone suspension. Specifically, it was gypsum formed in the first stage of neutralization when the resulting material contains, apart from gypsum, a number of waste products resulting from the decomposition of ilmenite by sulphuric acid. So it can be described as red titanogypsum. By conducting the experiment using XRD apparatus Bruker D8 Advance with a Cu anode (λkα=1.54184 Å) equipped with high-temperature chamber Anton Paar HTK 16, it was possible to identify clearly in the sample each phase transition in the system of CaSO4·xH2O.

Keywords: Anhydrite, Gypsum, Bassanite, Hematite, XRD, Powder, High-Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2030
162 The Study of the Desulfurization Process of Oil and Oil Products of “Zhanazhol” Oil Field Using the Approaches of Green Chemistry

Authors: Zhaksyntay K. Kairbekov, Zhannur K. Myltykbaeva, Nazym T. Smagulova, Dariya K. Kanseitova

Abstract:

In this paper we studied sono catalytic oxidative desulfurization of oil and diesel fraction from “Zhanazhol” oil deposits. We have established that the combined effect of the ultrasonic field and oxidant (ozone-air mixture) in the presence of the catalyst on the oil is potentially very effective method of desulfurization of oil and oil products. This method allows increasing the degree of desulfurization of oil by 62%.

Keywords: Desulfurization, diesel, oil, oil products, sonication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
161 Extractable Heavy Metal Concentrations in Bottom Ash from Incineration of Wood-Based Residues in a BFB Boiler Using Artificial Sweat and Gastric Fluids

Authors: Risto Pöykiö, Olli Dahl, Hannu Nurmesniemi

Abstract:

The highest extractable concentration in the artificial sweat fluid was observed for Ba (120mg/kg; d.w.). The highest extractable concentration in the artificial gastric fluid was observed for Al (9030mg/kg; d.w.). Furthermore, the extractable concentrations of Ba (550mg/kg; d.w.) and Zn (400mg/kg: d.w.) in the bottom ash using artificial gastric fluid were elevated. The extractable concentrations of all heavy metals in the artificial gastric fluid were higher than those in the artificial sweat fluid. These results are reasonable in the light of the fact that the pH of the artificial gastric fluid was extremely acidic both before (pH 1.54) and after (pH 1.94) extraction, whereas the pH of the artificial sweat fluid was slightly alkaline before (pH 6.50) and after extraction (pH 8.51).

Keywords: Ash, artificial fluid, heavy metals, in vitro, waste.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2892
160 Microwave Assisted Fast Synthesis of Flower-like ZnO Based Guanidinium Template for Photodegradation of Azo Dye Congo Red

Authors: N. F .Hamedani, A.R. Mahjoub, A. A. khodadadi, Y. Mortazavi, F.Farzaneh

Abstract:

ZnO nanostructure were synthesized via microwave method using zinc acetate as starting material, guanidinium as structure directing agents, and water as solvent.. This work investigates the photodegradation of azo dyes using the ZnO Flowerlike in aqueous solutions. As synthesized ZnO samples were characterized using X-Ray powder diffraction (XRD), scanning electron microscopy (SEM), and FTIR spectroscopy.In this work photodecolorization of congored azo dye under UV irradiation by nano ZnO was studied.

Keywords: Photo catalyst, Nano crystals, Zinc Oxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
159 The Gasoil Hydrofining Kinetics Constants Identification

Authors: C. Patrascioiu, V. Matei, N. Nicolae

Abstract:

The paper describes the experiments and the kinetic parameters calculus of the gasoil hydrofining. They are presented experimental results of gasoil hidrofining using Mo and promoted with Ni on aluminum support catalyst. The authors have adapted a kinetic model gasoil hydrofining. Using this proposed kinetic model and the experimental data they have calculated the parameters of the model. The numerical calculus is based on minimizing the difference between the experimental sulf concentration and kinetic model estimation.

Keywords: Hydrofining, kinetic, modeling, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
158 Nanofibrous Ion Exchangers

Authors: Jaromír Marek, Jakub Wiener, Yan Wang

Abstract:

The main goal of this study was to find simple and industrially applicable production of ion exchangers based on nanofibrous polystyrene matrix and characterization of prepared material. Starting polystyrene nanofibers were sulfonated and crosslinked under appropriate conditions at the same time by sulfuric acid. Strongly acidic cation exchanger was obtained in such a way. The polymer matrix was made from polystyrene nanofibers prepared by NanospiderTM technology.

Various types postpolymerization reactions and other methods of crosslinking were studied. Greatly different behavior between nano- and microsize materials was observed. The final nanofibrous material was characterized and compared to common granular ion exchangers and available microfibrous ion exchangers. The sorption properties of nanofibrous ion exchangers were compared with the granular ion exchangers. For nanofibrous ion exchangers of comparable ion exchange capacity was observed considerably faster adsorption kinetics.

Keywords: Electrospinning, ion exchangers, nanofibers, polystyrene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
157 Analysis of Phosphate in Wastewater Using an Autonomous Microfluidics-Based Analyser

Authors: John Cleary, Conor Slater, Dermot Diamond

Abstract:

A portable sensor for the analysis of phosphate in aqueous samples has been developed. The sensor incorporates microfluidic technology, colorimetric detection, and wireless communications into a compact and rugged portable device. The detection method used is the molybdenum yellow method, in which a phosphate-containing sample is mixed with a reagent containing ammonium metavanadate and ammonium molybdate in an acidic medium. A yellow-coloured compound is generated and the absorption of this compound is measured using a light emitting diode (LED) light source and a photodiode detector. The absorption is directly proportional to the phosphate concentration in the original sample. In this paper we describe the application of this phosphate sensor to the analysis of wastewater at a municipal wastewater treatment plant in Co. Kildare, Ireland.

Keywords: Microfluidic, phosphate, sensor, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
156 A Study of the Garbage Enzyme's Effects in Domestic Wastewater

Authors: Fu E. Tang, Chung W. Tong

Abstract:

“Garbage enzyme", a fermentation product of kitchen waste, water and brown sugar, is claimed in the media as a multipurpose solution for household and agricultural uses. This study assesses the effects of dilutions (5% to 75%) of garbage enzyme in reducing pollutants in domestic wastewater. The pH of the garbage enzyme was found to be 3.5, BOD concentration about 150 mg/L. Test results showed that the garbage enzyme raised the wastewater-s BOD in proportion to its dilution due to its high organic content. For mixtures with more than 10% garbage enzyme, its pH remained acidic after the 5-day digestion period. However, it seems that ammonia nitrogen and phosphorus could be removed by the addition of the garbage enzyme. The most economic solution for removal of ammonia nitrogen and phosphorus was found to be 9%. Further tests are required to understand the removal mechanisms of the ammonia nitrogen and phosphorus.

Keywords: Wastewater treatment, garbage enzyme, wastewater additives, ammonia nitrogen, phosphorus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8479
155 Removal of Chromium from Aqueous Solution using Synthesized Polyaniline in Acetonitrile

Authors: Majid Riahi Samani, Seyed Mehdi Borghei

Abstract:

Absorptive characteristics of polyaniline synthesized in mixture of water and acetonitrile in 50/50 volume ratio was studied. Synthesized polyaniline in powder shape is used as an adsorbent to remove toxic hexavalent chromium from aqueous solutions. Experiments were conducted in batch mode with different variables such as agitation time, solution pH and initial concentration of hexavalent chromium. Removal mechanism is the combination of surface adsorption and reduction. The equilibrium time for removal of Cr(T) and Cr(VI) was about 2 and 10 minutes respectively. The optimum pH for total chromium removal occurred at pH 7 and maximum hexavalent chromium removal took place under acidic condition at pH 3. Investigating the isothermal characteristics showed that the equilibrium adsorption data fitted both Freundlich-s and Langmuir-s isotherms. The maximum adsorption of chromium was calculated 36.1 mg/g for polyaniline

Keywords: Polyaniline, Chromium, acetonitrile, Adsorption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
154 Production of Biodiesel from Different Edible Oils

Authors: Amir Shafeeq, Ayyaz Muhammad, Noman Hassan, Rofice Dickson

Abstract:

Different vegetable oil based biodiesel (FAMES) were prepared by alkaline transesterification using refined oils as well as waste frying oil (WFO). Methanol and sodium hydroxide are used as catalyst under similar reaction conditions. To ensure the quality of biodiesel produced, a series of different ASTM Standard tests were carried out. In this context, various testwere done including viscosity, carbon residue, specific gravity, corrosion test, flash point, cloud point and pour point. Results revealed that characteristics of biodiesel depend on the feedstock and it is far better than petroleum diesel.

Keywords: Biodiesel, Edible oils, Separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
153 Utilization and Characterizations of Olive Oil Industry By-Products

Authors: Sawsan Dacrory, Hussein Abou-Yousef, Samir Kamel, Ragab E. Abou-Zeid, Mohamed S. Abdel-Aziz, Mohamed Elbadry

Abstract:

A considerable amount of lignocellulosic by-product could be obtained from olive pulp during olive oil extraction industry. The major constituents of the olive pulp are husks and seeds. The separation of each portion of olive pulp (seeds and husks) was carried out by water flotation where seeds were sediment in the bottom. Both seeds and husks were dignified by 15% NaOH followed by complete lignin removal by using sodium chlorite in acidic medium. The isolated holocellulose, α-cellulose, hydrogel and CMC of both seeds and husk fractions were characterized by FTIR and SEM. The present study focused on the investigation of the chemical components of the lignocellulosic fraction of olive pulp and using them in medical application. Carboxymethyl cellulose (CMC) is produced and applied in the preparation of antimicrobial hydrogel.

Keywords: Carboxymethyl cellulose, cellulose, hydrogel olive pulp.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420