Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33

Search results for: decision support systems

33 Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients

Authors: J. Fernandez, N. Aguilar, R. Fernandez de Canete, J. C. Ramos-Diaz

Abstract:

In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop.

Keywords: Diabetes, causal modeling, glucose-insulin system, OpenModelica software

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 596
32 Rule Based Architecture for Collaborative Multidisciplinary Aircraft Design Optimisation

Authors: Nickolay Jelev, Andy Keane, Carren Holden, András Sóbester

Abstract:

In aircraft design, the jump from the conceptual to preliminary design stage introduces a level of complexity which cannot be realistically handled by a single optimiser, be that a human (chief engineer) or an algorithm. The design process is often partitioned along disciplinary lines, with each discipline given a level of autonomy. This introduces a number of challenges including, but not limited to: coupling of design variables; coordinating disciplinary teams; handling of large amounts of analysis data; reaching an acceptable design within time constraints. A number of classical Multidisciplinary Design Optimisation (MDO) architectures exist in academia specifically designed to address these challenges. Their limited use in the industrial aircraft design process has inspired the authors of this paper to develop an alternative strategy based on well established ideas from Decision Support Systems. The proposed rule based architecture sacrifices possibly elusive guarantees of convergence for an attractive return in simplicity. The method is demonstrated on analytical and aircraft design test cases and its performance is compared to a number of classical distributed MDO architectures.

Keywords: Decision Support System, Aircraft design, Multidisciplinary Design Optimisation, rule based architecture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
31 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops

Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha

Abstract:

The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.

Keywords: Artificial Neural Networks, Pattern Recognition, Decision Support System, cellular automata

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644
30 A Review on Cloud Computing and Internet of Things

Authors: Sahar S. Tabrizi, Dogan Ibrahim

Abstract:

Cloud Computing is a convenient model for on-demand networks that uses shared pools of virtual configurable computing resources, such as servers, networks, storage devices, applications, etc. The cloud serves as an environment for companies and organizations to use infrastructure resources without making any purchases and they can access such resources wherever and whenever they need. Cloud computing is useful to overcome a number of problems in various Information Technology (IT) domains such as Geographical Information Systems (GIS), Scientific Research, e-Governance Systems, Decision Support Systems, ERP, Web Application Development, Mobile Technology, etc. Companies can use Cloud Computing services to store large amounts of data that can be accessed from anywhere on Earth and also at any time. Such services are rented by the client companies where the actual rent depends upon the amount of data stored on the cloud and also the amount of processing power used in a given time period. The resources offered by the cloud service companies are flexible in the sense that the user companies can increase or decrease their storage requirements or the processing power requirements at any time, thus minimizing the overall rental cost of the service they receive. In addition, the Cloud Computing service providers offer fast processors and applications software that can be shared by their clients. This is especially important for small companies with limited budgets which cannot afford to purchase their own expensive hardware and software. This paper is an overview of the Cloud Computing, giving its types, principles, advantages, and disadvantages. In addition, the paper gives some example engineering applications of Cloud Computing and makes suggestions for possible future applications in the field of engineering.

Keywords: Cloud Computing, Cloud Services, IoT, SAAS, PAAS, IAAS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813
29 Knowledge-Driven Decision Support System Based on Knowledge Warehouse and Data Mining by Improving Apriori Algorithm with Fuzzy Logic

Authors: Pejman Hosseinioun, Hasan Shakeri, Ghasem Ghorbanirostam

Abstract:

In recent years, we have seen an increasing importance of research and study on knowledge source, decision support systems, data mining and procedure of knowledge discovery in data bases and it is considered that each of these aspects affects the others. In this article, we have merged information source and knowledge source to suggest a knowledge based system within limits of management based on storing and restoring of knowledge to manage information and improve decision making and resources. In this article, we have used method of data mining and Apriori algorithm in procedure of knowledge discovery one of the problems of Apriori algorithm is that, a user should specify the minimum threshold for supporting the regularity. Imagine that a user wants to apply Apriori algorithm for a database with millions of transactions. Definitely, the user does not have necessary knowledge of all existing transactions in that database, and therefore cannot specify a suitable threshold. Our purpose in this article is to improve Apriori algorithm. To achieve our goal, we tried using fuzzy logic to put data in different clusters before applying the Apriori algorithm for existing data in the database and we also try to suggest the most suitable threshold to the user automatically.

Keywords: Data Mining, Knowledge Discovery, Fuzzy Logic, Decision Support System, data discovery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
28 Multi-Agent Based Modeling Using Multi-Criteria Decision Analysis and OLAP System for Decision Support Problems

Authors: Omar Boutkhoum, Mohamed Hanine, Tarik Agouti, Abdessadek Tikniouine

Abstract:

This paper discusses the intake of combining multi-criteria decision analysis (MCDA) with OLAP systems, to generate an integrated analysis process dealing with complex multi-criteria decision-making situations. In this context, a multi-agent modeling is presented for decision support systems by combining multi-criteria decision analysis (MCDA) with OLAP systems. The proposed modeling which consists in performing the multi-agent system (MAS) architecture, procedure and protocol of the negotiation model is elaborated as a decision support tool for complex decision-making environments. Our objective is to take advantage from the multi-agent system which distributes resources and computational capabilities across interconnected agents, and provide a problem modeling in terms of autonomous interacting component-agents. Thus, the identification and evaluation of criteria as well as the evaluation and ranking of alternatives in a decision support situation will be performed by organizing tasks and user preferences between different agents in order to reach the right decision. At the end, an illustrative example is conducted to demonstrate the function and effectiveness of our MAS modeling.

Keywords: Multidimensional Analysis, multi-agent system, OLAP Analysis, Multi-criteria Decision Analysis, Decision Support System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1342
27 Service Blueprint for Improving Clinical Guideline Adherence via Mobile Health Technology

Authors: Y. O’Connor, C. Heavin, S. O’ Connor, J. Gallagher, J. Wu, J. O’Donoghue

Abstract:

Background: To improve the delivery of paediatric healthcare in low resource settings, Community Health Workers (CHW) have been provided with a paper-based set of protocols known as Community Case Management (CCM). Yet research has shown that CHW adherence to CCM guidelines is poor, ultimately impacting health service delivery. Digitising the CCM guidelines via mobile technology is argued in extant literature to improve CHW adherence. However, little research exist which outlines how (a) this process can be digitised and (b) adherence could be improved as a result. Aim: To explore how an electronic mobile version of CCM (eCCM) can overcome issues associated with the paper-based CCM protocol (inadequate adherence to guidelines) vis-à-vis service blueprinting. This service blueprint will outline how (a) the CCM process can be digitised using mobile Clinical Decision Support Systems software to support clinical decision-making and (b) adherence can be improved as a result. Method: Development of a single service blueprint for a standalone application which visually depicts the service processes (eCCM) when supporting the CHWs, using an application known as Supporting LIFE (SL eCCM app) as an exemplar. Results: A service blueprint is developed which illustrates how the SL eCCM app can be utilised by CHWs to assist with the delivery of healthcare services to children. Leveraging smartphone technologies can (a) provide CHWs with just-in-time data to assist with their decision making at the point-of-care and (b) improve CHW adherence to CCM guidelines. Conclusions: The development of the eCCM opens up opportunities for the CHWs to leverage the inherent benefit of mobile devices to assist them with health service delivery in rural settings. To ensure that benefits are achieved, it is imperative to comprehend the functionality and form of the eCCM service process. By creating such a service blueprint for an eCCM approach, CHWs are provided with a clear picture regarding the role of the eCCM solution, often resulting in buy-in from the end-users.

Keywords: Adherence, community health workers, mobile clinical decision support systems, CDSS, developing countries, service blueprint

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
26 Implementation of a Web-Based Wireless ECG Measuring and Recording System

Authors: Onder Yakut, Serdar Solak, Emine Dogru Bolat

Abstract:

Measuring the Electrocardiogram (ECG) signal is an essential process for the diagnosis of the heart diseases. The ECG signal has the information of the degree of how much the heart performs its functions. In medical diagnosis and treatment systems, Decision Support Systems processing the ECG signal are being developed for the use of clinicians while medical examination. In this study, a modular wireless ECG (WECG) measuring and recording system using a single board computer and e-Health sensor platform is developed. In this designed modular system, after the ECG signal is taken from the body surface by the electrodes first, it is filtered and converted to digital form. Then, it is recorded to the health database using Wi-Fi communication technology. The real time access of the ECG data is provided through the internet utilizing the developed web interface.

Keywords: ECG, raspberry PI, e-health sensor shield, wifi technology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2525
25 A Preliminary Study for Design of Automatic Block Reallocation Algorithm with Genetic Algorithm Method in the Land Consolidation Projects

Authors: Tayfun Çay, Yaşar İnceyol, Abdurrahman Özbeyaz

Abstract:

Land reallocation is one of the most important steps in land consolidation projects. Many different models were proposed for land reallocation in the literature such as Fuzzy Logic, block priority based land reallocation and Spatial Decision Support Systems. A model including four parts is considered for automatic block reallocation with genetic algorithm method in land consolidation projects. These stages are preparing data tables for a project land, determining conditions and constraints of land reallocation, designing command steps and logical flow chart of reallocation algorithm and finally writing program codes of Genetic Algorithm respectively. In this study, we designed the first three steps of the considered model comprising four steps.

Keywords: Genetic Algorithm, Land Consolidation, landholding, land reallocation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
24 Water Quality Trading with Equitable Total Maximum Daily Loads

Authors: S. Jamshidi, E. Feizi Ashtiani, M. Ardestani

Abstract:

Waste Load Allocation (WLA) strategies usually intend to find economic policies for water resource management. Water quality trading (WQT) is an approach that uses discharge permit market to reduce total environmental protection costs. This primarily requires assigning discharge limits known as total maximum daily loads (TMDLs). These are determined by monitoring organizations with respect to the receiving water quality and remediation capabilities. The purpose of this study is to compare two approaches of TMDL assignment for WQT policy in small catchment area of Haraz River, in north of Iran. At first, TMDLs are assigned uniformly for the whole point sources to keep the concentrations of BOD and dissolved oxygen (DO) at the standard level at checkpoint (terminus point). This was simply simulated and controlled by Qual2kw software. In the second scenario, TMDLs are assigned using multi objective particle swarm optimization (MOPSO) method in which the environmental violation at river basin and total treatment costs are minimized simultaneously. In both scenarios, the equity index and the WLA based on trading discharge permits (TDP) are calculated. The comparative results showed that using economically optimized TMDLs (2nd scenario) has slightly more cost savings rather than uniform TMDL approach (1st scenario). The former annually costs about 1 M$ while the latter is 1.15 M$. WQT can decrease these annual costs to 0.9 and 1.1 M$, respectively. In other word, these approaches may save 35 and 45% economically in comparison with command and control policy. It means that using multi objective decision support systems (DSS) may find more economical WLA, however its outcome is not necessarily significant in comparison with uniform TMDLs. This may be due to the similar impact factors of dischargers in small catchments. Conversely, using uniform TMDLs for WQT brings more equity that makes stakeholders not feel that much envious of difference between TMDL and WQT allocation. In addition, for this case, determination of TMDLs uniformly would be much easier for monitoring. Consequently, uniform TMDL for TDP market is recommended as a sustainable approach. However, economical TMDLs can be used for larger watersheds.

Keywords: Equity, waste load allocation (WLA), total maximum daily loads (TMDLs), Haraz River, Multi objective particle swarm optimization (MOPSO), Water quality trading (WQT)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
23 Temporal Case-Based Reasoning System for Automatic Parking Complex

Authors: Alexander P. Eremeev, Ivan E. Kurilenko, Pavel R. Varshavskiy

Abstract:

In this paper the problem of the application of temporal reasoning and case-based reasoning in intelligent decision support systems is considered. The method of case-based reasoning with temporal dependences for the solution of problems of real-time diagnostics and forecasting in intelligent decision support systems is described. This paper demonstrates how the temporal case-based reasoning system can be used in intelligent decision support systems of the car access control. This work was supported by RFBR.

Keywords: Case-based Reasoning, Intelligent Decision Support Systems, Temporal Reasoning, analogous reasoning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
22 Employing Operations Research at Universities to Build Management Systems

Authors: Abdallah A. Hlayel

Abstract:

Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that effect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decisionmaking.

Keywords: Decision Making, Operations Research, best candidates' method, decision support system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
21 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: Data Mining, Student success, knowledge discovery in databases, prediction models

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
20 Evaluation Factors of Clinical Decision Support System in u_Healthcare Service

Authors: Sun K. Yoo, Ki-Chang Nam, Hyun-Young Shin, Ho-Seong Moon, Hee Cheol Kang

Abstract:

Automated intelligent, clinical decision support systems generally promote to help or to assist physicians and patients regarding to prevention of diseases or treatment of illnesses using computer represented knowledge and information. In this paper, assessment factors affecting the proper design of clinical decision support system were investigated. The required procedure steps for gathering the data from clinical trial and extracting the information from large volume of healthcare repositories were listed, which are necessary for validation and verification of evidence-based implementation of clinical decision support system. The goal of this paper is to extract useful evaluation factors affecting the quality of the clinical decision support system in the design, development, and implementation of a computer-based decision support system.

Keywords: Evaluation, Clinical Decision Support System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
19 Analysis of a Population of Diabetic Patients Databases with Classifiers

Authors: Murat Koklu, Yavuz Unal

Abstract:

Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.

Keywords: Artificial Intelligence, Data Mining, classifiers, diabetic patients

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4811
18 GPT Onto: A New Beginning for Malaysia Gross Pollutant Trap Ontology

Authors: Chandrika M.J., Lariyah M.S., Alicia Y.C. Tang

Abstract:

Ontology is widely being used as a tool for organizing information, creating the relation between the subjects within the defined knowledge domain area. Various fields such as Civil, Biology, and Management have successful integrated ontology in decision support systems for managing domain knowledge and to assist their decision makers. Gross pollutant traps (GPT) are devices used in trapping and preventing large items or hazardous particles in polluting and entering our waterways. However choosing and determining GPT is a challenge in Malaysia as there are inadequate GPT data repositories being captured and shared. Hence ontology is needed to capture, organize and represent this knowledge into meaningful information which can be contributed to the efficiency of GPT selection in Malaysia urbanization. A GPT Ontology framework is therefore built as the first step to capture GPT knowledge which will then be integrated into the decision support system. This paper will provide several examples of the GPT ontology, and explain how it is constructed by using the Protégé tool.

Keywords: Ontology, Protégé, Gross pollutant Trap

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
17 The Application of Learning Systems to Support Decision for Stakeholder and Infrastructures Managers Based On Crowdsourcing

Authors: Alfonso Bastías, Álvaro González

Abstract:

The actual grow of the infrastructure in develop country require sophisticate ways manage the operation and control the quality served. This research wants to concentrate in the operation of this infrastructure beyond the construction. The infrastructure-s operation involves an uncertain environment, where unexpected variables are present every day and everywhere. Decision makers need to make right decisions with right information/data analyzed most in real time. To adequately support their decisions and decrease any negative impact and collateral effect, they need to use computational tools called decision support systems (DSS), but now the main source of information came from common users thought an extensive crowdsourcing

Keywords: Construction, Decision Support Systems, Infrastructure, Crowdsourcing, Learning Systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1205
16 Identification of Industrial Health Using ANN

Authors: Deepak Goswami, Padma Lochan Hazarika, Kandarpa Kumar Sarma

Abstract:

The customary practice of identifying industrial sickness is a set traditional techniques which rely upon a range of manual monitoring and compilation of financial records. It makes the process tedious, time consuming and often are susceptible to manipulation. Therefore, certain readily available tools are required which can deal with such uncertain situations arising out of industrial sickness. It is more significant for a country like India where the fruits of development are rarely equally distributed. In this paper, we propose an approach based on Artificial Neural Network (ANN) to deal with industrial sickness with specific focus on a few such units taken from a less developed north-east (NE) Indian state like Assam. The proposed system provides decision regarding industrial sickness using eight different parameters which are directly related to the stages of sickness of such units. The mechanism primarily uses certain signals and symptoms of industrial health to decide upon the state of a unit. Specifically, we formulate an ANN based block with data obtained from a few selected units of Assam so that required decisions related to industrial health could be taken. The system thus formulated could become an important part of planning and development. It can also contribute towards computerization of decision support systems related to industrial health and help in better management.

Keywords: Industrial, Health, classification, ANN, MSE, MLP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309
15 GIS-based Approach for Land-Use Analysis: A Case Study

Authors: M. Giannopoulou, I. Roukounis, A. Roukouni.

Abstract:

Geographical Information Systems are an integral part of planning in modern technical systems. Nowadays referred to as Spatial Decision Support Systems, as they allow synergy database management systems and models within a single user interface machine and they are important tools in spatial design for evaluating policies and programs at all levels of administration. This work refers to the creation of a Geographical Information System in the context of a broader research in the area of influence of an under construction station of the new metro in the Greek city of Thessaloniki, which included statistical and multivariate data analysis and diagrammatic representation, mapping and interpretation of the results.

Keywords: Databases, Geographical information systems (GIS), Land-use planning, Metro stations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227
14 Development of Non-functional Requirements for Decision Support Systems

Authors: Kassem Saleh

Abstract:

Decision Support System (DSS) are interactive software systems that are built to assist the management of an organization in the decision making process when faced with nonroutine problems in a specific application domain. Non-functional requirements (NFRs) for a DSS deal with the desirable qualities and restrictions that the DSS functionalities must satisfy. Unlike the functional requirements, which are tangible functionalities provided by the DSS, NFRs are often hidden and transparent to DSS users but affect the quality of the provided functionalities. NFRs are often overlooked or added later to the system in an ad hoc manner, leading to a poor overall quality of the system. In this paper, we discuss the development of NFRs as part of the requirements engineering phase of the system development life cycle of DSSs. To help eliciting NFRs, we provide a comprehensive taxonomy of NFRs for DSSs.

Keywords: Development, taxonomy, Decision Support System, Non-Functional Requirements, elicitation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
13 Integrated Reasoning Approach for Car Faulty Diagnosis

Authors: Diana M.L. Wong

Abstract:

This paper presents an integrated case based and rule based reasoning method for car faulty diagnosis. The reasoning method is done through extracting the past cases from the Proton Service Center while comparing with the preset rules to deduce a diagnosis/solution to a car service case. New cases will be stored to the knowledge base. The test cases examples illustrate the effectiveness of the proposed integrated reasoning. It has proven accuracy of similar reasoning if carried out by a service advisor from the service center.

Keywords: Decision Support Systems, component; case based reasoning (CBR), rule basedreasoning (RBR), diagnosis tool

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
12 The Management in Large Emergency Situations – A Best Practise Case Study based on GIS for Management of Evacuation

Authors: Ion Baş, Claudiu Zoicaş, Angela Ioniţâ

Abstract:

In most of the cases, natural disasters lead to the necessity of evacuating people. The quality of evacuation management is dramatically improved by the use of information provided by decision support systems, which become indispensable in case of large scale evacuation operations. This paper presents a best practice case study. In November 2007, officers from the Emergency Situations Inspectorate “Crisana" of Bihor County from Romania participated to a cross-border evacuation exercise, when 700 people have been evacuated from Netherlands to Belgium. One of the main objectives of the exercise was the test of four different decision support systems. Afterwards, based on that experience, software system called TEVAC (Trans Border Evacuation) has been developed “in house" by the experts of this institution. This original software system was successfully tested in September 2008, during the deployment of the international exercise EU-HUROMEX 2008, the scenario involving real evacuation of 200 persons from Hungary to Romania. Based on the lessons learned and results, starting from April 2009, the TEVAC software is used by all Emergency Situations Inspectorates all over Romania.

Keywords: user interface design, Emergency evacuation, Searching Features, TEVAC(Trans Border Evacuation) software system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1221
11 Automated Thickness Measurement of Retinal Blood Vessels for Implementation of Clinical Decision Support Systems in Diagnostic Diabetic Retinopathy

Authors: S.Jerald Jeba Kumar, M.Madheswaran

Abstract:

The structure of retinal vessels is a prominent feature, that reveals information on the state of disease that are reflected in the form of measurable abnormalities in thickness and colour. Vascular structures of retina, for implementation of clinical diabetic retinopathy decision making system is presented in this paper. Retinal Vascular structure is with thin blood vessel, whose accuracy is highly dependent upon the vessel segmentation. In this paper the blood vessel thickness is automatically detected using preprocessing techniques and vessel segmentation algorithm. First the capture image is binarized to get the blood vessel structure clearly, then it is skeletonised to get the overall structure of all the terminal and branching nodes of the blood vessels. By identifying the terminal node and the branching points automatically, the main and branching blood vessel thickness is estimated. Results are presented and compared with those provided by clinical classification on 50 vessels collected from Bejan Singh Eye hospital..

Keywords: Diabetic retinopathy, binarization, SegmentationClinical Decision Support Systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
10 A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel

Authors: H. Zarei, M. H. Fazel Zarandi, M. Karbasian

Abstract:

A Decision Support System/Expert System for stock portfolio selection presented where at first step, both technical and fundamental data used to estimate technical and fundamental return and risk (1st phase); Then, the estimated values are aggregated with the investor preferences (2nd phase) to produce convenient stock portfolio. In the 1st phase, there are two expert systems, each of which is responsible for technical or fundamental estimation. In the technical expert system, for each stock, twenty seven candidates are identified and with using rough sets-based clustering method (RC) the effective variables have been selected. Next, for each stock two fuzzy rulebases are developed with fuzzy C-Mean method and Takai-Sugeno- Kang (TSK) approach; one for return estimation and the other for risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation method. In parallel, for fundamental expert systems, fuzzy rule-bases have been identified in the form of “IF-THEN" rules through brainstorming with the stock market experts and the input data have been derived from financial statements; as a result two fuzzy rule-bases have been generated for all the stocks, one for return and the other for risk. In the 2nd phase, user preferences represented by four criteria and are obtained by questionnaire. Using an expert system, four estimated values of return and risk have been aggregated with the respective values of user preference. At last, a fuzzy rule base having four rules, treats these values and produce a ranking score for each stock which will lead to a satisfactory portfolio for the user. The stocks of six manufacturing companies and the period of 2003-2006 selected for data gathering.

Keywords: technical analysis, Stock portfolio selection, Fuzzy Rule-Base ExpertSystems, Financial Decision Support Systems, Fundamental Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
9 CSOLAP (Continuous Spatial On-Line Analytical Processing)

Authors: Taher Omran Ahmed, Abdullatif Mihdi Buras

Abstract:

Decision support systems are usually based on multidimensional structures which use the concept of hypercube. Dimensions are the axes on which facts are analyzed and form a space where a fact is located by a set of coordinates at the intersections of members of dimensions. Conventional multidimensional structures deal with discrete facts linked to discrete dimensions. However, when dealing with natural continuous phenomena the discrete representation is not adequate. There is a need to integrate spatiotemporal continuity within multidimensional structures to enable analysis and exploration of continuous field data. Research issues that lead to the integration of spatiotemporal continuity in multidimensional structures are numerous. In this paper, we discuss research issues related to the integration of continuity in multidimensional structures, present briefly a multidimensional model for continuous field data. We also define new aggregation operations. The model and the associated operations and measures are validated by a prototype.

Keywords: Data warehousing, Continuous Data, DecisionSupport, SOLAP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255
8 Determining the Best Method of Stability Landslide by Using of DSS (Case Study: Landslide in Hasan Salaran, Kurdistan Province in Iran)

Authors: S. Kamyabi, M. Salari, H. Shahabi

Abstract:

One of the processes of slope that occurs every year in Iran and some parts of world and cause a lot of criminal and financial harms is called landslide. They are plenty of method to stability landslide in soil and rock slides. The use of the best method with the least cost and in the shortest time is important for researchers. In this research, determining the best method of stability is investigated by using of Decision Support systems. DSS is made for this purpose and was used (for Hasan Salaran area in Kurdistan). Field study data from topography, slope, geology, geometry of landslide and the related features was used. The related data entered decision making managements programs (DSS) (ALES).Analysis of mass stability indicated the instability potential at present. Research results show that surface and sub surface drainage the best method of stabilizing. Analysis of stability shows that acceptable increase in security coefficient is a consequence of drainage.

Keywords: Decision Support Systems, Stability, Landslide, Iran, Hasan Salaran landslide, Kurdistan province

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
7 The Development of Decision Support System for Waste Management; a Review

Authors: M. S. Bani, Z. A. Rashid, K. H. K. Hamid, M. E. Harbawi, A.B.Alias, M. J. Aris

Abstract:

Most Decision Support Systems (DSS) for waste management (WM) constructed are not widely marketed and lack practical applications. This is due to the number of variables and complexity of the mathematical models which include the assumptions and constraints required in decision making. The approach made by many researchers in DSS modelling is to isolate a few key factors that have a significant influence to the DSS. This segmented approach does not provide a thorough understanding of the complex relationships of the many elements involved. The various elements in constructing the DSS must be integrated and optimized in order to produce a viable model that is marketable and has practical application. The DSS model used in assisting decision makers should be integrated with GIS, able to give robust prediction despite the inherent uncertainties of waste generation and the plethora of waste characteristics, and gives optimal allocation of waste stream for recycling, incineration, landfill and composting.

Keywords: Decision Support System, review, GIS and waste management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3259
6 The PARADIGMA Approach for Cooperative Work in the Medical Domain

Authors: Antonio Di Leva, Carla Reyneri, Michele Sonnessa

Abstract:

PARADIGMA (PARticipative Approach to DIsease Global Management) is a pilot project which aims to develop and demonstrate an Internet based reference framework to share scientific resources and findings in the treatment of major diseases. PARADIGMA defines and disseminates a common methodology and optimised protocols (Clinical Pathways) to support service functions directed to patients and individuals on matters like prevention, posthospitalisation support and awareness. PARADIGMA will provide a platform of information services - user oriented and optimised against social, cultural and technological constraints - supporting the Health Care Global System of the Euro-Mediterranean Community in a continuous improvement process.

Keywords: Decision Support Systems, Ontology, clinical pathway, Healt Care

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077
5 Modeling the Symptom-Disease Relationship by Using Rough Set Theory and Formal Concept Analysis

Authors: Mert Bal, Hayri Sever, Oya Kalıpsız

Abstract:

Medical Decision Support Systems (MDSSs) are sophisticated, intelligent systems that can provide inference due to lack of information and uncertainty. In such systems, to model the uncertainty various soft computing methods such as Bayesian networks, rough sets, artificial neural networks, fuzzy logic, inductive logic programming and genetic algorithms and hybrid methods that formed from the combination of the few mentioned methods are used. In this study, symptom-disease relationships are presented by a framework which is modeled with a formal concept analysis and theory, as diseases, objects and attributes of symptoms. After a concept lattice is formed, Bayes theorem can be used to determine the relationships between attributes and objects. A discernibility relation that forms the base of the rough sets can be applied to attribute data sets in order to reduce attributes and decrease the complexity of computation.

Keywords: Granular Computing, Rough Set Theory, Formal Concept Analysis, Medical Decision Support System

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
4 Improving Air Temperature Prediction with Artificial Neural Networks

Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom

Abstract:

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. Previous work established that the Ward-style artificial neural network (ANN) is a suitable tool for developing such models. The current research focused on developing ANN models with reduced average prediction error by increasing the number of distinct observations used in training, adding additional input terms that describe the date of an observation, increasing the duration of prior weather data included in each observation, and reexamining the number of hidden nodes used in the network. Models were created to predict air temperature at hourly intervals from one to 12 hours ahead. Each ANN model, consisting of a network architecture and set of associated parameters, was evaluated by instantiating and training 30 networks and calculating the mean absolute error (MAE) of the resulting networks for some set of input patterns. The inclusion of seasonal input terms, up to 24 hours of prior weather information, and a larger number of processing nodes were some of the improvements that reduced average prediction error compared to previous research across all horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, improvements of 7.4% and 5.9% over the existing model at these horizons. Networks instantiating the same model but with different initial random weights often led to different prediction errors. These results strongly suggest that ANN model developers should consider instantiating and training multiple networks with different initial weights to establish preferred model parameters.

Keywords: Decision Support Systems, Weather Modeling, Fruit, frost protection, time-series prediction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246