Search results for: temperature measurement.
723 Functionalization of Carbon Nanotubes Using Nitric Acid Oxidation and DBD Plasma
Authors: M. Vesali Naseh, A. A. Khodadadi, Y. Mortazavi, O. Alizadeh Sahraei, F. Pourfayaz, S. Mosadegh Sedghi
Abstract:
In this study, multiwall carbon nanotubes (MWNTs) were modified with nitric acid chemically and by dielectric barrier discharge (DBD) plasma in an oxygen-based atmosphere. Used carbon nanotubes (CNTs) were prepared by chemical vapour deposition (CVD) floating catalyst method. For removing amorphous carbon and metal catalyst, MWNTs were exposed to dry air and washed with hydrochloric acid. Heating purified CNTs under helium atmosphere caused elimination of acidic functional groups. Fourier transformed infrared spectroscopy (FTIR) shows formation of oxygen containing groups such as C=O and COOH. Brunauer, Emmett, Teller (BET) analysis revealed that functionalization causes generation of defects on the sidewalls and opening of the ends of CNTs. Results of temperature-programmed desorption (TPD) and gas chromatography(GC) indicate that nitric acid treatment create more acidic groups than plasma treatment.Keywords: Carbon nanotubes (CNTs), chemical treatment, functionalization, plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5776722 Heat and Mass Transfer in MHD Flow of Nanofluids through a Porous Media Due to a Permeable Stretching Sheet with Viscous Dissipation and Chemical Reaction Effects
Authors: Yohannes Yirga, Daniel Tesfay
Abstract:
The convective heat and mass transfer in nanofluid flow through a porous media due to a permeable stretching sheet with magnetic field, viscous dissipation, chemical reaction and Soret effects are numerically investigated. Two types of nanofluids, namely Cu-water and Ag-water were studied. The governing boundary layer equations are formulated and reduced to a set of ordinary differential equations using similarity transformations and then solved numerically using the Keller box method. Numerical results are obtained for the skin friction coefficient, Nusselt number and Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters. Excellent validation of the present numerical results has been achieved with the earlier linearly stretching sheet problems in the literature.
Keywords: Heat and mass transfer, magnetohydrodynamics, nanofluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3785721 Electron Spin Resonance of Conduction Electrons and Spin Waves Dynamics Investigations in Bi-2223 Superconductor for Decoding Pairing Mechanism
Authors: S. N. Ekbote, G. K. Padam, Manju Arora
Abstract:
Electron spin resonance (ESR) spectroscopic investigations of (Bi, Pb)2Sr2Ca2Cu3O10-x (Bi-2223) bulk samples were carried out in both the normal and superconducting states. A broad asymmetric resonance signal with side signals is obtained in the normal state, and all of them disappear in the superconducting state. The temperature and angular orientation effects on these signals suggest that the broad asymmetric signal arises from electron spin resonance of conduction electrons (CESR) and the side signals from exchange interactions as Platzman-Wolff type spin waves. The disappearance of CESR and spin waves in a superconducting state demonstrates the role of exchange interactions in Cooper pair formation.
Keywords: Bi-2223 superconductor, electron spin resonance of conduction electrons, electron spin resonance, Exchange interactions, spin waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233720 Quality Changes of Venison Marinated in Red Wine Marinade during Storage
Authors: Laima Silina, Ilze Gramatina, Lija Dukalska, Liga Skudra, Tatjana Rakcejeva, Dace Klava, Anita Blija
Abstract:
The objective of the present study was to determine quality parameters changes of red wine marinade marinated venison during storage. Beef as a control was analysed. Protein, fat, moisture and pH content dynamics as well microbiological quality was analyzed. The meat pieces were marinated in red wine marinade at 4±2ºC temperature for 48±1h. Marinated meat was placed in polypropylene trays, hermetically sealed with high barrier polymer film Multibarrier 60 under modified atmosphere (CO2 40%+N2 60%) without and with oxygen absorber sachets, as a control packaging in air ambiance packed marinated venison and beef was used. Meat samples were analyzed after 0, 4, 7, 11 and 14 days of storage. During the storage of meat, protein and moisture content significantly (p<0.05) decreased, pH and colony forming units significantly (p<0.05) increased, fat content does not change in all treatments irrespective of the packaging method.
Keywords: Marinating, modified atmosphere, quality, venison.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392719 Microstructure and Mechanical Behaviuor of Rotary Friction Welded Titanium Alloys
Authors: M. Avinash, G. V. K. Chaitanya, Dhananjay Kumar Giri, Sarala Upadhya, B. K. Muralidhara
Abstract:
Ti-6Al-4V alloy has demonstrated a high strength to weight ratio as well as good properties at high temperature. The successful application of the alloy in some important areas depends on suitable joining techniques. Friction welding has many advantageous features to be chosen for joining Titanium alloys. The present work investigates the feasibility of producing similar metal joints of this Titanium alloy by rotary friction welding method. The joints are produced at three different speeds and the performances of the welded joints are evaluated by conducting microstructure studies, Vickers Hardness and tensile tests at the joints. It is found that the weld joints produced are sound and the ductile fractures in the tensile weld specimens occur at locations away from the welded joints. It is also found that a rotational speed of 1500 RPM can produce a very good weld, with other parameters kept constant.Keywords: Rotary friction weld, rotational speed, Ti-6Al-4V, weld structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606718 Preliminary Study of Antimicrobial Activity against Escherichia coli and Probiotic Properties of Lactic Acid Bacteria Isolated from Thailand Fermented Foods
Authors: Phanwipa Pangsri, Yawariyah Weahayee
Abstract:
The lactic acid bacteria (LAB) were isolated from 10 samples of fermented foods (Sa-tor-dong and Bodo) in South locality of Thailand. The 23 isolates of lactic acid bacteria were selected, which were exhibited a clear zone and growth on MRS agar supplemented with CaCO3. All of lactic acid bacteria were tested on morphological and biochemical. The result showed that all isolates were Gram’s positive, non-spore forming but only 10 isolates displayed catalase negative. The 10 isolates including BD1 .1, BD 1.2, BD 2.1, BD2.2, BD 2.3, BD 3.1, BD 4.1, BD 5.2, ST 4.1 and ST 5.2 were selected for inhibition activity determination. Only 2 strains (ST 4.1 and BD 2.3) showed inhibition zone on agar, when using Escherichia coli sp. as target strain. The ST 4.1 showed highest inhibition zone on agar, which was selected for probiotic property testing. The ST4.1 isolate could grow in MRS broth containing a high concentration of sodium chloride 6%, bile salts 7%, pH 4-10 and vary temperature at 15-45°C.
Keywords: Lactic acid bacteria, Probiotic, Antimicrobial.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581717 Progressive Strategy of Milling by means of Tool Axis Inclination Angle
Authors: Sadílek M., Čep R.
Abstract:
This work deals with problems of tool axis inclination angles in ball-end milling. Tool axis inclination angle contributes to improvement of functional surface properties (surface integrity - surface roughness, residual stress, micro hardness, etc.), decreasing cutting forces and improving production. By milling with ball-end milling tool, using standard way of cutting, when work piece and cutting tool contain right angle, we have zero cutting speed on edge. At this point cutting tool only pushes material into the work piece. Here we can observe the following undesirable effects - chip contraction, increasing of cutting temperature, increasing vibrations or creation of built-up edge. These effects have negative results – low quality of surface and decreasing of tool life (in the worse case even it is pinching out). These effects can be eliminated with the tilt of cutting tool or tilt of work piece.
Keywords: CAD/CAM system, tool axis inclination angle, ballend milling, surface roughness, cutting forces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853716 Biodiesel Fuel Production by Methanolysis of Fish Oil Derived from the Discarded Parts of Fish Catalyzed by Carica papaya Lipase
Authors: P. Pinyaphong, P. Sriburi, S. Phutrakul
Abstract:
In this paper, naturally immobilized lipase, Carica papaya lipase, catalyzed biodiesel production from fish oil was studied. The refined fish oil, extracted from the discarded parts of fish, was used as a starting material for biodiesel production. The effects of molar ratio of oil: methanol, lipase dosage, initial water activity of lipase, temperature and solvent were investigated. It was found that Carica papaya lipase was suitable for methanolysis of fish oil to produce methyl ester. The maximum yield of methyl ester could reach up to 83% with the optimal reaction conditions: oil: methanol molar ratio of 1: 4, 20% (based on oil) of lipase, initial water activity of lipase at 0.23 and 20% (based on oil) of tert-butanol at 40oC after 18 h of reaction time. There was negligible loss in lipase activity even after repeated use for 30 cycles.Keywords: biodiesel fuel production, methanolysis, fish oil, Carica papaya lipase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3325715 Ionanofluids as Novel Fluids for Advanced Heat Transfer Applications
Authors: S. M. Sohel Murshed, C. A. Nieto de Castro, M. J. V. Lourenço, J. França, A. P. C. Ribeiro, S. I. C.Vieira, C. S. Queirós
Abstract:
Ionanofluids are a new and innovative class of heat transfer fluids which exhibit fascinating thermophysical properties compared to their base ionic liquids. This paper deals with the findings of thermal conductivity and specific heat capacity of ionanofluids as a function of a temperature and concentration of nanotubes. Simulation results using ionanofluids as coolants in heat exchanger are also used to access their feasibility and performance in heat transfer devices. Results on thermal conductivity and heat capacity of ionanofluids as well as the estimation of heat transfer areas for ionanofluids and ionic liquids in a model shell and tube heat exchanger reveal that ionanofluids possess superior thermal conductivity and heat capacity and require considerably less heat transfer areas as compared to those of their base ionic liquids. This novel class of fluids shows great potential for advanced heat transfer applications.
Keywords: Heat transfer, Ionanofluids, Ionic liquids, Nanotubes, Thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218714 Intelligent Maximum Power Point Tracking Using Fuzzy Logic for Solar Photovoltaic Systems Under Non-Uniform Irradiation Conditions
Authors: P. Selvam, S. Senthil Kumar
Abstract:
Maximum Power Point Tracking (MPPT) has played a vital role to enhance the efficiency of solar photovoltaic (PV) power generation under varying atmospheric temperature and solar irradiation. However, it is hard to track the maximum power point using conventional linear controllers due to the natural inheritance of nonlinear I-V and P-V characteristics of solar PV systems. Fuzzy Logic Controller (FLC) is suitable for nonlinear system control applications and eliminating oscillations, circuit complexities present in the conventional perturb and observation and incremental conductance methods respectively. Hence, in this paper, FLC is proposed for tracking exact MPPT of solar PV power generation system under varying solar irradiation conditions. The effectiveness of the proposed FLC-based MPPT controller is validated through simulation and analysis using MATLAB/Simulink.
Keywords: Fuzzy logic controller, maximum power point tracking, photovoltaic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587713 Preparation and Some Mechanical Properties of Composite Materials Made from Sawdust, Cassava Starch and Natural Rubber Latex
Authors: Apusraporn Prompunjai, Waranyou Sridach
Abstract:
The composite materials were prepared by sawdust, cassava starch and natural rubber latex (NR). The mixtures of 15%w/v gelatinized cassava starch and 15%w/v PVOH were used as the binder of these composite materials. The concentrated rubber latex was added to the mixtures. They were mixed rigorously to the treated sawdust in the ratio of 70:30 until achive uniform dispersion. The batters were subjected to the hot compression moulding at the temperature of 160°C and 3,000 psi pressure for 5 min. The experimental results showed that the mechanical properties of composite materials, which contained the gelatinized cassava starch and PVOH in the ratio of 2:1, 20% NR latex by weight of the dry starch and treated sawdust with 5%NaOH or 1% BPO, were the best. It contributed the maximal compression strength (341.10 + 26.11 N), puncture resistance (8.79 + 0.98 N/mm2) and flexural strength (3.99 + 0.72N/mm2). It is also found that the physicochemical and mechanical properties of composites strongly depends on the interface quality of sawdust, cassava starch and NR latex.
Keywords: Composites, sawdust, cassava starch, natural rubber (NR) latex, surface chemical treatments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4100712 Physiological Effects on Scientist Astronaut Candidates: Hypobaric Training Assessment
Authors: Pedro Llanos, Diego García
Abstract:
This paper is addressed to expanding our understanding of the effects of hypoxia training on our bodies to better model its dynamics and leverage some of its implications and effects on human health. Hypoxia training is a recommended practice for military and civilian pilots that allow them to recognize their early hypoxia signs and symptoms, and Scientist Astronaut Candidates (SACs) who underwent hypobaric hypoxia (HH) exposure as part of a training activity for prospective suborbital flight applications. This observational-analytical study describes physiologic responses and symptoms experienced by a SAC group before, during and after HH exposure and proposes a model for assessing predicted versus observed physiological responses. A group of individuals with diverse Science Technology Engineering Mathematics (STEM) backgrounds conducted a hypobaric training session to an altitude up to 22,000 ft (FL220) or 6,705 meters, where heart rate (HR), breathing rate (BR) and core temperature (Tc) were monitored with the use of a chest strap sensor pre and post HH exposure. A pulse oximeter registered levels of saturation of oxygen (SpO2), number and duration of desaturations during the HH chamber flight. Hypoxia symptoms as described by the SACs during the HH training session were also registered. This data allowed to generate a preliminary predictive model of the oxygen desaturation and O2 pressure curve for each subject, which consists of a sixth-order polynomial fit during exposure, and a fifth or fourth-order polynomial fit during recovery. Data analysis showed that HR and BR showed no significant differences between pre and post HH exposure in most of the SACs, while Tc measures showed slight but consistent decrement changes. All subjects registered SpO2 greater than 94% for the majority of their individual HH exposures, but all of them presented at least one clinically significant desaturation (SpO2 < 85% for more than 5 seconds) and half of the individuals showed SpO2 below 87% for at least 30% of their HH exposure time. Finally, real time collection of HH symptoms presented temperature somatosensory perceptions (SP) for 65% of individuals, and task-focus issues for 52.5% of individuals as the most common HH indications. 95% of the subjects experienced HH onset symptoms below FL180; all participants achieved full recovery of HH symptoms within 1 minute of donning their O2 mask. The current HH study performed on this group of individuals suggests a rapid and fully reversible physiologic response after HH exposure as expected and obtained in previous studies. Our data showed consistent results between predicted versus observed SpO2 curves during HH suggesting a mathematical function that may be used to model HH performance deficiencies. During the HH study, real-time HH symptoms were registered providing evidenced SP and task focusing as the earliest and most common indicators. Finally, an assessment of HH signs of symptoms in a group of heterogeneous, non-pilot individuals showed similar results to previous studies in homogeneous populations of pilots.
Keywords: Altitude sickness, cabin pressure, hypobaric chamber training, symptoms and altitude, slow onset hypoxia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 416711 An Improved Single Point Closure Model Based on Dissipation Anisotropy for Geophysical Turbulent Flows
Authors: A. P. Joshi, H. V. Warrior, J. P. Panda
Abstract:
This paper is a continuation of the work carried out by various turbulence modelers in Oceanography on the topic of oceanic turbulent mixing. It evaluates the evolution of ocean water temperature and salinity by the appropriate modeling of turbulent mixing utilizing proper prescription of eddy viscosity. Many modelers in past have suggested including terms like shear, buoyancy and vorticity to be the parameters that decide the slow pressure strain correlation. We add to it the fact that dissipation anisotropy also modifies the correlation through eddy viscosity parameterization. This recalibrates the established correlation constants slightly and gives improved results. This anisotropization of dissipation implies that the critical Richardson’s number increases much beyond unity (to 1.66) to accommodate enhanced mixing, as is seen in reality. The model is run for a couple of test cases in the General Ocean Turbulence Model (GOTM) and the results are presented here.
Keywords: Anisotropy, GOTM, pressure-strain correlation, Richardson Critical number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949710 The Design of Acoustic Horns for Ultrasonic Aided Tube Double Side Flange Making
Authors: Kuen-Ming Shu, Jyun-Wei Chen
Abstract:
Encapsulated O-rings are specifically designed to address the problem of sealing the most hostile chemicals and extreme temperature applications. Ultrasonic vibration hot embossing and ultrasonic welding techniques provide a fast and reliable method to fabricate encapsulated O-ring. This paper performs the design and analysis method of the acoustic horns with double extrusion to process tube double side flange simultaneously. The paper deals with study through Finite Element Method (FEM) of ultrasonic stepped horn used to process a capsulated O-ring, the theoretical dimensions of horns, and their natural frequencies and amplitudes are obtained through the simulations of COMOSOL software. Furthermore, real horns were fabricated, tested and verified to proof the practical utility of these horns.
Keywords: Encapsulated O-rings, ultrasonic vibration hot embossing, flange making, acoustic horn, finite element analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3402709 Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure
Authors: T. T. Naas, Y. Lasbet, C. Kezrane
Abstract:
The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc. Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.
Keywords: Inclined enclosure, natural convection in enclosure, Nusselt number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228708 Assessment of Hargreaves Equation for Estimating Monthly Reference Evapotranspiration in the South of Iran
Authors: Ali Dehgan Moroozeh, B. Farhadi Bansouleh
Abstract:
Evapotranspiration is one of the most important components of the hydrological cycle. Evapotranspiration (ETo) is an important variable in water and energy balances on the earth’s surface, and knowledge of the distribution of ET is a key factor in hydrology, climatology, agronomy and ecology studies. Many researchers have a valid relationship, which is a function of climate factors, to estimate the potential evapotranspiration presented to the plant water stress or water loss, prevent. The FAO-Penman method (PM) had been recommended as a standard method. This method requires many data and these data are not available in every area of world. So, other methods should be evaluated for these conditions. When sufficient or reliable data to solve the PM equation are not available then Hargreaves equation can be used. The Hargreaves equation (HG) requires only daily mean, maximum and minimum air temperature extraterrestrial radiation .In this study, Hargreaves method (HG) were evaluated in 12 stations in the North West region of Iran. Results of HG and M.HG methods were compared with results of PM method. Statistical analysis of this comparison showed that calibration process has had significant effect on efficiency of Hargreaves method.Keywords: Evapotranspiration, Hargreaves equation, FAOPenman method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911707 Analysis and Protection of Soil in Controlled Regime Using Techniques Adapted to the Specifics of Precision Agriculture
Authors: Voicu Petre, Oaida Mircea, Surugiu Petru
Abstract:
It is now unanimously accepted that conventional agriculture has led to the emergence and intensification of some forms of soil and environmental degradation, some of which are due to poorly applied or insufficiently substantiated technological measures. For this reason, the elaboration of any agricultural technology requires a deep knowledge of all the factors involved as well as of the interaction relations between them. This is also the way in which the research will be approached in this paper. Despite the fact that at European level the implementation of precision agriculture has a low level compared to some countries located on the American continent, it is emerging not only as an alternative to conventional agriculture but, as a viable way to preserve the quality of the environment in general, and the edaphic environment in particular. This gives an increased importance to the research in this paper through physical, chemical, biological, mineralogical and micromorphological analytical determinations, processing of analytical results, identification of processes, causes, factors, establishment of soil quality indicators and the perspective of measurements from distance by satellite techniques of some of these soil properties (humidity, temperature, pH, N, P, K and so on).
Keywords: Conventional agriculture, environmental degradation, precision agriculture, soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847706 Efficacy and Stability of Ceramic Powder to Inactivate Avian Influenza Virus
Authors: Chanathip Thammakarn, Misato Tsujimura, Keisuke Satoh, Tomomi Hasegawa, Miho Tamura, Akinobu Kawamura, Yuki Ishida, Atsushi Suguro, Hakimullah Hakim, Sakchai Ruenphet, , Kazuaki Takehara
Abstract:
This experiment aims to demonstrate the efficacy of ceramic powder derived from various sources to inactivate avian influenza virus and its possibility to use in the environment. The ceramics used in the present experiment were derived from chicken feces (CF), scallop shell (SS), polyvinyl chloride (PVC) and soybean (SB). All ceramics were mixed with low pathogenic AIV (LPAIV) H7N1, and then kept at room temperature. The recovered virus was titrated onto Madin-Darby canine kidney (MDCK) cells. All ceramics were assessed the inactivation stability in the environment by keeping under sunlight and under wet-dry condition until reached 7 week or 7 resuspension times respectively. The results indicate that all ceramics have excellent efficacy to inactivate LPAIV. This efficacy can be maintained under the simulated condition. The ceramics are expected to be the good materials for application in the biosecurity system at farms.
Keywords: Avian Influenza, Ceramics, Efficacy, Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826705 Creeping Insulation - Hong Kong Green Wall
Authors: X. L. Zhang, K. L. Li, R. M. Skitmore
Abstract:
Hong Kong is a densely populated city suffering badly from the urban heat island effect. Green wall offers a means of ameliorating the situation but there are doubts over its suitability in Hong Kong’s unique environment. In this paper, we look at the potential for green walls in Hong Kong first by summarizing some of the Chinese green walling systems and associated vegetation in use, then by an introduction to three existing green walls in Hong Kong, and finally through a small experiment aimed at identifying the likely main effects of green walled housing.
The results indicate that green walling in Hong Kong is likely to provide enhanced internal house environment in terms of warm weather temperature reduction, stabilization and damping, with direct energy savings in air-conditioning and indirect district benefits of reduced heat island effect and carbon emissions. The green walling insulation properties also suggest the possibility of warmer homes in winter and/or energy savings in mechanical heating provision.
Keywords: Case studies, experiment, green wall, Hong Kong.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3240704 Dye Removal from Aqueous Solution by Regenerated Spent Bleaching Earth
Authors: Ahmed I. Shehab, Sabah M. Abdel Basir, M. A. Abdel Khalek, M. H. Soliman, G. Elgemeie
Abstract:
Spent bleaching earth (SBE) recycling and utilization as an adsorbent to eliminate dyes from aqueous solution was studied. Organic solvents and subsequent thermal treatment were carried out to recover and reactivate the SBE. The effect of pH, temperature, dye’s initial concentration, and contact time on the dye removal using recycled spent bleaching earth (RSBE) was investigated. Recycled SBE showed better removal affinity of cationic than anionic dyes. The maximum removal was achieved at pH 2 and 8 for anionic and cationic dyes, respectively. Kinetic data matched with the pseudo second-order model. The adsorption phenomenon governing this process was identified by the Langmuir and Freundlich isotherms for anionic dye while Freundlich model represented the sorption process for cationic dye. The changes of Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were computed and compared through thermodynamic study for both dyes.
Keywords: Spent bleaching earth, Regeneration, Dye removal, Thermodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940703 Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems
Authors: Eleni Aggelogiannaki, Haralambos Sarimveis
Abstract:
In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.
Keywords: Hyperbolic Distributed Parameter Systems, Radial Basis Function Neural Networks, H∞ control, Thermal systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421702 Gas Flow Rate Identification in Biomass Power Plants by Response Surface Method
Authors: J. Satonsaowapak, M. Krapeedang, R. Oonsivilai, A. Oonsivilai
Abstract:
The utilize of renewable energy sources becomes more crucial and fascinatingly, wider application of renewable energy devices at domestic, commercial and industrial levels is not only affect to stronger awareness but also significantly installed capacities. Moreover, biomass principally is in form of woods and converts to be energy for using by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasified models have various operating conditions because the parameters kept in each model are differentiated. This study applied the experimental data including three inputs variables including biomass consumption; temperature at combustion zone and ash discharge rate and gas flow rate as only one output variable. In this paper, response surface methods were applied for identification of the gasified system equation suitable for experimental data. The result showed that linear model gave superlative results.Keywords: Gasified System, Identification, Response SurfaceMethod
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247701 Numerical Simulation of Thermo-Fluid Behavior in Wavy Microchannel Used in Microelectronic Devices
Authors: A. Balabel, A. F. Khadrawi, Ali S. Al-Osaimy
Abstract:
The hydrodynamic and thermal behaviors of fluid flow in wavy microchannel are investigated numerically. Effects of Reynolds number on the hydrodynamics and thermal behaviors are investigated. Three cases of Reynolds number (580, 1244, and 1910) are adopted in this study. It is found that the separation zone begin appears when Reynolds number is greater than 1910 at the endsection of the wave. Also it is found that dimensionless maximum velocity at the mid-section of the wave decreases and becomes as a turbulent behavior as Reynolds numbers increases. The maximum temperature at the center line at the mid-section of the wave increases as Reynolds number increases until it reaches the turbulent behavior when Reynolds number is equal or greater than 1244, while this behavior will be achieved at very high velocities at the end section of the wave.Keywords: Thermo-Fluid Behavior, Microelectronic Devices, Numerical Simulation, Wavy Microchannel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355700 Acoustic and Thermal Insulating Materials Based On Natural Fibres Used in Floor Construction
Authors: J. Hroudova, J. Zach
Abstract:
The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.
Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3210699 Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite
Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki
Abstract:
The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.
Keywords: Carbon fiber reinforced thermoplastic (CFRTP), Finite element analysis (FEA), Pre-impregnated textile composite, Non-isothermal forming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3469698 Total Lipid of Mutant Synechococcus sp. PCC 7002
Authors: Azlin S Azmi, Mus’ab Zainal, Sarina Sulaiman, Azura Amid, Zaki Zainudin
Abstract:
Microalgae lipid is a promising feedstock for biodiesel production. The objective of this work was to study growth factors affecting marine mutant Synechococcus sp. (PCC 7002) for high lipid production. Four growth factors were investigated; nitrogen-phosporus-potassium (NPK) concentration, light intensity, temperature and NaNO3 concentration on mutant strain growth and lipid production were studied. Design Expert v8.0 was used to design the experimental and analyze the data. The experimental design selected was Min-Run Res IV which consists of 12 runs and the response surfaces measured were specific growth rate and lipid concentration. The extraction of lipid was conducted by chloroform/methanol solvents system. Based on the study, mutant Synechococcus sp. PCC 7002 gave the highest specific growth rate of 0.0014 h-1 at 0% NPK, 2500 lux, 40oC and 0% NaNO3. On the other hand, the highest lipid concentration was obtained at 0% NPK, 3500 lux, 30oC and 1% NaNO3.
Keywords: Cyanobacteria, lipid, mutant, marine Synechococcus sp. PCC 7002, specific growth rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2670697 System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas
Authors: Chun Hsiang Yang, Cheng Chia Lee, Chiun Hsun Chen
Abstract:
In this study, the effects of biogas fuels on the performance of an annular micro gas turbine (MGT) were assessed experimentally and numerically. In the experiments, the proposed MGT system was operated successfully under each test condition; minimum composition to the fuel with the biogas was roughly 50% CH4 with 50% CO2. The power output was around 170W at 85,000 RPM as 90% CH4 with 10% CO2 was used and 70W at 65,000 RPM as 70% CH4 with 30% CO2 was used. When a critical limit of 60% CH4 was reached, the power output was extremely low. Furthermore, the theoretical Brayton cycle efficiency and electric efficiency of the MGT were calculated as 23% and 10%, respectively. Following the experiments, the measured data helped us identify the parameters of dynamic model in numerical simulation. Additionally, a numerical analysis of re-designed combustion chamber showed that the performance of MGT could be improved by raising the temperature at turbine inlet. This study presents a novel distributed power supply system that can utilize renewable biogas. The completed micro biogas power supply system is small, low cost, easy to maintain and suited to household use.
Keywords: Micro Gas Turbine, Biogas; System Identification, Distributed power supply system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545696 Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents
Authors: Shweta Kumari, Parmjit S. Panesar, Manab B. Bera
Abstract:
The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW.
Keywords: β-galactosidase, optimization, permeabilization, response surface methodology, yeast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4135695 Fabrication of Cesium Iodide Columns by Rapid Heating Method
Authors: Chien-Wan Hun, Shao-Fu Chang, Chien-Chon Chen, Ker-Jer Huang
Abstract:
This study presents how to use a high-efficiency process for producing cesium iodide (CsI) crystal columns by rapid heating method. In the past, the heating rate of the resistance wire heating furnace was relatively slow and excessive iodine and CsI vapors were therefore generated during heating. Because much iodine and CsI vapors are produced during heating process, the composition of CsI crystal columns is not correct. In order to enhance the heating rate, making CsI material in the heating process can quickly reach the melting point temperature. This study replaced the traditional type of external resistance heating furnace with halogen-type quartz heater, and then, CsI material can quickly reach the melting point. Eventually, CsI melt can solidify in the anodic aluminum template forming CsI crystal columns.
Keywords: Cesium iodide, high efficiency, vapor, rapid heating, crystal column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085694 Numerical Simulation of Heat Transfer in Primary Surface with Corrugations Recuperators
Authors: Liu Xuedong, Liu Hanpeng, Zhou Ling
Abstract:
Study fluid flow and heat transfer characteristics of microchannel in a primary Cross-corrugated(CC) surface recuperators with corrugations and without corrugations, using CFD method. The pitch-over-height ratios P/H of Cross-corrugated (CC) surface is from 1.5 to 4.0, included angles β=75º. The study was performed using CFD software FLUENT to create unit model and simulate fluid temperature, velocity, heat transfer coefficient and other parameters. The results from these simulations were compared to experimental data. It is concluded that, when the Reynolds number is constant, if increase P/H, j/f will decrease, also the decreasing trend will become weak. Under the condition of P/H=2.2, if increase the inlet velocity j/f will decrease; in addition, the heat transfer performance in surface with corrugation will increase 10% compared to that without corrugation. The study results can provide the basis to optimize the design, select the type of heat transfer surface, the scale structure, and heat-transfer surface arrangement for recuperators.Keywords: Cross-corrugated surface, Primary surface, Numerical simulation, Heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251