Search results for: the knn algorithm
691 An Artificial Intelligent Technique for Robust Digital Watermarking in Multiwavelet Domain
Authors: P. Kumsawat, K. Pasitwilitham, K. Attakitmongcol, A. Srikaew
Abstract:
In this paper, an artificial intelligent technique for robust digital image watermarking in multiwavelet domain is proposed. The embedding technique is based on the quantization index modulation technique and the watermark extraction process does not require the original image. We have developed an optimization technique using the genetic algorithms to search for optimal quantization steps to improve the quality of watermarked image and robustness of the watermark. In addition, we construct a prediction model based on image moments and back propagation neural network to correct an attacked image geometrically before the watermark extraction process begins. The experimental results show that the proposed watermarking algorithm yields watermarked image with good imperceptibility and very robust watermark against various image processing attacks.Keywords: Watermarking, Multiwavelet, Quantization index modulation, Genetic algorithms, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090690 Multicast Optimization Techniques using Best Effort Genetic Algorithms
Authors: Dinesh Kumar, Y. S. Brar, V. K. Banga
Abstract:
Multicast Network Technology has pervaded our lives-a few examples of the Networking Techniques and also for the improvement of various routing devices we use. As we know the Multicast Data is a technology offers many applications to the user such as high speed voice, high speed data services, which is presently dominated by the Normal networking and the cable system and digital subscriber line (DSL) technologies. Advantages of Multi cast Broadcast such as over other routing techniques. Usually QoS (Quality of Service) Guarantees are required in most of Multicast applications. The bandwidth-delay constrained optimization and we use a multi objective model and routing approach based on genetic algorithm that optimizes multiple QoS parameters simultaneously. The proposed approach is non-dominated routes and the performance with high efficiency of GA. Its betterment and high optimization has been verified. We have also introduced and correlate the result of multicast GA with the Broadband wireless to minimize the delay in the path.Keywords: GA (genetic Algorithms), Quality of Service, MOGA, Steiner Tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555689 Data-Reusing Adaptive Filtering Algorithms with Adaptive Error Constraint
Authors: Young-Seok Choi
Abstract:
We present a family of data-reusing and affine projection algorithms. For identification of a noisy linear finite impulse response channel, a partial knowledge of a channel, especially noise, can be used to improve the performance of the adaptive filter. Motivated by this fact, the proposed scheme incorporates an estimate of a knowledge of noise. A constraint, called the adaptive noise constraint, estimates an unknown information of noise. By imposing this constraint on a cost function of data-reusing and affine projection algorithms, a cost function based on the adaptive noise constraint and Lagrange multiplier is defined. Minimizing the new cost function leads to the adaptive noise constrained (ANC) data-reusing and affine projection algorithms. Experimental results comparing the proposed schemes to standard data-reusing and affine projection algorithms clearly indicate their superior performance.Keywords: Data-reusing, affine projection algorithm, error constraint, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617688 Volterra Filter for Color Image Segmentation
Authors: M. B. Meenavathi, K. Rajesh
Abstract:
Color image segmentation plays an important role in computer vision and image processing areas. In this paper, the features of Volterra filter are utilized for color image segmentation. The discrete Volterra filter exhibits both linear and nonlinear characteristics. The linear part smoothes the image features in uniform gray zones and is used for getting a gross representation of objects of interest. The nonlinear term compensates for the blurring due to the linear term and preserves the edges which are mainly used to distinguish the various objects. The truncated quadratic Volterra filters are mainly used for edge preserving along with Gaussian noise cancellation. In our approach, the segmentation is based on K-means clustering algorithm in HSI space. Both the hue and the intensity components are fully utilized. For hue clustering, the special cyclic property of the hue component is taken into consideration. The experimental results show that the proposed technique segments the color image while preserving significant features and removing noise effects.Keywords: Color image segmentation, HSI space, K–means clustering, Volterra filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856687 A Background Subtraction Based Moving Object Detection around the Host Vehicle
Authors: Hyojin Lim, Cuong Nguyen Khac, Ho-Youl Jung
Abstract:
In this paper, we propose moving object detection method which is helpful for driver to safely take his/her car out of parking lot. When moving objects such as motorbikes, pedestrians, the other cars and some obstacles are detected at the rear-side of host vehicle, the proposed algorithm can provide to driver warning. We assume that the host vehicle is just before departure. Gaussian Mixture Model (GMM) based background subtraction is basically applied. Pre-processing such as smoothing and post-processing as morphological filtering are added. We examine “which color space has better performance for detection of moving objects?” Three color spaces including RGB, YCbCr, and Y are applied and compared, in terms of detection rate. Through simulation, we prove that RGB space is more suitable for moving object detection based on background subtraction.Keywords: Gaussian mixture model, background subtraction, Moving object detection, color space, morphological filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2555686 Soliton Interaction in Birefringent Fibers with Third-Order Dispersion
Authors: Dowluru Ravi Kumar, Bhima Prabhakara Rao
Abstract:
Propagation of solitons in single-mode birefringent fibers is considered under the presence of third-order dispersion (TOD). The behavior of two neighboring solitons and their interaction is investigated under the presence of third-order dispersion with different group velocity dispersion (GVD) parameters. It is found that third-order dispersion makes the resultant soliton to deviate from its ideal position and increases the interaction between adjacent soliton pulses. It is also observed that this deviation due to third-order dispersion is considerably small when the optical pulse propagates at wavelengths relatively far from the zerodispersion. Modified coupled nonlinear Schrödinger-s equations (CNLSE) representing the propagation of optical pulse in single mode fiber with TOD are solved using split-step Fourier algorithm. The results presented in this paper reveal that the third-order dispersion can substantially increase the interaction between the solitons, but large group velocity dispersion reduces the interaction between neighboring solitons.
Keywords: Birefringence, Group velocity dispersion, Polarization mode dispersion, Soliton interaction, Third order dispersion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224685 A Study of Structural Damage Detection for Spacecraft In-Orbit Based on Acoustic Sensor Array
Authors: Lei Qi, Rongxin Yan, Lichen Sun
Abstract:
With the increasing of human space activities, the number of space debris has increased dramatically, and the possibility that spacecrafts on orbit are impacted by space debris is growing. A method is of the vital significance to real-time detect and assess spacecraft damage, determine of gas leak accurately, guarantee the life safety of the astronaut effectively. In this paper, acoustic sensor array is used to detect the acoustic signal which emits from the damage of the spacecraft on orbit. Then, we apply the time difference of arrival and beam forming algorithm to locate the damage and leakage. Finally, the extent of the spacecraft damage is evaluated according to the nonlinear ultrasonic method. The result shows that this method can detect the debris impact and the structural damage, locate the damage position, and identify the damage degree effectively. This method can meet the needs of structural damage detection for the spacecraft in-orbit.
Keywords: Acoustic sensor array, spacecraft, damage assessment, leakage location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1119684 Discrimination of Seismic Signals Using Artificial Neural Networks
Authors: Mohammed Benbrahim, Adil Daoudi, Khalid Benjelloun, Aomar Ibenbrahim
Abstract:
The automatic discrimination of seismic signals is an important practical goal for earth-science observatories due to the large amount of information that they receive continuously. An essential discrimination task is to allocate the incoming signal to a group associated with the kind of physical phenomena producing it. In this paper, two classes of seismic signals recorded routinely in geophysical laboratory of the National Center for Scientific and Technical Research in Morocco are considered. They correspond to signals associated to local earthquakes and chemical explosions. The approach adopted for the development of an automatic discrimination system is a modular system composed by three blocs: 1) Representation, 2) Dimensionality reduction and 3) Classification. The originality of our work consists in the use of a new wavelet called "modified Mexican hat wavelet" in the representation stage. For the dimensionality reduction, we propose a new algorithm based on the random projection and the principal component analysis.Keywords: Seismic signals, Wavelets, Dimensionality reduction, Artificial neural networks, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633683 An Efficient Graph Query Algorithm Based on Important Vertices and Decision Features
Authors: Xiantong Li, Jianzhong Li
Abstract:
Graph has become increasingly important in modeling complicated structures and schemaless data such as proteins, chemical compounds, and XML documents. Given a graph query, it is desirable to retrieve graphs quickly from a large database via graph-based indices. Different from the existing methods, our approach, called VFM (Vertex to Frequent Feature Mapping), makes use of vertices and decision features as the basic indexing feature. VFM constructs two mappings between vertices and frequent features to answer graph queries. The VFM approach not only provides an elegant solution to the graph indexing problem, but also demonstrates how database indexing and query processing can benefit from data mining, especially frequent pattern mining. The results show that the proposed method not only avoids the enumeration method of getting subgraphs of query graph, but also effectively reduces the subgraph isomorphism tests between the query graph and graphs in candidate answer set in verification stage.Keywords: Decision Feature, Frequent Feature, Graph Dataset, Graph Query
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870682 Evaluation of the Accuracy of Time of Arrival Source Location Algorithm of Acoustic Emission in Concrete-Mortar Structure
Authors: Hisham A. Elfergani, Ayad A. Abdalla, Ahmed R. Ballil
Abstract:
Acoustic Emission (AE) is one of the most effective non-destructive tests that can be used to detect the defect process as it is occurring. AE techniques can be used to monitor a wide range of structures and materials such as metals, non-metals and combinations of these when load is applied. The current work investigates the effectiveness and accuracy of TOA method in AE tests involving reinforced composite concrete-mortar structures. A series of experimental tests were performed using the Hsu-Neilson (H-N) source to study 2-D location accuracy using this method on concrete-mortar (400×400 mm) specimens. Four AE sensors (R3I – resonant frequency 30 kHz) were mounted to the mortar surface and six sources were performed at each point of preselected locations on the upper surface of the mortar. Results show that the TOA method can be used effectively to locate signals on composite concrete/mortar specimen and has high accuracy.
Keywords: Acoustic emission, time of arrival, composite materials, reinforced concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 635681 Layered Multiple Description Coding For Robust Video Transmission Over Wireless Ad-Hoc Networks
Authors: Joohee Kim
Abstract:
This paper presents a video transmission system using layered multiple description (coding (MDC) and multi-path transport for reliable video communications in wireless ad-hoc networks. The proposed MDC extends a quality-scalable H.264/AVC video coding algorithm to generate two independent descriptions. The two descriptions are transmitted over different paths to a receiver in order to alleviate the effect of unstable channel conditions of wireless adhoc networks. If one description is lost due to transmission erros, then the correctly received description is used to estimate the lost information of the corrupted description. The proposed MD coder maintains an adequate video quality as long as both description are not simultaneously lost. Simulation results show that the proposed MD coding combined with multi-path transport system is largely immune to packet losses, and therefore, can be a promising solution for robust video communications over wireless ad-hoc networks.Keywords: Multiple description coding, wireless video streaming, rate control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443680 Dynamic Measurement System Modeling with Machine Learning Algorithms
Authors: Changqiao Wu, Guoqing Ding, Xin Chen
Abstract:
In this paper, ways of modeling dynamic measurement systems are discussed. Specially, for linear system with single-input single-output, it could be modeled with shallow neural network. Then, gradient based optimization algorithms are used for searching the proper coefficients. Besides, method with normal equation and second order gradient descent are proposed to accelerate the modeling process, and ways of better gradient estimation are discussed. It shows that the mathematical essence of the learning objective is maximum likelihood with noises under Gaussian distribution. For conventional gradient descent, the mini-batch learning and gradient with momentum contribute to faster convergence and enhance model ability. Lastly, experimental results proved the effectiveness of second order gradient descent algorithm, and indicated that optimization with normal equation was the most suitable for linear dynamic models.Keywords: Dynamic system modeling, neural network, normal equation, second order gradient descent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780679 Medical Image Segmentation Using Deformable Model and Local Fitting Binary: Thoracic Aorta
Authors: B. Bagheri Nakhjavanlo, T. S. Ellis, P.Raoofi, Sh.ziari
Abstract:
This paper presents an application of level sets for the segmentation of abdominal and thoracic aortic aneurysms in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been extensively applied in image segmentation. A kernel function in the level set formulation aids the suppression of noise in the extracted regions of interest and then guides the motion of the evolving contour for the detection of weak boundaries. The speed of curve evolution has been significantly improved with a resulting decrease in segmentation time compared with previous implementations of level sets, and are shown to be more effective than other approaches in coping with intensity inhomogeneities. We have applied the Courant Friedrichs Levy (CFL) condition as stability criterion for our algorithm.Keywords: Image segmentation, Level-sets, Local fitting binary, Thoracic aorta.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455678 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency
Authors: Fanqiang Kong, Chending Bian
Abstract:
In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.Keywords: Hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769677 Recurrent Neural Network Based Fuzzy Inference System for Identification and Control of Dynamic Plants
Authors: Rahib Hidayat Abiyev
Abstract:
This paper presents the development of recurrent neural network based fuzzy inference system for identification and control of dynamic nonlinear plant. The structure and algorithms of fuzzy system based on recurrent neural network are described. To train unknown parameters of the system the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The neuro-fuzzy system is used for the identification and control of nonlinear dynamic plant. The simulation results of identification and control systems based on recurrent neuro-fuzzy network are compared with the simulation results of other neural systems. It is found that the recurrent neuro-fuzzy based system has better performance than the others.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, control system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2373676 Cardiac Disorder Classification Based On Extreme Learning Machine
Authors: Chul Kwak, Oh-Wook Kwon
Abstract:
In this paper, an extreme learning machine with an automatic segmentation algorithm is applied to heart disorder classification by heart sound signals. From continuous heart sound signals, the starting points of the first (S1) and the second heart pulses (S2) are extracted and corrected by utilizing an inter-pulse histogram. From the corrected pulse positions, a single period of heart sound signals is extracted and converted to a feature vector including the mel-scaled filter bank energy coefficients and the envelope coefficients of uniform-sized sub-segments. An extreme learning machine is used to classify the feature vector. In our cardiac disorder classification and detection experiments with 9 cardiac disorder categories, the proposed method shows significantly better performance than multi-layer perceptron, support vector machine, and hidden Markov model; it achieves the classification accuracy of 81.6% and the detection accuracy of 96.9%.
Keywords: Heart sound classification, extreme learning machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932675 Hybrid Control of Networked Multi-Vehicle System Considering Limitation of Communication Range
Authors: Toru Murayama, Akinori Nagano, Zhi-Wei Luo
Abstract:
In this research, we study a control method of a multivehicle system while considering the limitation of communication range for each vehicles. When we control networked vehicles with limitation of communication range, it is important to control the communication network structure of a multi-vehicle system in order to keep the network-s connectivity. From this, we especially aim to control the network structure to the target structure. We formulate the networked multi-vehicle system with some disturbance and the communication constraints as a hybrid dynamical system, and then we study the optimal control problems of the system. It is shown that the system converge to the objective network structure in finite time when the system is controlled by the receding horizon method. Additionally, the optimal control probrems are convertible into the mixed integer problems and these problems are solvable by some branch and bound algorithm.Keywords: Hybrid system, multi-vehicle system, receding horizon control, topology control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404674 Face Recognition Based On Vector Quantization Using Fuzzy Neuro Clustering
Authors: Elizabeth B. Varghese, M. Wilscy
Abstract:
A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame. A lot of algorithms have been proposed for face recognition. Vector Quantization (VQ) based face recognition is a novel approach for face recognition. Here a new codebook generation for VQ based face recognition using Integrated Adaptive Fuzzy Clustering (IAFC) is proposed. IAFC is a fuzzy neural network which incorporates a fuzzy learning rule into a competitive neural network. The performance of proposed algorithm is demonstrated by using publicly available AT&T database, Yale database, Indian Face database and a small face database, DCSKU database created in our lab. In all the databases the proposed approach got a higher recognition rate than most of the existing methods. In terms of Equal Error Rate (ERR) also the proposed codebook is better than the existing methods.
Keywords: Face Recognition, Vector Quantization, Integrated Adaptive Fuzzy Clustering, Self Organization Map.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239673 A Parametric Study of an Inverse Electrostatics Problem (IESP) Using Simulated Annealing, Hooke & Jeeves and Sequential Quadratic Programming in Conjunction with Finite Element and Boundary Element Methods
Authors: Ioannis N. Koukoulis, Clio G. Vossou, Christopher G. Provatidis
Abstract:
The aim of the current work is to present a comparison among three popular optimization methods in the inverse elastostatics problem (IESP) of flaw detection within a solid. In more details, the performance of a simulated annealing, a Hooke & Jeeves and a sequential quadratic programming algorithm was studied in the test case of one circular flaw in a plate solved by both the boundary element (BEM) and the finite element method (FEM). The proposed optimization methods use a cost function that utilizes the displacements of the static response. The methods were ranked according to the required number of iterations to converge and to their ability to locate the global optimum. Hence, a clear impression regarding the performance of the aforementioned algorithms in flaw identification problems was obtained. Furthermore, the coupling of BEM or FEM with these optimization methods was investigated in order to track differences in their performance.
Keywords: Elastostatic, inverse problem, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1873672 IMM based Kalman Filter for Channel Estimation in MB OFDM Systems
Abstract:
Ultra-wide band (UWB) communication is one of the most promising technologies for high data rate wireless networks for short range applications. This paper proposes a blind channel estimation method namely IMM (Interactive Multiple Model) Based Kalman algorithm for UWB OFDM systems. IMM based Kalman filter is proposed to estimate frequency selective time varying channel. In the proposed method, two Kalman filters are concurrently estimate the channel parameters. The first Kalman filter namely Static Model Filter (SMF) gives accurate result when the user is static while the second Kalman filter namely the Dynamic Model Filter (DMF) gives accurate result when the receiver is in moving state. The static transition matrix in SMF is assumed as an Identity matrix where as in DMF, it is computed using Yule-Walker equations. The resultant filter estimate is computed as a weighted sum of individual filter estimates. The proposed method is compared with other existing channel estimation methods.Keywords: Channel estimation, Kalman filter, UWB, Channel model, AR model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089671 Face Texture Reconstruction for Illumination Variant Face Recognition
Authors: Pengfei Xiong, Lei Huang, Changping Liu
Abstract:
In illumination variant face recognition, existing methods extracting face albedo as light normalized image may lead to loss of extensive facial details, with light template discarded. To improve that, a novel approach for realistic facial texture reconstruction by combining original image and albedo image is proposed. First, light subspaces of different identities are established from the given reference face images; then by projecting the original and albedo image into each light subspace respectively, texture reference images with corresponding lighting are reconstructed and two texture subspaces are formed. According to the projections in texture subspaces, facial texture with normal light can be synthesized. Due to the combination of original image, facial details can be preserved with face albedo. In addition, image partition is applied to improve the synthesization performance. Experiments on Yale B and CMUPIE databases demonstrate that this algorithm outperforms the others both in image representation and in face recognition.Keywords: texture reconstruction, illumination, face recognition, subspaces
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481670 Optimization of Transmission Lines Loading in TNEP Using Decimal Codification Based GA
Authors: H. Shayeghi, M. Mahdavi
Abstract:
Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, lines adequacy rate has not been considered at the end of planning horizon, i.e., expanded network misses adequacy after some times and needs to be expanded again. In this paper, expansion planning has been implemented by merging lines loading parameter in the STNEP and inserting investment cost into the fitness function constraints using genetic algorithm. Expanded network will possess a maximum adequacy to provide load demand and also the transmission lines overloaded later. Finally, adequacy index could be defined and used to compare some designs that have different investment costs and adequacy rates. In this paper, the proposed idea has been tested on the Garvers network. The results show that the network will possess maximum efficiency economically.
Keywords: Adequacy Optimization, Transmission Expansion Planning, DCGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810669 Composite Distributed Generation and Transmission Expansion Planning Considering Security
Authors: Amir Lotfi, Seyed Hamid Hosseini
Abstract:
During the recent past, due to the increase of electrical energy demand and governmental resources constraints in creating additional capacity in the generation, transmission, and distribution, privatization, and restructuring in electrical industry have been considered. So, in most of the countries, different parts of electrical industry like generation, transmission, and distribution have been separated in order to create competition. Considering these changes, environmental issues, energy growth, investment of private equity in energy generation units and difficulties of transmission lines expansion, distributed generation (DG) units have been used in power systems. Moreover, reduction in the need for transmission and distribution, the increase of reliability, improvement of power quality, and reduction of power loss have caused DG to be placed in power systems. On the other hand, considering low liquidity need, private investors tend to spend their money for DGs. In this project, the main goal is to offer an algorithm for planning and placing DGs in order to reduce the need for transmission and distribution network.Keywords: Planning, transmission, distributed generation, power security, power systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1131668 Motion Planning and Control of a Swarm of Boids in a 3-Dimensional Space
Authors: Bibhya Sharma, Jito Vanualailai, Jai Raj
Abstract:
In this paper, we propose a solution to the motion planning and control problem for a swarm of three-dimensional boids. The swarm exhibit collective emergent behaviors within the vicinity of the workspace. The capability of biological systems to autonomously maneuver, track and pursue evasive targets in a cluttered environment is vastly superior to any engineered system. It is considered an emergent behavior arising from simple rules that are followed by individuals and may not involve any central coordination. A generalized, yet scalable algorithm for attraction to the centroid and inter-individual swarm avoidance is proposed. We present a set of new continuous time-invariant velocity control laws, formulated via the Lyapunov-based control scheme for target attraction and collision avoidance. The controllers provide a collision-free trajectory. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the control laws is demonstrated via computer simulations.
Keywords: Swarm, Practical stability, Motion planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913667 Spherical Harmonic Based Monostatic Anisotropic Point Scatterer Model for RADAR Applications
Authors: Eric Huang, Coleman DeLude, Justin Romberg, Saibal Mukhopadhyay, Madhavan Swaminathan
Abstract:
High-performance computing (HPC) based emulators can be used to model the scattering from multiple stationary and moving targets for RADAR applications. These emulators rely on the RADAR Cross Section (RCS) of the targets being available in complex scenarios. Representing the RCS using tables generated from EM simulations is oftentimes cumbersome leading to large storage requirements. In this paper, we proposed a spherical harmonic based anisotropic scatterer model to represent the RCS of complex targets. The problem of finding the locations and reflection profiles of all scatterers can be formulated as a linear least square problem with a special sparsity constraint. We solve this problem using a modified Orthogonal Matching Pursuit algorithm. The results show that the spherical harmonic based scatterer model can effectively represent the RCS data of complex targets.
Keywords: RADAR, RCS, high performance computing, point scatterer model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 605666 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements
Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath
Abstract:
Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.Keywords: Pronunciation variations, dynamic programming, machine learning, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 799665 Cognitive Radio Spectrum Management
Authors: Swapnil Singhal, Santosh Kumar Singh
Abstract:
The emerging Cognitive Radio is combo of both the technologies i.e. Radio dynamics and software technology. It involve wireless system with efficient coding, designing, and making them artificial intelligent to take the decision according to the surrounding environment and adopt themselves accordingly, so as to deliver the best QoS. This is the breakthrough from fixed hardware and fixed utilization of the spectrum. This software-defined approach of research is centralized at user-definition and application driven model, various software method are used for the optimization of the wireless communication. This paper focused on the Spectrum allocation technique using genetic algorithm GA to evolve radio, represented by chromosomes. The chromosomes gene represents the adjustable parameters in given radio and by using GA, evolving over the generations, the optimized set of parameters are evolved, as per the requirement of user and availability of the spectrum, in our prototype the gene consist of 6 different parameters, and the best set of parameters are evolved according to the application need and availability of the spectrum holes and thus maintaining best QoS for user, simultaneously maintaining licensed user rights. The analyzing tool Matlab is used for the performance of the prototype.
Keywords: ASDR, Cognitive Radio, QoS, Spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053664 Nodal Load Profiles Estimation for Time Series Load Flow Using Independent Component Analysis
Authors: Mashitah Mohd Hussain, Salleh Serwan, Zuhaina Hj Zakaria
Abstract:
This paper presents a method to estimate load profile in a multiple power flow solutions for every minutes in 24 hours per day. A method to calculate multiple solutions of non linear profile is introduced. The Power System Simulation/Engineering (PSS®E) and python has been used to solve the load power flow. The result of this power flow solutions has been used to estimate the load profiles for each load at buses using Independent Component Analysis (ICA) without any knowledge of parameter and network topology of the systems. The proposed algorithm is tested with IEEE 69 test bus system represents for distribution part and the method of ICA has been programmed in MATLAB R2012b version. Simulation results and errors of estimations are discussed in this paper.Keywords: Electrical Distribution System, Power Flow Solution, Distribution Network, Independent Component Analysis, Newton Raphson, Power System Simulation for Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914663 Analysis of Heuristic Based Hybrid Simulated Annealing Algorithm for Multiprocessor Task Scheduling
Authors: Supriya Arya, Sunita Dhingra
Abstract:
Multiprocessor task scheduling problem for dependent and independent tasks is computationally complex problem. Many methods are proposed to achieve optimal running time. As the multiprocessor task scheduling is NP hard in nature, therefore, many heuristics are proposed which have improved the makespan of the problem. But due to problem specific nature, the heuristic method which provide best results for one problem, might not provide good results for another problem. So, Simulated Annealing which is meta heuristic approach is considered. It can be applied on all types of problems. However, due to many runs, meta heuristic approach takes large computation time. Hence, the hybrid approach is proposed by combining the Duplication Scheduling Heuristic and Simulated Annealing (SA) and the makespan results of Simple Simulated Annealing and Hybrid approach are analyzed.
Keywords: Multiprocessor task scheduling Problem, Makespan, Duplication Scheduling Heuristic, Simulated Annealing, Hybrid Approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225662 Using Data Mining Technique for Scholarship Disbursement
Authors: J. K. Alhassan, S. A. Lawal
Abstract:
This work is on decision tree-based classification for the disbursement of scholarship. Tree-based data mining classification technique is used in other to determine the generic rule to be used to disburse the scholarship. The system based on the defined rules from the tree is able to determine the class (status) to which an applicant shall belong whether Granted or Not Granted. The applicants that fall to the class of granted denote a successful acquirement of scholarship while those in not granted class are unsuccessful in the scheme. An algorithm that can be used to classify the applicants based on the rules from tree-based classification was also developed. The tree-based classification is adopted because of its efficiency, effectiveness, and easy to comprehend features. The system was tested with the data of National Information Technology Development Agency (NITDA) Abuja, a Parastatal of Federal Ministry of Communication Technology that is mandated to develop and regulate information technology in Nigeria. The system was found working according to the specification. It is therefore recommended for all scholarship disbursement organizations.Keywords: Decision tree, classification, data mining, scholarship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156