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Abstract—High performance computing (HPC) based emulators
can be used to model the scattering from multiple stationary and
moving targets for RADAR applications. These emulators rely on
the RADAR Cross Section (RCS) of the targets being available in
complex scenarios. Representing the RCS using tables generated from
EM simulations is often times cumbersome leading to large storage
requirement. In this paper, we proposed a spherical harmonic based
anisotropic scatterer model to represent the RCS of complex targets.
The problem of finding the locations and reflection profiles of all
scatterers can be formulated as a linear least square problem with a
special sparsity constraint. We solve this problem using a modified
Orthogonal Matching Pursuit algorithm. The results show that the
spherical harmonic based scatterer model can effectively represent
the RCS data of complex targets.

Keywords—RADAR, RCS, high performance computing, point
scatterer model.

I. INTRODUCTION

LECTROMAGNETIC (EM) wave propagation has long
been studied in the RADAR communities. The need

to simulate complex EM wave interactions for multiple
RADAR targets, transmitters, and receivers to better study
the performance of RADAR systems, antenna designs,
and/or stealth technologies has grown over time. Specifically,
RADAR targets are illuminated by EM waves from the
transmitters. In a monostatic RADAR scenario, the receiver
receives modulated signals from the collocated transmitters.
The complex geometric configuration and the material of a
RADAR target determine the modulation of the backscattered
signals and affects the propagation channel. The reflection
profile of a RADAR target is represented in the form of a
RADAR Cross Section (RCS), which is a complex numbered
function of aspect angles, signal frequency, and polarization.
In high performance computing (HPC) based RADAR
emulators, the complex numbers of the monostatic RCS
response from RADAR targets are required to be stored
as a table. The needed storage size increases dramatically
with a denser aspect angle sampling. The large quantities
of data needed often times exceeds the storage and limits
manipulations. The RCS data can be compressed with point
scatterer model transformation. A scatterer model includes
the point scatterer locations and the reflection profile of each
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scatterer. A commonly used technique is to use an inverse
synthetic aperture RADAR (ISAR) image to identify the facets
with high reflection and then define the point scatterers [1]
[2]. Yet, the required number of scatterers is large.This paper
presents an alternate innovative approach to construct the 3D
point anisotropic scatterer model that an HPC RADAR EM
emulator can use as part of the computations.

II. PRELIMINARIES

In this section, the isotropic and anisotropic point scatterer
models used in the HPC EM emulators are addressed. We then
illustrate the monostatic RCS data generation and the math
foundation of spherical harmonics. With these approaches, the
problem of finding the locations and reflection profiles of each
scatterers can be well defined.

A. Scatterer Model

The reflection profile of a RADAR target can be represented
as a number of isotropic or anisotropic scatterers. The aspect
angle is represented in elevation and azimuth using spherical
coordinates (Figure 1) and are denoted by ¥ = [4,¢)].
We denote the unit vectors of the aspect angle direction in
Cartesian coordinates d. The scatterer model possesses a local
coordinate origin in the 3D space. In this coordinate, each
scatterer p has a position x,. 7, is the time delay of a signal
transmitted to scatterer p from the aspect angle relative to
a signal transmitted to the origin from the aspect angle as
described in equation (1):

—2 <w177 d>

=l (M

where ¢ represents the speed of light and (-, -) is the standard
inner product in R3.

Therefore, the overall reflection profile of the point scatterer
model is a frequency response as shown in equation (2). It is
important to note that equation (2) accounts for the two-way
propagation:

K K
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where K is the total number of point scatterers, o, is
the reflection gain of the p'”" scatterer and f is the signal
frequency. With an isotropic scatterer, o, is identical across all
aspect angles, while with an anisotropic scatterer, o, depends
on ¥.
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Fig. 1: Spherical coordinate

B. RCS Data Generation

The monostatic reflection frequency response is a
complex-valued function and denotes the magnitude and phase
changes of the far-field single-frequency EM wave signal in the
spherical coordinate system after the wave interacts with the
target. The data is stored as a 3-dimensional matrix where each
combination of #,¢, and frequency corresponds to a complex
value. The RCS of a target can be either measured from the
real object or approximately generated using an EM field
simulation software such as CST Studio Suite, which uses
physical optics-based methods [3] [4].

C. Spherical Harmonics

Real-valued functions on a 3D unit sphere is represented in
elevation 0 < 6 < 7 and azimuth 0 < ¢ < 7 using spherical
coordinates. These spherical functions form a Hilbert space
with a valid inner product:

T 2m
e = [ [ w0owessmodpar

where x and y are two spherical functions. Spherical harmonic
functions are well studied in mathematics and physical science
[5] [6]. Real numbered spherical harmonic functions Y, (¢, ¢)
of all degrees [ > 0 and orders —/ < m < [ form a complete
orthonormal sequence of the spherical vector space [7]. Any
spherical function can be written as the sum of the orthonormal
basis
inf l
F0,8) =" > "V™(6,9) )

=0 m=—1

where ¢} is the coefficient of the corresponding Y, (0, ¢).
We define H = (1 + L)? as the total number of spherical
harmonics functions of degree L.

III. CONSTRUCTING THE SCATTERER MODEL

Finding the locations and reflection profiles of each
scatterers can be formulated as a least squares linear problem
with a special sparsity constraint. We solve this problem
with a modified orthogonal matching pursuit (OMP) algorithm
[8]. In addition, we demonstrate how to solve real-numbered
reflection profiles.
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A. Least Squares Linear Problem

Two assumptions are made: (1) The angular dependent
reflection profile of each anisotropic scatterer is a linear
combination of Y;™(#,$) of degree L, and (2) K finite
possible scatterer locations are known. For example, we can
assume that all scatterers locate on a 10m x 10m x 10m grid
in the local coordinate system. That is, the components of x,,
of all scatterers are integers between O and 10. With these
assumptions, finding the locations of K scatterers and the
spherical harmonics coefficients becomes a linear least squares
problem with a sparsity constraint. The linear least squares
problem is shown as

Sa=r (5)
o = [al as - aR-]T (6)
ap = [a,lC ai e akH}T (7)

aZ represents the coefficient of the h spherical harmonics
function of the k scatterer. r represents the vector of the
monostatic RCS data from the EM simulations.The sizes of
the matrix and vectors are S € CFM*xHK o ¢ CHE apd
R € CFM where F and M is the number of RCS signal
frequency samples and that of RCS aspect angle samples
respectively.

If the optimal locations are known, meaning K = K,
solving the complex inverse problem with pseudo inverse
gives us the complex spherical harmonics coefficients for all
scatterers. With these coefficients, the spherical function of
reflection profile of each scatterer can be constructed and the
modeled RCS of the target can be constructed as well. Yet,
K is often greater than K. Therefore, choosing the locations
of the scatterers is also required. This can be formulated as a
sparsity constraint.

B. Sparsity Constraint

In addition to solving the system of linear equations, a
special sparsity constraint is used to limit the number of
scatterers by choosing K optimal scatterer locations among
the finite possible scatterer locations. We call all H coefficients
of one scatterer as a “group”. Our goal is to solve o with K
groups consisting of nonzero coefficients, while K — K groups
consist of zero coefficients. We propose a modified Orthogonal
Matching Pursuit (OMP) method to solve this problem.

OMP is a sparse approximation algorithm that solves system
of linear equations with the specified number of nonzero
elements [8]. The basic algorithm iteratively greedily finds
the entry in the solution which corresponds to the column in
the matrix that gives the highest correlation with the residual.
Instead of finding the column in the matrix that gives the
highest correlation with the residual, the proposed algorithm
finds which group of column space does.

We first initialize the algorithm by setting the residual as the
monostatic RCS data 7. Let S; be the j th group of columns in
S. With singular value decomposition (SVD), the orthonormal
basis of S; can be computed and defined as S, ;. We can
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then use the standard complex-domain inner product of S, ;
and the residual as the correlation measurement. That is, we
find the vector space:

A = argmax €]z = argmax|| (Spnsoe) 2 ()
J J

where e is the residual. The rest of the proposed algorithm
follows the standard OMP algorithm and the details are
illustrated in [8]. The modified algorithm is shown in
Algorithm 1.

Algorithm 1: Modified OMP
Result: o
e =r, AO = @;
Compute So,¢p,; for all j;
forn=1— K do
Ap = argmaxg; I (Sortn,j, r€SRK) ||2
An = An—l U {An}
Qap = argming ||Sa, o — 7|,
’Fn = SAna
T€Sp41 =T —Tp
end

C. Real-Numbered Scatterer Model

Real  spherical  harmonics  coefficients  construct
real-numbered RCS profiles. In some HPC RADAR EM
emulators, the RCS profiles are restricted to real numbers.
The problem with this restriction can be solved by stacking
the real parts and imaginary parts of the linear system of
equations and solving the 2-times larger real system of
equations. The reason is as follows:

Let v. be a complex vector, and v be the vector with the real
and imaginary numbers of v, stacked vertically. Since ||v.| =

VeIl = |2 (Re(uua + I (00)?) = /T lo* =

||v|| , the optimal solution we obtain from this approach is the
same as in the complex domain sense. The size of the system
becomes S € C2FMXHK o ¢ CHK and R € C?"M The
modified OMP algorithm is still applicable.

IV. SIMULATION RESULT

We demonstrate the feasibility of the proposed approach
using the RCS data of an aircraft. The aircraft geometry
STL file is obtained from [9] and is shown in Figure 2. The
RCS data is generated from the EM simulator CST Studio
Suite with horizontal polarization at the 5 frequencies evenly
distributed between 1GHz and 2GHz. That is, ' = 5. The
angle sampling increment is 10 degrees for both § and ¢ which
means M = 18 % 36 = 3240. We used spherical harmonics
of degree 13 and therefore H = (1 + 13)2 = 196. Our goal
is to find 16 scatterers i.e. K = 16 and all scatterer locate
on a 10m x 10m x 10m grid in the local coordinate i.e.
K = 1000. Figure 3 shows the constructed complex-numbered
scatterer model. The brightness indicates the absolute value of
the reflection gain at the corresponding aspect angle. Figure
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Fig. 2: Aircraft geometry

Fig. 3: Point scatterer model

4~8 presents the image form comparison between the RCS
data from CST Studio Suite and the modeled RCS at frequency
1, 1.25, 1.5, 1.75, and 2GHz, respectively.

V. CONCLUSION

The proposed spherical harmonic based anisotropic scatterer
model can be used to represent the RCS of complex targets.
This model can be used in RADAR HPC EM emulators.
We formulate the problem of finding the scatterer locations
and reflection profiles as a linear least square problem with
a special sparsity constraint. The problem is solved using a
modified OMP algorithm. The results show that this scatterer
model can effectively represent the RCS data of complex
targets.
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Fig. 4: Images of the RCS data at frequency 1GHz
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Fig. 5: Images of the RCS data at frequency 1.25GHz
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Fig. 6: Images of the RCS data at frequency 1.5GHz
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Fig. 7: Images of the RCS data at frequency 1.75GHz

Rcsofrom CST (Im)
o
-100
-200
-300
@ (degree)
Modeled RCS Im(?
0 i 100
g o0 o
_§' 180 -100
=270 -200
350 -300
0 90170
# (degree)

Modeled RCS (dB)

0 (degree)

8 88 8

10
o
=10
20

Fig. 8: Images of the RCS data at frequency 2GHz
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