Search results for: Measurement Process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6322

Search results for: Measurement Process

3592 Relationship between Personality Traits and Postural Stability among Czech Military Combat Troops

Authors: K. Rusnakova, D. Gerych, M. Stehlik

Abstract:

Postural stability is a complex process involving actions of biomechanical, motor, sensory and central nervous system components. Numerous joint systems, muscles involved, the complexity of sporting movements and situations require perfect coordination of the body's movement patterns. To adapt to a constantly changing situation in such a dynamic environment as physical performance, optimal input of information from visual, vestibular and somatosensory sensors are needed. Combat soldiers are required to perform physically and mentally demanding tasks in adverse conditions, and poor postural stability has been identified as a risk factor for lower extremity musculoskeletal injury. The aim of this study is to investigate whether some personality traits are related to the performance of static postural stability among soldiers of combat troops. NEO personality inventory (NEO-PI-R) was used to identify personality traits and the Nintendo Wii Balance Board was used to assess static postural stability of soldiers. Postural stability performance was assessed by changes in center of pressure (CoP) and center of gravity (CoG). A posturographic test was performed for 60 s with eyes opened during quiet upright standing. The results showed that facets of neuroticism and conscientiousness personality traits were significantly correlated with measured parameters of CoP and CoG. This study can help for better understanding the relationship between personality traits and static postural stability. The results can be used to optimize the training process at the individual level.

Keywords: Neuroticism, conscientiousness, postural stability, combat troops.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 485
3591 Optimal Construction Using Multi-Criteria Decision-Making Methods

Authors: Masood Karamoozian, Zhang Hong

Abstract:

The necessity and complexity of the decision-making process and the interference of the various factors to make decisions and consider all the relevant factors in a problem are very obvious nowadays. Hence, researchers show their interest in multi-criteria decision-making methods. In this research, the Analytical Hierarchy Process (AHP), Simple Additive Weighting (SAW), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods of multi-criteria decision-making have been used to solve the problem of optimal construction systems. Systems being evaluated in this problem include; Light Steel Frames (LSF), a case study of designs by Zhang Hong studio in the Southeast University of Nanjing, Insulating Concrete Form (ICF), Ordinary Construction System (OCS), and Precast Concrete System (PRCS) as another case study designs in Zhang Hong studio in the Southeast University of Nanjing. Crowdsourcing was done by using a questionnaire at the sample level (200 people). Questionnaires were distributed among experts in university centers and conferences. According to the results of the research, the use of different methods of decision-making led to relatively the same results. In this way, with the use of all three multi-criteria decision-making methods mentioned above, the PRCS was in the first rank, and the LSF system ranked second. Also, the PRCS, in terms of performance standards and economics, was ranked first, and the LSF system was allocated the first rank in terms of environmental standards.

Keywords: Multi-criteria decision making, AHP, SAW, TOPSIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208
3590 Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production

Authors: Liubov Magerramova, Eugene Kratt, Pavel Presniakov

Abstract:

A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and costly design and manufacture of casting molds. Moreover, traditional manufacturing methods limit the design possibilities of complex critical parts of engine, so capabilities of Powder Metallurgy Techniques (PMT) were analyzed to manufacture the turbine wheel with air-cooled blades. PMT dramatically reduce time needed for such production and allow creating new complex design solutions aimed at improving the technical characteristics of the engine: improving fuel efficiency and environmental performance, increasing reliability, and reducing weight. To accelerate and simplify the blades manufacturing process, several options based on additive technologies were used. The options were implemented in the form of various casting equipment for the manufacturing of blades. Methods of powder metallurgy were applied for connecting the blades with the disc. The optimal production scheme and a set of technologies for the manufacturing of blades and turbine wheel and other parts of the engine can be selected on the basis of the options considered.

Keywords: Additive technologies, gas turbine engine, powder technology, turbine wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
3589 A Real-Time Simulation Environment for Avionics Software Development and Qualification

Authors: U. Tancredi, D. Accardo, M. Grassi, G. Fasano, A. E. Tirri, A. Vitale, N. Genito, F. Montemari, L. Garbarino

Abstract:

The development of guidance, navigation and control algorithms and avionic procedures requires the disposability of suitable analysis and verification tools, such as simulation environments, which support the design process and allow detecting potential problems prior to the flight test, in order to make new technologies available at reduced cost, time and risk. This paper presents a simulation environment for avionic software development and qualification, especially aimed at equipment for general aviation aircrafts and unmanned aerial systems. The simulation environment includes models for short and medium-range radio-navigation aids, flight assistance systems, and ground control stations. All the software modules are able to simulate the modeled systems both in fast-time and real-time tests, and were implemented following component oriented modeling techniques and requirement based approach. The paper describes the specific models features, the architectures of the implemented software systems and its validation process. Performed validation tests highlighted the capability of the simulation environment to guarantee in real-time the required functionalities and performance of the simulated avionics systems, as well as to reproduce the interaction between these systems, thus permitting a realistic and reliable simulation of a complete mission scenario.

Keywords: ADS-B, avionics, NAVAIDs, real time simulation, TCAS, UAS ground control station.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 839
3588 Fundamental Variables of Final Account Closing Success in Construction Projects in Malaysia

Authors: Zarabizan Zakaria, Syuhaida Ismail, Aminah Md Yusof

Abstract:

Project management process starts from the planning stage up to the stage of completion (handover of buildings, preparation of the final accounts and the closing balance). Seeing as this process is not easy to be implemented efficiently and effectively, the issue of unsuccessful delivery as per contract in construction has become a major problem for construction projects. These issues have been blamed mainly on inefficient traditional construction practices that continue to dominate the current industry. This is due to several factors, such as environments of construction technology, sophisticated design and customer demand, that are constantly changing and influencing, either directly or indirectly, to the practice of management. Among the identified influences are physical environment, social environment, information environment, political and moral atmosphere. Therefore, this paper is emerged to determine the fundamental variables in the final account closing success in construction project. This aim can be achieved via its objectives of identifying the key constraints to the closing of final accounts in construction projects in Malaysia, investigating solutions to the identified constraints and analysing the relative levels of impact of the identified constraints. It is expected that this paper provides effective measures to avoid or at least reduce the problems in final account closing to the optimum level. It is also anticipated that the finding or outcome reported in this paper could address the unsuccessful contributors in final account closing and define tools for their mitigation for the better development of construction project.

Keywords: Fundamental variables, closing of final account, construction project, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3828
3587 Indications and Characteristics of Clinical Application of Periodontal Suturing

Authors: Saimir Heta, Ilma Robo, Vera Ostreni, Glorja Demika, Sonila Kapaj

Abstract:

Suturing, as a procedure of joining the lips of the lembo or wound, is important at the beginning of the healing process. This procedure helps to pass the healing process from the procedure per secundam to the stages of healing per primam, thus logically reducing the healing time of the wound. The purpose of this article is to publish some data on the clinical characteristics of periodontal suturing, presenting the advantages and disadvantages of different types of suture threads. The article is a mini-review type of articles selected from the application of keywords on the PubMed page. The number of articles extracted from this article publication page is in accordance with the 10-year publication time limit. The element that remains in the individual selection of the dentist applying the suture is the selection of the suture material. At a moment when some types of sutures are offered for use, some elements should be considered in the selection of the suture depending on the constituent material, the cross-section of the suture elements, and whether it collects bacteria in the "pits" created by the material. The presence of bacteria is a source of infection and possible delay in the healing of the sutured wound. The marketing of suture types offers a variety of materials, from which the selection of the most suitable suture type for specific application cases is a personal indication of the dental surgeon based on professional experiences and knowledge in this field.

Keywords: Suture, suture material, types of sutures, clinical application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104
3586 Wastewater Treatment with Ammonia Recovery System

Authors: M. Örvös, T. Balázs, K. F. Both

Abstract:

From environmental aspect purification of ammonia containing wastewater is expected. High efficiency ammonia desorption can be done from the water by air on proper temperature. After the desorption process, ammonia can be recovered and used in another technology. The calculation method described below give some methods to find either the minimum column height or ammonia rich solution of the effluent.

Keywords: Absorber, desorber, packed column.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
3585 A Study of the Built Environment Design Elements Embedded into the Multiple Criteria Strategic Planning Model for an Urban Renewal

Authors: Wann-Ming Wey

Abstract:

The link between urban planning and design principles and the built environment of an urban renewal area is of interest to the field of urban studies. During the past decade, there has also been increasing interest in urban planning and design; this interest is motivated by the possibility that design policies associated with the built environment can be used to control, manage, and shape individual activity and behavior. However, direct assessments and design techniques of the links between how urban planning design policies influence individuals are still rare in the field. Recent research efforts in urban design have focused on the idea that land use and design policies can be used to increase the quality of design projects for an urban renewal area-s built environment. The development of appropriate design techniques for the built environment is an essential element of this research. Quality function deployment (QFD) is a powerful tool for improving alternative urban design and quality for urban renewal areas, and for procuring a citizen-driven quality system. In this research, we propose an integrated framework based on QFD and an Analytic Network Process (ANP) approach to determine the Alternative Technical Requirements (ATRs) to be considered in designing an urban renewal planning and design alternative. We also identify the research designs and methodologies that can be used to evaluate the performance of urban built environment projects. An application in an urban renewal built environment planning and design project evaluation is presented to illustrate the proposed framework.

Keywords: Analytic Network Process, Built Environment, Quality Function Deployment, Urban Design, Urban Renewal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
3584 The Effect of Tool Path Strategy on Surface and Dimension in High Speed Milling

Authors: A. Razavykia, A. Esmaeilzadeh, S. Iranmanesh

Abstract:

Many orthopedic implants like proximal humerus cases require lower surface roughness and almost immediate/short lead time surgery. Thus, rapid response from the manufacturer is very crucial. Tool path strategy of milling process has a direct influence on the surface roughness and lead time of medical implant. High-speed milling as promised process would improve the machined surface quality, but conventional or super-abrasive grinding still required which imposes some drawbacks such as additional costs and time. Currently, many CAD/CAM software offers some different tool path strategies to milling free form surfaces. Nevertheless, the users must identify how to choose the strategies according to cutting tool geometry, geometry complexity, and their effects on the machined surface. This study investigates the effect of different tool path strategies for milling a proximal humerus head during finishing operation on stainless steel 316L. Experiments have been performed using MAHO MH700 S vertical milling machine and four machining strategies, namely, spiral outward, spiral inward, and radial as well as zig-zag. In all cases, the obtained surfaces were analyzed in terms of roughness and dimension accuracy compared with those obtained by simulation. The findings provide evidence that surface roughness, dimensional accuracy, and machining time have been affected by the considered tool path strategy.

Keywords: CAD/CAM software, milling, orthopedic implants, tool path strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 972
3583 Overcoming Boundaries in Science – A Plea against Political Isolations

Authors: Tim Engartner

Abstract:

If science is supposed to gain greater social relevance and acceptance, researchers must not only relate to the broader public, but also promote intercourse within the ivory tower itself. The latter process has been under way successfully for a number of years in the form of transdisciplinary research initiatives. What is still lacking is a broad debate about the necessity to look around properly and face up to opposing views on one and the same topic within our own discipline.

Keywords: Schools of thought, pluralism, openness, value judgements, controversy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116
3582 Microbial Oil Production by Monoculture and Mixed Cultures of Microalgae and Oleaginous Yeasts using Sugarcane Juice as Substrate

Authors: Thidarat Papone, Supaporn Kookkhunthod, Ratanaporn Leesing

Abstract:

Monoculture and mixed cultures of microalgae and the oleaginous yeast for microbial oil productions were investigated using sugarcane juice as carbon substrate. The monoculture of yeast Torulaspora maleeae Y30, Torulaspora globosa YU5/2 grew faster than that of microalgae Chlorella sp. KKU-S2. In monoculture of T. maleeae Y30, a biomass of 8.267g/L with lipid yield of 0.920g/L were obtained, while 8.333g/L of biomass with lipid yield of 1.141g/L were obtained for monoculture of T. globosa YU5/2. A biomass of 1.933g/L with lipid yield of 0.052g/L was found for monoculture of Chlorella sp. KKU-S2. The biomass concentration in the mixed culture of the oleaginous yeast with microalgae increased faster and was higher compared with that in the monocultures. A biomass of 8.733g/L with lipid yield of 1.564g/L was obtained for a mixed culture of T. maleeae Y30 with Chlorella sp. KKU-S2, while 8.010g/L of biomass with lipid yield of 2.424g/L was found for mixed culture of T. globosa YU5/2 with Chlorella sp. KKU-S2. Maximum cell yield coefficient (YX/S, g/L) was found of 0.323 in monoculture of Chlorella sp. KKU-S2 but low level of both specific yield of lipid (YP/X, g lipid/g cells) of 0.027 and volumetric lipid production rate (QP, g/L/d) of 0.003 were observed. While, maximum YP/X (0.303), QP (0.105) and maximum process product yield (YP/S, 0.061) were obtained in mixed culture of T. globosa YU5/2 with Chlorella sp. KKU-S2. The results obtained from the study shows that mixed culture of yeast with microalgae is a desirable cultivation process for microbial oil production.

Keywords: Microbial oil, Chlorella sp. KKU-S2, Torulaspora maleeae Y30, Torulaspora globosa YU5/2, mixed culture, biodiesel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2931
3581 Characteristics of Wall Thickness Increase in Pipe Reduction Process using Planetary Rolls

Authors: Yuji Kotani, Shunsuke Kanai, Hisaki Watari

Abstract:

In recent years, global warming has become a worldwide problem. The reduction of carbon dioxide emissions is a top priority for many companies in the manufacturing industry. In the automobile industry as well, the reduction of carbon dioxide emissions is one of the most important issues. Technology to reduce the weight of automotive parts improves the fuel economy of automobiles, and is an important technology for reducing carbon dioxide. Also, even if this weight reduction technology is applied to electric automobiles rather than gasoline automobiles, reducing energy consumption remains an important issue. Plastic processing of hollow pipes is one important technology for realizing the weight reduction of automotive parts. Ohashi et al. [1],[2] present an example of research on pipe formation in which a process was carried out to enlarge a pipe diameter using a lost core, achieving the suppression of wall thickness reduction and greater pipe expansion than hydroforming. In this study, we investigated a method to increase the wall thickness of a pipe through pipe compression using planetary rolls. The establishment of a technology whereby the wall thickness of a pipe can be controlled without buckling the pipe is an important technology for the weight reduction of products. Using the finite element analysis method, we predicted that it would be possible to increase the compression of an aluminum pipe with a 3mm wall thickness by approximately 20%, and wall thickness by approximately 20% by pressing the hollow pipe with planetary rolls.

Keywords: Pipe-Forming, Wall Thickness, Finite-element-method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2962
3580 The 5S Responses of Obese Teenagers in Verbal Bullying

Authors: Alpha Bolinao, Francine Rose De Castro, Jessie Kate Lumba, Raztine Mae Paeste, Hannah Grace Tosio

Abstract:

The present study aimed to know the role of verbal bullying in the lives of obese teenagers exposed to it. The study employed a qualitative design specifically the phenomenological approach that focuses on the obese teenagers’ verbal bullying experiences. The study also used the social constructivism approach wherein it described the obese teenagers’ verbal bullying experiences as they interact with the social world. Through purposive and referral sampling technique, the researchers were able to choose twelve (12) respondents from different schools around the City of Manila, enrolled in the School Year 2015-2016, ages 16-21 years old, has experienced verbal bullying for the last ten (10) years and with the Body Mass Index (BMI) of equal to or greater than 30. Upon the consent of the respondents, ethical considerations were ensured. In-depth one (1) hour interviews were guided by the researchers’ aide memoir. The recorded interviews were transcribed into a field text and the responses were thoroughly analyzed through Thematic Analysis and Kelly’s Repertory Grid. It was found that the role of verbal bullying in the lives of obese teenagers exposed to it is a process and is best described through a syringe, or the 5S Responses of Obese Teenagers in Bullying, with five conceptual themes which also signify the experiences and the process that obese teenagers have gone through after experiencing verbal bullying. The themes conceptualized were: Suffering, self-doubt, suppression, self-acceptance and sanguineness. This paper may serve as a basis for a counseling program to help the obese teenagers cope with their bullying experiences.

Keywords: Obesity, obese teenagers, bullying, experiences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
3579 Outsourcing the Front End of Innovation

Authors: B. Likar, K. Širok

Abstract:

The paper presents a new method for efficient innovation process management. Even though the innovation management methods, tools and knowledge are well established and documented in literature, most of the companies still do not manage it efficiently. Especially in SMEs the front end of innovation - problem identification, idea creation and selection - is often not optimally performed. Our eMIPS methodology represents a sort of "umbrella methodology" - a well-defined set of procedures, which can be dynamically adapted to the concrete case in a company. In daily practice, various methods (e.g. for problem identification and idea creation) can be applied, depending on the company's needs. It is based on the proactive involvement of the company's employees supported by the appropriate methodology and external experts. The presented phases are performed via a mixture of face-to-face activities (workshops) and online (eLearning) activities taking place in eLearning Moodle environment and using other e-communication channels. One part of the outcomes is an identified set of opportunities and concrete solutions ready for implementation. The other also very important result is connected to innovation competences for the participating employees related with concrete tools and methods for idea management. In addition, the employees get a strong experience for dynamic, efficient and solution oriented managing of the invention process. The eMIPS also represents a way of establishing or improving the innovation culture in the organization. The first results in a pilot company showed excellent results regarding the motivation of participants and also as to the results achieved.

Keywords: Creativity, distance learning, front end, innovation, problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
3578 Optimizing Usability Testing with Collaborative Method in an E-Commerce Ecosystem

Authors: Markandeya Kunchi

Abstract:

Usability testing (UT) is one of the vital steps in the User-centred design (UCD) process when designing a product. In an e-commerce ecosystem, UT becomes primary as new products, features, and services are launched very frequently. And, there are losses attached to the company if an unusable and inefficient product is put out to market and is rejected by customers. This paper tries to answer why UT is important in the product life-cycle of an E-commerce ecosystem. Secondary user research was conducted to find out work patterns, development methods, type of stakeholders, and technology constraints, etc. of a typical E-commerce company. Qualitative user interviews were conducted with product managers and designers to find out the structure, project planning, product management method and role of the design team in a mid-level company. The paper tries to address the usual apprehensions of the company to inculcate UT within the team. As well, it stresses upon factors like monetary resources, lack of usability expert, narrow timelines, and lack of understanding of higher management as some primary reasons. Outsourcing UT to vendors is also very prevalent with mid-level e-commerce companies, but it has its own severe repercussions like very little team involvement, huge cost, misinterpretation of the findings, elongated timelines, and lack of empathy towards the customer, etc. The shortfalls of the unavailability of a UT process in place within the team and conducting UT through vendors are bad user experiences for customers while interacting with the product, badly designed products which are neither useful and nor utilitarian. As a result, companies see dipping conversions rates in apps and websites, huge bounce rates and increased uninstall rates. Thus, there was a need for a more lean UT system in place which could solve all these issues for the company. This paper highlights on optimizing the UT process with a collaborative method. The degree of optimization and structure of collaborative method is the highlight of this paper. Collaborative method of UT is one in which the centralised design team of the company takes for conducting and analysing the UT. The UT is usually a formative kind where designers take findings into account and uses in the ideation process. The success of collaborative method of UT is due to its ability to sync with the product management method employed by the company or team. The collaborative methods focus on engaging various teams (design, marketing, product, administration, IT, etc.) each with its own defined roles and responsibility in conducting a smooth UT with users In-house. The paper finally highlights the positive results of collaborative UT method after conducting more than 100 In-lab interviews with users across the different lines of businesses. Some of which are the improvement of interaction between stakeholders and the design team, empathy towards users, improved design iteration, better sanity check of design solutions, optimization of time and money, effective and efficient design solution. The future scope of collaborative UT is to make this method leaner, by reducing the number of days to complete the entire project starting from planning between teams to publishing the UT report.

Keywords: Usability testing, collaborative method, e-commerce, product management method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
3577 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential

Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag

Abstract:

Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.

Keywords: Climate, reanalysis, renewable energy, solar radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
3576 Temperature Evolution, Microstructure and Mechanical Properties of Heat-Treatable Aluminum Alloy Welded by Friction Stir Welding: Comparison with Tungsten Inert Gas

Authors: Saliha Gachi, Mouloud Aissani, Fouad Boubenider

Abstract:

Friction Stir Welding (FSW) is a solid-state welding technique that can join material without melting the plates to be welded. In this work, we are interested to demonstrate the potentiality of FSW for joining the heat-treatable aluminum alloy 2024-T3 which is reputed as difficult to be welded by fusion techniques. Thereafter, the FSW joint is compared with another one obtained from a conventional fusion process Tungsten Inert Gas (TIG). FSW welds are made up using an FSW tool mounted on a milling machine. Single pass welding was applied to fabricated TIG joint. The comparison between the two processes has been made on the temperature evolution, mechanical and microstructure behavior. The microstructural examination revealed that FSW weld is composed of four zones: Base metal (BM), Heat affected zone (HAZ), Thermo-mechanical affected zone (THAZ) and the nugget zone (NZ). The NZ exhibits a recrystallized equiaxed refined grains that induce better mechanical properties and good ductility compared to TIG joint where the grains have a larger size in the welded region compared with the BM due to the elevated heat input. The microhardness results show that, in FSW weld, the THAZ contains the lowest microhardness values and increase in the NZ; however, in TIG process, the lowest values are localized on the NZ.

Keywords: Friction stir welding, tungsten inert gaz, aluminum, microstructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
3575 Electron-Impact Excitation of Kr 5s, 5p Levels

Authors: Alla A. Mityureva

Abstract:

The available data on the cross sections of electronimpact excitation of krypton 5s and 5p configuration levels out of the ground state are represented in convenient and compact form. The results are obtained by regression through all known published data related to this process.

Keywords: Cross section, electron excitation, krypton, regression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072
3574 Investigation of Layer Thickness and Surface Roughness on Aerodynamic Coefficients of Wind Tunnel RP Models

Authors: S. Daneshmand, A. Ahmadi Nadooshan, C. Aghanajafi

Abstract:

Traditional wind tunnel models are meticulously machined from metal in a process that can take several months. While very precise, the manufacturing process is too slow to assess a new design's feasibility quickly. Rapid prototyping technology makes this concurrent study of air vehicle concepts via computer simulation and in the wind tunnel possible. This paper described the Affects layer thickness models product with rapid prototyping on Aerodynamic Coefficients for Constructed wind tunnel testing models. Three models were evaluated. The first model was a 0.05mm layer thickness and Horizontal plane 0.1μm (Ra) second model was a 0.125mm layer thickness and Horizontal plane 0.22μm (Ra) third model was a 0.15mm layer thickness and Horizontal plane 4.6μm (Ra). These models were fabricated from somos 18420 by a stereolithography (SLA). A wing-body-tail configuration was chosen for the actual study. Testing covered the Mach range of Mach 0.3 to Mach 0.9 at an angle-of-attack range of -2° to +12° at zero sideslip. Coefficients of normal force, axial force, pitching moment, and lift over drag are shown at each of these Mach numbers. Results from this study show that layer thickness does have an effect on the aerodynamic characteristics in general; the data differ between the three models by fewer than 5%. The layer thickness does have more effect on the aerodynamic characteristics when Mach number is decreased and had most effect on the aerodynamic characteristics of axial force and its derivative coefficients.

Keywords: Aerodynamic characteristics, stereolithography, layer thickness, Rapid prototyping, surface finish.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911
3573 Investigation on the Physical Conditions of Façade Systems of Campus Buildings by Infrared Thermography Tests

Authors: N. Türkmenoğlu Bayraktar, E. Kishalı

Abstract:

Campus buildings are educational facilities where various amount of energy consumption for lighting, heating, cooling and ventilation occurs. Some of the new universities in Turkey, where this investigation takes place, still continue their educational activities in existing buildings primarily designed for different architectural programs and converted to campus buildings via changes of function, space organizations and structural interventions but most of the time without consideration of appropriate micro climatic conditions. Reducing energy consumption in these structures not only contributes to the national economy but also mitigates the negative effects on environment. Furthermore, optimum thermal comfort conditions should be provided during the refurbishment of existing campus structures and their building envelope. Considering this issue, the first step is to investigate the climatic performance of building elements regarding refurbishment process. In the context of the study Kocaeli University, Faculty of Design and Architecture building constructed in 1980s in Anıtpark campus located in the central part of Kocaeli, Turkey was investigated. Climatic factors influencing thermal conditions; the deteriorations on building envelope; temperature distribution; heat losses from façade elements observed by thermography were presented in order to improve strategies for retrofit process for the building envelope. Within the scope of the survey, refurbishment strategies towards providing optimum climatic comfort conditions, increasing energy efficiency of building envelope were proposed.

Keywords: Building envelope, IRT, refurbishment, non-destructive test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864
3572 Aircraft Supplier Selection using Multiple Criteria Group Decision Making Process with Proximity Measure Method for Determinate Fuzzy Set Ranking Analysis

Authors: C. Ardil

Abstract:

Aircraft supplier selection process, which is considered as a fundamental supply chain problem, is a multi-criteria group decision problem that has a significant impact on the performance of the entire supply chain. In practical situations are frequently incomplete and uncertain information, making it difficult for decision-makers to communicate their opinions on candidates with precise and definite values. To solve the aircraft supplier selection problem in an environment of incomplete and uncertain information, proximity measure method is proposed. It uses determinate fuzzy numbers. The weights of each decision maker are equally predetermined and the entropic criteria weights are calculated using each decision maker's decision matrix. Additionally, determinate fuzzy numbers, it is proposed to use the weighted normalized Minkowski distance function and Hausdorff distance function to determine the ranking order patterns of alternatives. A numerical example for aircraft supplier selection is provided to further demonstrate the applicability, effectiveness, validity and rationality of the proposed method.

Keywords: Aircraft supplier selection, multiple criteria decision making, fuzzy sets, determinate fuzzy sets, intuitionistic fuzzy sets, proximity measure method, Minkowski distance function, Hausdorff distance function, PMM, MCDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 338
3571 Performance Characteristics of a Closed Circuit Cooling Tower with Multi Path

Authors: Gyu-Jin Shim, Seung-Moon Baek, Choon-Geun Moon, Ho-Saeng Lee, Jung-In Yoon

Abstract:

The experimental thermal performance of two heat exchangers in closed-wet cooling tower (CWCT) was investigated in this study. The test sections are heat exchangers which have multi path that is used as the entrance of cooling water and are consisting of bare-type copper tubes between 15.88mm and 19.05mm. The process fluids are the cooling water that flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water that flows gravitational direction in the outer side of it. Air contacts its outer side of that as it counterflows. Heat and mass transfer coefficients and cooling capacity were calculated with variations of process fluids, multi path and different diameter tubes to figure out the performance of characteristics of CWCT. The main results were summarized as follows: The results show this experiment is reliable with values of heat and mass transfer coefficients comparing to values of correlations. Heat and mass transfer coefficients and cooling capacity of two paths are higher than these with one path using 15.88 and 19.05mm tubes. Cooling capacity per unit volume with 15.88mm tube using one and two paths are higher than 19.05mm tube due to increase of surface area per unit volume.

Keywords: Closed–Wet Cooling Tower, Cooling Capacity, Heatand Mass Transfer Coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
3570 Food Security in the Middle East and North Africa

Authors: Sara D. Garduño-Diaz, Philippe Y. Garduño-Diaz

Abstract:

To date, one of the few comprehensive indicators for the measurement of food security is the Global Food Security Index (GFSI). This index is a dynamic quantitative and qualitative benchmarking model, constructed from 28 unique indicators, that measures drivers of food security across both developing and developed countries. Whereas the GFSI has been calculated across a set of 109 countries, in this paper we aim to present and compare, for the Middle East and North Africa (MENA), 1) the Food Security Index scores achieved and 2) the data available on affordability, availability, and quality of food. The data for this work was taken from the latest available report published by the creators of the GFSI, which in turn used information from national and international statistical sources. MENA countries rank from place 17/109 (Israel, although with resent political turmoil this is likely to have changed) to place 91/109 (Yemen) with household expenditure spent in food ranging from 15.5% (Israel) to 60% (Egypt). Lower spending on food as a share of household consumption in most countries and better food safety net programs in the MENA have contributed to a notable increase in food affordability. The region has also, however, experienced a decline in food availability, owing to more limited food supplies and higher volatility of agricultural production. In terms of food quality and safety the MENA has the top ranking country (Israel). The most frequent challenges faced by the countries of the MENA include public expenditure on agricultural research and development as well as volatility of agricultural production. Food security is a complex phenomenon that interacts with many other indicators of a country’s wellbeing; in the MENA it is slowly but markedly improving.

Keywords: Diet, food insecurity, global food security index, nutrition, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3968
3569 Trends in Competitiveness of the Thai Printing Industry

Authors: Amon Lasomboon

Abstract:

Since the world printing industry has to confront globalization with a constant change, the Thai printing industry, as a small but increasingly significant part of the world printing industry, cannot inevitably escape but has to encounter with the similar change and also the need to revamp its production processes, designs and technology to make them more appealing to both international and domestic market. The essential question is what is the Thai competitive edge in the printing industry in changing environment? This research is aimed to study the Thai level of competitive edge in terms of marketing, technology, environment friendly, and the level of satisfaction of the process of using printing machines. To access the extent to which is the trends in competitiveness of Thai printing industry, both quantitative and qualitative study were conducted. The quantitative analysis was restricted to 100 respondents. The qualitative analysis was restricted to a focus group of 10 individuals from various backgrounds in the Thai printing industry. The findings from the quantitative analysis revealed that the overall mean scores are 4.53, 4.10, and 3.50 for the competitiveness of marketing, the competitiveness of technology, and the competitiveness of being environment friendly respectively. However, the level of satisfaction for the process of using machines has a mean score only 3.20. The findings from the qualitative analysis have revealed that target customers have increasingly reordered due to their contentment in both low prices and the acceptable quality of the products. Moreover, the Thai printing industry has a tendency to convert to ambient green technology which is friendly to the environment. The Thai printing industry is choosing to produce or substitute with products that are less damaging to the environment. It is also found that the Thai printing industry has been transformed into a very competitive industry which bargaining power rests on consumers who have a variety of choices.

Keywords: Competitiveness, Printing Industry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2298
3568 Implementation of Conceptual Real-Time Embedded Functional Design via Drive-by-Wire ECU Development

Authors: A. Ukaew, C. Chauypen

Abstract:

Design concepts of real-time embedded system can be realized initially by introducing novel design approaches. In this literature, model based design approach and in-the-loop testing were employed early in the conceptual and preliminary phase to formulate design requirements and perform quick real-time verification. The design and analysis methodology includes simulation analysis, model based testing, and in-the-loop testing. The design of conceptual driveby- wire, or DBW, algorithm for electronic control unit, or ECU, was presented to demonstrate the conceptual design process, analysis, and functionality evaluation. The concepts of DBW ECU function can be implemented in the vehicle system to improve electric vehicle, or EV, conversion drivability. However, within a new development process, conceptual ECU functions and parameters are needed to be evaluated. As a result, the testing system was employed to support conceptual DBW ECU functions evaluation. For the current setup, the system components were consisted of actual DBW ECU hardware, electric vehicle models, and control area network or CAN protocol. The vehicle models and CAN bus interface were both implemented as real-time applications where ECU and CAN protocol functionality were verified according to the design requirements. The proposed system could potentially benefit in performing rapid real-time analysis of design parameters for conceptual system or software algorithm development.

Keywords: Drive-by-wire ECU, in-the-loop testing, modelbased design, real-time embedded system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
3567 Quantification of Soft Tissue Artefacts Using Motion Capture Data and Ultrasound Depth Measurements

Authors: Azadeh Rouhandeh, Chris Joslin, Zhen Qu, Yuu Ono

Abstract:

The centre of rotation of the hip joint is needed for an accurate simulation of the joint performance in many applications such as pre-operative planning simulation, human gait analysis, and hip joint disorders. In human movement analysis, the hip joint center can be estimated using a functional method based on the relative motion of the femur to pelvis measured using reflective markers attached to the skin surface. The principal source of errors in estimation of hip joint centre location using functional methods is soft tissue artefacts due to the relative motion between the markers and bone. One of the main objectives in human movement analysis is the assessment of soft tissue artefact as the accuracy of functional methods depends upon it. Various studies have described the movement of soft tissue artefact invasively, such as intra-cortical pins, external fixators, percutaneous skeletal trackers, and Roentgen photogrammetry. The goal of this study is to present a non-invasive method to assess the displacements of the markers relative to the underlying bone using optical motion capture data and tissue thickness from ultrasound measurements during flexion, extension, and abduction (all with knee extended) of the hip joint. Results show that the artefact skin marker displacements are non-linear and larger in areas closer to the hip joint. Also marker displacements are dependent on the movement type and relatively larger in abduction movement. The quantification of soft tissue artefacts can be used as a basis for a correction procedure for hip joint kinematics.

Keywords: Hip joint centre, motion capture, soft tissue artefact, ultrasound depth measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841
3566 The Fracture Resistance of Zirconia Based Dental Crowns from Cyclic Loading: A Function of Relative Wear Depth

Authors: T. Qasim, B. El Masoud, D. Ailabouni

Abstract:

This in vitro study focused on investigating the fatigue resistance of veneered zirconia molar crowns with different veneering ceramic thicknesses, simulating the relative wear depths under simulated cyclic loading. A mandibular first molar was prepared and then scanned using computer-aided design/computer-aided manufacturing (CAD/CAM) technology to fabricate 32 zirconia copings of uniform 0.5 mm thickness. The manufactured copings then veneered with 1.5 mm, 1.0 mm, 0.5 mm, and 0.0 mm representing 0%, 33%, 66%, and 100% relative wear of a normal ceramic thickness of 1.5 mm. All samples were thermally aged to 6000 thermo-cycles for 2 minutes with distilled water between 5 ˚C and 55 ˚C. The samples subjected to cyclic fatigue and fracture testing using SD Mechatronik chewing simulator. These samples are loaded up to 1.25x10⁶ cycles or until they fail. During fatigue, testing, extensive cracks were observed in samples with 0.5 mm veneering layer thickness. Veneering layer thickness 1.5-mm group and 1.0-mm group were not different in terms of resisting loads necessary to cause an initial crack or final failure. All ceramic zirconia-based crown restorations with varying occlusal veneering layer thicknesses appeared to be fatigue resistant. Fracture load measurement for all tested groups before and after fatigue loading exceeded the clinical chewing forces in the posterior region. In general, the fracture loads increased after fatigue loading and with the increase in the thickness of the occlusal layering ceramic.

Keywords: All ceramic, dental crowns, relative wear, chewing simulator, cyclic loading, thermally ageing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885
3565 Solid Waste Pollution and the Importance of Environmental Planning in Managing and Preserving the Public Environment in Benghazi City and Its Surrounding Areas

Authors: Abdelsalam Omran Gebril Ali

Abstract:

Pollution and solid waste are the most important environmental problems plaguing the city of Benghazi as well as other cities and towns in Libya. These problems are caused by the lack of environmental planning and sound environmental management. Environmental planning is very important at present for the development of projects that preserve the environment; therefore, the planning process should be prioritized over the management process. Pollution caused by poor planning and environmental management exists not only in Benghazi but also in all other Libyan cities. This study was conducted through various field visits to several neighborhoods and areas within Benghazi as well as its neighboring regions. Follow-ups in these areas were conducted from March 2013 to October 2013 as documented by photographs. The existing methods of waste collection and means of transportation were investigated. Interviews were conducted with relevant authorities, including the Environment Public Authority in Benghazi and the Public Service Company of Benghazi. The objective of this study is to determine the causes of solid waste pollution in Benghazi City and its surrounding areas. Results show that solid waste pollution in Benghazi and its surrounding areas is the result of poor planning and environmental management, population growth, and the lack of hardware and equipment for the collection and transport of waste from the city to the landfill site. One of the most important recommendations in this study is the development of a complete and comprehensive plan that includes environmental planning and environmental management to reduce solid waste pollution.

Keywords: Solid waste, pollution, environmental planning, management, Benghazi, Libya.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6387
3564 Development of a Smart System for Measuring Strain Levels of Natural Gas and Petroleum Pipelines on Earthquake Fault Lines in Türkiye

Authors: Ahmet Yetik, Seyit Ali Kara, Cevat Özarpa

Abstract:

Load changes occur on natural gas and oil pipelines due to natural disasters. The displacement of the soil around the natural gas and oil pipes due to situations that may cause erosion, such as earthquakes, landslides, and floods, is the source of this load change. The exposure of natural gas and oil pipes to variable loads causes deformation, cracks, and breaks in these pipes. Such cracks and breaks can cause significant damage to people and the environment, including the risk of explosions. Especially with the examinations made after natural disasters, it can be easily understood which of the pipes has sustained more damage in those quake-affected regions. It has been determined that earthquakes in Türkiye have caused permanent damage to pipelines. This project was initiated in response to the identification of cracks and gas leaks in the insulation gaskets placed in the pipelines, especially at the junction points. In this study, a SCADA (Supervisory Control and Data Acquisition) application has been developed to monitor load changes caused by natural disasters. The developed SCADA application monitors the changes in the x, y, and z axes of the stresses occurring in the pipes with the help of strain gauge sensors placed on the pipes. For the developed SCADA system, test setups in accordance with the standards were created during the fieldwork. The test setups created were integrated into the SCADA system, and the system was followed up. Thanks to the SCADA system developed with the field application, the load changes that will occur on the natural gas and oil pipes are instantly monitored, and the accumulations that may create a load on the pipes and their surroundings are immediately intervened, and new risks that may arise are prevented. It has contributed to energy supply security, asset management, pipeline holistic management, and overall sustainability in the industry.

Keywords: Earthquake, natural gas pipes, oil pipes, voltage measurement, landslide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57
3563 Removal of Cationic Heavy Metal and HOC from Soil-Washed Water Using Activated Carbon

Authors: Chi Kyu Ahn, Young Mi Kim, Seung Han Woo, Jong Moon Park

Abstract:

Soil washing process with a surfactant solution is a potential technology for the rapid removal of hydrophobic organic compound (HOC) from soil. However, large amount of washed water would be produced during operation and this should be treated effectively by proper methods. The soil washed water for complex contaminated site with HOC and heavy metals might contain high amount of pollutants such as HOC and heavy metals as well as used surfactant. The heavy metals in the soil washed water have toxic effects on microbial activities thus these should be removed from the washed water before proceeding to a biological waste-water treatment system. Moreover, the used surfactant solutions are necessary to be recovered for reducing the soil washing operation cost. In order to simultaneously remove the heavy metals and HOC from soil-washed water, activated carbon (AC) was used in the present study. In an anionic-nonionic surfactant mixed solution, the Cd(II) and phenanthrene (PHE) were effectively removed by adsorption on activated carbon. The removal efficiency for Cd(II) was increased from 0.027 mmol-Cd/g-AC to 0.142 mmol-Cd/g-AC as the mole ratio of SDS increased in the presence of PHE. The adsorptive capacity of PHE was also increased according to the SDS mole ratio due to the decrement of molar solubilization ratios (MSR) for PHE in an anionic-nonionic surfactant mixture. The simultaneous adsorption of HOC and cationic heavy metals using activated carbon could be a useful method for surfactant recovery and the reduction of heavy metal toxicity in a surfactant-enhanced soil washing process.

Keywords: Activated carbon, Anionic-nonionic surfactant mixture, Cationic heavy metal, HOC, Soil washing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710