Search results for: PEER method.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8174

Search results for: PEER method.

5504 Calibration Model of %Titratable Acidity (Citric Acid) for Intact Tomato by Transmittance SW-NIR Spectroscopy

Authors: K. Petcharaporn, S. Kumchoo

Abstract:

The acidity (citric acid) is the one of chemical content that can be refer to the internal quality and it’s a maturity index of tomato, The titratable acidity (%TA) can be predicted by a non-destructive method prediction by using the transmittance short wavelength (SW-NIR) spectroscopy in the wavelength range between 665-955 nm. The set of 167 tomato samples divided into groups of 117 tomatoes sample for training set and 50 tomatoes sample for test set were used to establish the calibration model to predict and measure %TA by partial least squares regression (PLSR) technique. The spectra were pretreated with MSC pretreatment and it gave the optimal result for calibration model as (R = 0.92, RMSEC = 0.03%) and this model obtained high accuracy result to use for %TA prediction in test set as (R = 0.81, RMSEP = 0.05%). From the result of prediction in test set shown that the transmittance SW-NIR spectroscopy technique can be used for a non-destructive method for %TA prediction of tomato.

Keywords: Tomato, quality, prediction, transmittance, titratable acidity, citric acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700
5503 Comparative Study of Fault Identification and Classification on EHV Lines Using Discrete Wavelet Transform and Fourier Transform Based ANN

Authors: K.Gayathri, N. Kumarappan

Abstract:

An appropriate method for fault identification and classification on extra high voltage transmission line using discrete wavelet transform is proposed in this paper. The sharp variations of the generated short circuit transient signals which are recorded at the sending end of the transmission line are adopted to identify the fault. The threshold values involve fault classification and these are done on the basis of the multiresolution analysis. A comparative study of the performance is also presented for Discrete Fourier Transform (DFT) based Artificial Neural Network (ANN) and Discrete Wavelet Transform (DWT). The results prove that the proposed method is an effective and efficient one in obtaining the accurate result within short duration of time by using Daubechies 4 and 9. Simulation of the power system is done using MATLAB.

Keywords: EHV transmission line, Fault identification and classification, Discrete wavelet transform, Multiresolution analysis, Artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
5502 New Efficient Method for Coding Color Images

Authors: Walaa M.Abd-Elhafiez, Wajeb Gharibi

Abstract:

In this paper a novel color image compression technique for efficient storage and delivery of data is proposed. The proposed compression technique started by RGB to YCbCr color transformation process. Secondly, the canny edge detection method is used to classify the blocks into the edge and non-edge blocks. Each color component Y, Cb, and Cr compressed by discrete cosine transform (DCT) process, quantizing and coding step by step using adaptive arithmetic coding. Our technique is concerned with the compression ratio, bits per pixel and peak signal to noise ratio, and produce better results than JPEG and more recent published schemes (like CBDCT-CABS and MHC). The provided experimental results illustrate the proposed technique that is efficient and feasible in terms of compression ratio, bits per pixel and peak signal to noise ratio.

Keywords: Image compression, color image, Q-coder, quantization, edge-detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
5501 Lattice Boltzmann Method for Turbulent Heat Transfer in Wavy Channel Flows

Authors: H.Y. Lai, S. C. Chang, W. L. Chen

Abstract:

The hydrodynamic and thermal lattice Boltzmann methods are applied to investigate the turbulent convective heat transfer in the wavy channel flows. In this study, the turbulent phenomena are modeling by large-eddy simulations with the Smagorinsky model. As a benchmark, the laminar and turbulent backward-facing step flows are simulated first. The results give good agreement with other numerical and experimental data. For wavy channel flows, the distribution of Nusselt number and the skin-friction coefficients are calculated to evaluate the heat transfer effect and the drag force. It indicates that the vortices at the trough would affect the magnitude of drag and weaken the heat convection effects on the wavy surface. In turbulent cases, if the amplitude of the wavy boundary is large enough, the secondary vortices would be generated at troughs and contribute to the heat convection. Finally, the effects of different Re on the turbulent transport phenomena are discussed.

Keywords: Heat transfer, lattice Boltzmann method, turbulence, wavy channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2501
5500 Generation of Highly Ordered Porous Antimony-Doped Tin Oxide Film by A Simple Coating Method with Colloidal Template

Authors: Asep Bayu Dani Nandiyanto, Asep Suhendi, Yutaka Kisakibaru, Takashi Ogi, Kikuo Okuyama

Abstract:

An ordered porous antimony-doped tin oxide (ATO) film was successfully prepared using a simple coating process with colloidal templates. The facile production was effective when a combination of 16-nm ATO (as a model of an inorganic nanoparticle) and polystyrene (PS) spheres (as a model of the template) weresimply coated to produce a composite ATO/PS film. Heat treatment was then used to remove the PS and produce the porous film. The porous film with a spherical pore shape and a highly ordered porous structure could be obtained. A potential way for the control of pore size could be also achieved by changing initial template size. The theoretical explanation and mechanism of porous formation were also added, which would be important for the scaling-up prediction and estimation.

Keywords: Porous structure film; ATO particle; Ultra-low refractive index; vertical drop method; Low-density material;

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571
5499 A Robust Method for Hand Tracking Using Mean-shift Algorithm and Kalman Filter in Stereo Color Image Sequences

Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Robert Niese, Bernd Michaelis

Abstract:

Real-time hand tracking is a challenging task in many computer vision applications such as gesture recognition. This paper proposes a robust method for hand tracking in a complex environment using Mean-shift analysis and Kalman filter in conjunction with 3D depth map. The depth information solve the overlapping problem between hands and face, which is obtained by passive stereo measuring based on cross correlation and the known calibration data of the cameras. Mean-shift analysis uses the gradient of Bhattacharyya coefficient as a similarity function to derive the candidate of the hand that is most similar to a given hand target model. And then, Kalman filter is used to estimate the position of the hand target. The results of hand tracking, tested on various video sequences, are robust to changes in shape as well as partial occlusion.

Keywords: Computer Vision and Image Analysis, Object Tracking, Gesture Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2919
5498 A Blind SLM Scheme for Reduction of PAPR in OFDM Systems

Authors: K. Kasiri, M. J. Dehghani

Abstract:

In this paper we propose a blind algorithm for peakto- average power ratio (PAPR) reduction in OFDM systems, based on selected mapping (SLM) algorithm as a distortionless method. The main drawback of the conventional SLM technique is the need for transmission of several side information bits, for each data block, which results in loss in data rate transmission. In the proposed method some special number of carriers in the OFDM frame is reserved to be rotated with one of the possible phases according to the number of phase sequence blocks in SLM algorithm. Reserving some limited number of carriers wont effect the reduction in PAPR of OFDM signal. Simulation results show using ML criteria at the receiver will lead to the same system-performance as the conventional SLM algorithm, while there is no need to send any side information to the receiver.

Keywords: Orthogonal Frequency Division Multiplexing(OFDM), Peak-to-Average Power Ratio (PAPR), Selected Mapping(SLM), Blind SLM (BSLM).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2295
5497 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms

Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov

Abstract:

The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems do not scale well on cluster containing multiple Central Processing Units (multi-CPUs cluster) or cluster containing multiple Graphics Processing Units (multi-GPUs cluster). For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration, instead of two for standard CG (Conjugate Gradient). The standard and pipelined CG methods need the vector entries generated by current GPU and other GPUs for matrix-vector product. So the communication between GPUs becomes a major performance bottleneck on miltiGPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.

Keywords: Conjugate Gradient, GPU, parallel programming, pipelined algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371
5496 An MCDM Approach to Selection Scheduling Rule in Robotic Flexibe Assembly Cells

Authors: Khalid Abd, Kazem Abhary, Romeo Marian

Abstract:

Multiple criteria decision making (MCDM) is an approach to ranking the solutions and finding the best one when two or more solutions are provided. In this study, MCDM approach is proposed to select the most suitable scheduling rule of robotic flexible assembly cells (RFACs). Two MCDM approaches, Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) are proposed for solving the scheduling rule selection problem. The AHP method is employed to determine the weights of the evaluation criteria, while the TOPSIS method is employed to obtain final ranking order of scheduling rules. Four criteria are used to evaluate the scheduling rules. Also, four scheduling policies of RFAC are examined to choose the most appropriate one for this purpose. A numerical example illustrates applications of the suggested methodology. The results show that the methodology is practical and works in RFAC settings.

Keywords: AHP, TOPSIS, Scheduling rules selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
5495 Image-Based (RBG) Technique for Estimating Phosphorus Levels of Crops

Authors: M. M. Ali, Ahmed Al-Ani, Derek Eamus, Daniel K. Y. Tan

Abstract:

In this glasshouse study, we developed a new imagebased non-destructive technique for detecting leaf P status of different crops such as cotton, tomato and lettuce. The plants were grown on a nutrient solution containing different P concentrations, e.g. 0%, 50% and 100% of recommended P concentration (P0 = no P, L; P1 = 2.5 mL 10 L-1 of P and P2 = 5 mL 10 L-1 of P). After 7 weeks of treatment, the plants were harvested and data on leaf P contents were collected using the standard destructive laboratory method and at the same time leaf images were collected by a handheld crop image sensor. We calculated leaf area, leaf perimeter and RGB (red, green and blue) values of these images. These data were further used in linear discriminant analysis (LDA) to estimate leaf P contents, which successfully classified these plants on the basis of leaf P contents. The data indicated that P deficiency in crop plants can be predicted using leaf image and morphological data. Our proposed nondestructive imaging method is precise in estimating P requirements of different crop species.

Keywords: Image-based techniques, leaf area, leaf P contents, linear discriminant analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649
5494 Convective Heat Transfer of Viscoelastic Flow in a Curved Duct

Authors: M. Norouzi, M. H. Kayhani, M. R. H. Nobari, M. Karimi Demneh

Abstract:

In this paper, fully developed flow and heat transfer of viscoelastic materials in curved ducts with square cross section under constant heat flux have been investigated. Here, staggered mesh is used as computational grids and flow and heat transfer parameters have been allocated in this mesh with marker and cell method. Numerical solution of governing equations has being performed with FTCS finite difference method. Furthermore, Criminale-Eriksen- Filbey (CEF) constitutive equation has being used as viscoelastic model. CEF constitutive equation is a suitable model for studying steady shear flow of viscoelastic materials which is able to model both effects of the first and second normal stress differences. Here, it is shown that the first and second normal stresses differences have noticeable and inverse effect on secondary flows intensity and mean Nusselt number which is the main novelty of current research.

Keywords: Viscoelastic, fluid flow, heat convection, CEF model, curved duct, square cross section.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
5493 3D CAD Models and its Feature Similarity

Authors: Elmi Abu Bakar, Tetsuo Miyake, Zhong Zhang, Takashi Imamura

Abstract:

Knowing the geometrical object pose of products in manufacturing line before robot manipulation is required and less time consuming for overall shape measurement. In order to perform it, the information of shape representation and matching of objects is become required. Objects are compared with its descriptor that conceptually subtracted from each other to form scalar metric. When the metric value is smaller, the object is considered closed to each other. Rotating the object from static pose in some direction introduce the change of value in scalar metric value of boundary information after feature extraction of related object. In this paper, a proposal method for indexing technique for retrieval of 3D geometrical models based on similarity between boundaries shapes in order to measure 3D CAD object pose using object shape feature matching for Computer Aided Testing (CAT) system in production line is proposed. In experimental results shows the effectiveness of proposed method.

Keywords: CAD, rendering, feature extraction, feature classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
5492 BLDC Motor Driven for Solar Photo Voltaic Powered Air Cooling System

Authors: D. Shobha Rani, M. Muralidhar

Abstract:

Solar photovoltaic (SPV) power systems can be employed as electrical power sources to meet the daily residential energy needs of rural areas that have no access to grid systems. In view of this, a standalone SPV powered air cooling system is proposed in this paper, which constitutes a dc-dc boost converter, two voltage source inverters (VSI) connected to two brushless dc (BLDC) motors which are coupled to a centrifugal water pump and a fan blower. A simple and efficient Maximum Power Point Tracking (MPPT) technique based on Silver Mean Method (SMM) is utilized in this paper. The air cooling system is developed and simulated using the MATLAB / Simulink environment considering the dynamic and steady state variation in the solar irradiance.

Keywords: Boost converter, solar photovoltaic array, voltage source inverter, brushless DC motor, solar irradiance, Maximum Power Point Tracking, Silver Mean Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
5491 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: Data mining, knowledge discovery in databases, prediction models, student success.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2540
5490 Margin-Based Feed-Forward Neural Network Classifiers

Authors: Han Xiao, Xiaoyan Zhu

Abstract:

Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is developed and generated from Widrow-Hoff Principle that means to minimize the squared error. In this paper, we propose a new training algorithm for feed-forward neural networks based on Margin-Based Principle, which could effectively promote the accuracy and generalization ability of neural network classifiers with less labelled samples and flexible network. We have conducted experiments on four UCI open datasets and achieved good results as expected. In conclusion, our model could handle more sparse labelled and more high-dimension dataset in a high accuracy while modification from old ANN method to our method is easy and almost free of work.

Keywords: Max-Margin Principle, Feed-Forward Neural Network, Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
5489 A Novel Multiresolution based Optimization Scheme for Robust Affine Parameter Estimation

Authors: J.Dinesh Peter

Abstract:

This paper describes a new method for affine parameter estimation between image sequences. Usually, the parameter estimation techniques can be done by least squares in a quadratic way. However, this technique can be sensitive to the presence of outliers. Therefore, parameter estimation techniques for various image processing applications are robust enough to withstand the influence of outliers. Progressively, some robust estimation functions demanding non-quadratic and perhaps non-convex potentials adopted from statistics literature have been used for solving these. Addressing the optimization of the error function in a factual framework for finding a global optimal solution, the minimization can begin with the convex estimator at the coarser level and gradually introduce nonconvexity i.e., from soft to hard redescending non-convex estimators when the iteration reaches finer level of multiresolution pyramid. Comparison has been made to find the performance of the results of proposed method with the results found individually using two different estimators.

Keywords: Image Processing, Affine parameter estimation, Outliers, Robust Statistics, Robust M-estimators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
5488 Preparation of n-type Bi2Te3 Films by Electrophoretic Deposition

Authors: Tahereh Talebi, Reza Ghomashchi, Pejman Talemi, Sima Aminorroaya

Abstract:

A high quality crack-free film of Bi2Te3 material has been deposited for the first time using electrophoretic deposition (EPD) and microstructures of various films have been investigated. One of the most important thermoelectric (TE) applications is Bi2Te3 to manufacture TE generators (TEG) which can convert waste heat into electricity targeting the global warming issue. However, the high cost of the manufacturing process of TEGs keeps them expensive and out of reach for commercialization. Therefore, utilizing EPD as a simple and cost-effective method will open new opportunities for TEG’s commercialization. This method has been recently used for advanced materials such as microelectronics and has attracted a lot of attention from both scientists and industry. In this study, the effect of media of suspensions has been investigated on the quality of the deposited films as well as their microstructure. In summary, finding an appropriate suspension is a critical step for a successful EPD process and has an important effect on both the film’s quality and its future properties.

Keywords: Bi2Te3, electrical conductivity, electrophoretic deposition, thermoelectric materials, thick films.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214
5487 Fingerprint Image Encryption Using a 2D Chaotic Map and Elliptic Curve Cryptography

Authors: D. M. S. Bandara, Yunqi Lei, Ye Luo

Abstract:

Fingerprints are suitable as long-term markers of human identity since they provide detailed and unique individual features which are difficult to alter and durable over life time. In this paper, we propose an algorithm to encrypt and decrypt fingerprint images by using a specially designed Elliptic Curve Cryptography (ECC) procedure based on block ciphers. In addition, to increase the confusing effect of fingerprint encryption, we also utilize a chaotic-behaved method called Arnold Cat Map (ACM) for a 2D scrambling of pixel locations in our method. Experimental results are carried out with various types of efficiency and security analyses. As a result, we demonstrate that the proposed fingerprint encryption/decryption algorithm is advantageous in several different aspects including efficiency, security and flexibility. In particular, using this algorithm, we achieve a margin of about 0.1% in the test of Number of Pixel Changing Rate (NPCR) values comparing to the-state-of-the-art performances.

Keywords: Arnold cat map, biometric encryption, block cipher, elliptic curve cryptography, fingerprint encryption, Koblitz’s Encoding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1098
5486 Robust Image Registration Based on an Adaptive Normalized Mutual Information Metric

Authors: Huda Algharib, Amal Algharib, Hanan Algharib, Ali Mohammad Alqudah

Abstract:

Image registration is an important topic for many imaging systems and computer vision applications. The standard image registration techniques such as Mutual information/ Normalized mutual information -based methods have a limited performance because they do not consider the spatial information or the relationships between the neighbouring pixels or voxels. In addition, the amount of image noise may significantly affect the registration accuracy. Therefore, this paper proposes an efficient method that explicitly considers the relationships between the adjacent pixels, where the gradient information of the reference and scene images is extracted first, and then the cosine similarity of the extracted gradient information is computed and used to improve the accuracy of the standard normalized mutual information measure. Our experimental results on different data types (i.e. CT, MRI and thermal images) show that the proposed method outperforms a number of image registration techniques in terms of the accuracy.

Keywords: Image registration, mutual information, image gradients, Image transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 896
5485 Data Mining on the Router Logs for Statistical Application Classification

Authors: M. Rahmati, S.M. Mirzababaei

Abstract:

With the advance of information technology in the new era the applications of Internet to access data resources has steadily increased and huge amount of data have become accessible in various forms. Obviously, the network providers and agencies, look after to prevent electronic attacks that may be harmful or may be related to terrorist applications. Thus, these have facilitated the authorities to under take a variety of methods to protect the special regions from harmful data. One of the most important approaches is to use firewall in the network facilities. The main objectives of firewalls are to stop the transfer of suspicious packets in several ways. However because of its blind packet stopping, high process power requirements and expensive prices some of the providers are reluctant to use the firewall. In this paper we proposed a method to find a discriminate function to distinguish between usual packets and harmful ones by the statistical processing on the network router logs. By discriminating these data, an administrator may take an approach action against the user. This method is very fast and can be used simply in adjacent with the Internet routers.

Keywords: Data Mining, Firewall, Optimization, Packetclassification, Statistical Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
5484 On The Comparison of Fuzzy Logic and State Space Averaging based Sliding Control Methods Applied onan Arc Welding Machine

Authors: İres İskender, Ahmet Karaarslan

Abstract:

In this study, the performance of a high-frequency arc welding machine including a two-switch inverter is analyzed. The control of the system is achieved using two different control techniques i- fuzzy logic control (FLC) ii- state space averaging based sliding control. Fuzzy logic control does not need accurate mathematical model of a plant and can be used in nonlinear applications. The second method needs the mathematical model of the system. In this method the state space equations of the system are derived for two different “on" and “off" states of the switches. The derived state equations are combined with the sliding control rule considering the duty-cycle of the converter. The performance of the system is analyzed by simulating the system using SIMULINK tool box of MATLAB. The simulation results show that fuzzy logic controller is more robust and less sensitive to parameter variations.

Keywords: Fuzzy logic, arc welding, sliding state space control, PWM, current control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
5483 Millimeter Wave I/Q Generation with the Inductive Resonator Matched Poly-Phase Filter

Authors: Ki-Jin Kim, Sanghoon Park, K. H. Ahn

Abstract:

A way of generating millimeter wave I/Q signal using inductive resonator matched poly-phase filter is suggested. Normally the poly-phase filter generates quite accurate I/Q phase and magnitude but the loss of the filter is considerable due to series connection of passive RC components. This loss term directly increases system noise figure when the poly-phase filter is used in RF Front-end. The proposed matching method eliminates above mentioned loss and in addition provides gain on the passive filter. The working algorithm is illustrated by mathematical analysis. The generated I/Q signal is used in implementing millimeter wave phase shifter for the 60 GHz communication system to verify its effectiveness. The circuit is fabricated in 90 nm TSMC RF CMOS process under 1.2 V supply voltage. The measurement results showed that the suggested method improved gain by 6.5 dB and noise by 2.3 dB. The summary of the proposed I/Q generation is compared with previous works.

Keywords: Millimeter Wave Circuits, Local Distribution, I/Q Generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2008
5482 Global GMRES with Deflated Restarting for Families of Shifted Linear Systems

Authors: Jing Meng, Peiyong Zhu, Houbiao Li

Abstract:

Many problems in science and engineering field require the solution of shifted linear systems with multiple right hand sides and multiple shifts. To solve such systems efficiently, the implicitly restarted global GMRES algorithm is extended in this paper. However, the shift invariant property could no longer hold over the augmented global Krylov subspace due to adding the harmonic Ritz matrices. To remedy this situation, we enforce the collinearity condition on the shifted system and propose shift implicitly restarted global GMRES. The new method not only improves the convergence but also has a potential to simultaneously compute approximate solution for the shifted systems using only as many matrix vector multiplications as the solution of the seed system requires. In addition, some numerical experiments also confirm the effectiveness of our method.

Keywords: Shifted linear systems, global Krylov subspace, GLGMRESIR, GLGMRESIRsh, harmonic Ritz matrix, harmonic Ritz vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972
5481 Novel Anti-leukemia Calanone Compounds by Quantitative Structure-Activity Relationship AM1 Semiempirical Method

Authors: Ponco Iswanto, Mochammad Chasani, Muhammad Hanafi, Iqmal Tahir, Eva Vaulina YD, Harjono, Lestari Solikhati, Winkanda S. Putra, Yayuk Yuliantini

Abstract:

Quantitative Structure-Activity Relationship (QSAR) approach for discovering novel more active Calanone derivative as anti-leukemia compound has been conducted. There are 6 experimental activities of Calanone compounds against leukemia cell L1210 that are used as material of the research. Calculation of theoretical predictors (independent variables) was performed by AM1 semiempirical method. The QSAR equation is determined by Principle Component Regression (PCR) analysis, with Log IC50 as dependent variable and the independent variables are atomic net charges, dipole moment (μ), and coefficient partition of noctanol/ water (Log P). Three novel Calanone derivatives that obtained by this research have higher activity against leukemia cell L1210 than pure Calanone.

Keywords: AM1 semiempirical calculation, Calanone, Principle Component Regression, QSAR approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
5480 Modified Hybrid Genetic Algorithm-Based Artificial Neural Network Application on Wall Shear Stress Prediction

Authors: Zohreh Sheikh Khozani, Wan Hanna Melini Wan Mohtar, Mojtaba Porhemmat

Abstract:

Prediction of wall shear stress in a rectangular channel, with non-homogeneous roughness distribution, was studied. Estimation of shear stress is an important subject in hydraulic engineering, since it affects the flow structure directly. In this study, the Genetic Algorithm Artificial (GAA) neural network is introduced as a hybrid methodology of the Artificial Neural Network (ANN) and modified Genetic Algorithm (GA) combination. This GAA method was employed to predict the wall shear stress. Various input combinations and transfer functions were considered to find the most appropriate GAA model. The results show that the proposed GAA method could predict the wall shear stress of open channels with high accuracy, by Root Mean Square Error (RMSE) of 0.064 in the test dataset. Thus, using GAA provides an accurate and practical simple-to-use equation.

Keywords: Artificial neural network, genetic algorithm, genetic programming, rectangular channel, shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
5479 Noise Performance of Millimeter-wave Silicon Based Mixed Tunneling Avalanche Transit Time(MITATT) Diode

Authors: Aritra Acharyya, Moumita Mukherjee, J. P. Banerjee

Abstract:

A generalized method for small-signal simulation of avalanche noise in Mixed Tunneling Avalanche Transit Time (MITATT) device is presented in this paper where the effect of series resistance is taken into account. The method is applied to a millimeter-wave Double Drift Region (DDR) MITATT device based on Silicon to obtain noise spectral density and noise measure as a function of frequency for different values of series resistance. It is found that noise measure of the device at the operating frequency (122 GHz) with input power density of 1010 Watt/m2 is about 35 dB for hypothetical parasitic series resistance of zero ohm (estimated junction temperature = 500 K). Results show that the noise measure increases as the value of parasitic resistance increases.

Keywords: Noise Analysis, Silicon MITATT, Admittancecharacteristics, Noise spectral density.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
5478 Antimicrobial Potentials of Flavonoids Isolated from Tagetes erecta

Authors: N. Behidj-Benyounes, S. Bennaamane, F. Zohra Bissaad, N. Chebouti, H. Mohandkaci, N. Abdalaziz, S. Iddou

Abstract:

In this study, we are interested in a species of the family of Asteraceae (Tagetes erecta). This family is considered as a source of antimicrobial extracts with strong capacity. The extraction of the flavonoids is carried out by the method of liquid/liquid with the use of successive solvents. Afterwards, we evaluated the biological activity of the flavonoids on five pathogenic bacterial stocks such as Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus and two stocks of yeasts to knowing Candida albicans) and Saccharomyces cerevisiae, by employing the method of the aromatogramme starting from a solid disc. The result of the antimicrobial activity shows an action and a variable degree of sensitivity according to bacterial stocks tested. It will be noted that the flavonoids have an inhibiting effect on E. coli, B. subtilis, K. pneumoniae and S. aureus. But a resistance with respect to the extract by P. aeruginosa, C. albicans and S. cerevisiae is to be mentioned.

Keywords: Antimicrobial activity, flavonoids, microbial strains, Tagetes erecta L.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641
5477 Microwave LNA Design Based On Adaptive Network Fuzzy Inference and Evolutionary Optimization

Authors: Samad Nejatian, Vahideh Rezaie, Vahid Asadpour

Abstract:

This paper presents a novel approach for the design of microwave circuits using Adaptive Network Fuzzy Inference Optimizer (ANFIO). The method takes advantage of direct synthesis of subsections of the amplifier using very fast and accurate ANFIO models based on exact simulations using ADS. A mapping from course space to fine space known as space mapping is also used. The proposed synthesis approach takes into account the noise and scattering parameters due to parasitic elements to achieve optimal results. The overall ANFIO system is capable of designing different LNAs at different noise and scattering criteria. This approach offers significantly reduced time in the design of microwave amplifiers within the validity range of the ANFIO system. The method has been proven to work efficiently for a 2.4GHz LNA example. The S21 of 10.1 dB and noise figure (NF) of 2.7 dB achieved for ANFIO while S21 of 9.05 dB and NF of 2.6 dB achieved for ANN.

Keywords: fuzzy system, low noise amplifier, microwaveamplifier, space mapping

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
5476 An Intelligent System Framework for Generating Activity List of a Project Using WBS Mind map and Semantic Network

Authors: H. Iranmanesh, M. Madadi

Abstract:

Work Breakdown Structure (WBS) is one of the most vital planning processes of the project management since it is considered to be the fundamental of other processes like scheduling, controlling, assigning responsibilities, etc. In fact WBS or activity list is the heart of a project and omission of a simple task can lead to an irrecoverable result. There are some tools in order to generate a project WBS. One of the most powerful tools is mind mapping which is the basis of this article. Mind map is a method for thinking together and helps a project manager to stimulate the mind of project team members to generate project WBS. Here we try to generate a WBS of a sample project involving with the building construction using the aid of mind map and the artificial intelligence (AI) programming language. Since mind map structure can not represent data in a computerized way, we convert it to a semantic network which can be used by the computer and then extract the final WBS from the semantic network by the prolog programming language. This method will result a comprehensive WBS and decrease the probability of omitting project tasks.

Keywords: Expert System, Mind map, Semantic network, Work breakdown structure,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2608
5475 Composite Kernels for Public Emotion Recognition from Twitter

Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang

Abstract:

The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.

Keywords: Public emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773