Search results for: washing condition optimization.
2987 Bi-Criteria Latency Optimization of Intra-and Inter-Autonomous System Traffic Engineering
Authors: K. Vidya, V.Rhymend Uthariaraj
Abstract:
Traffic Engineering (TE) is the process of controlling how traffic flows through a network in order to facilitate efficient and reliable network operations while simultaneously optimizing network resource utilization and traffic performance. TE improves the management of data traffic within a network and provides the better utilization of network resources. Many research works considers intra and inter Traffic Engineering separately. But in reality one influences the other. Hence the effective network performances of both inter and intra Autonomous Systems (AS) are not optimized properly. To achieve a better Joint Optimization of both Intra and Inter AS TE, we propose a joint Optimization technique by considering intra-AS features during inter – AS TE and vice versa. This work considers the important criterion say latency within an AS and between ASes. and proposes a Bi-Criteria Latency optimization model. Hence an overall network performance can be improved by considering this jointoptimization technique in terms of Latency.Keywords: Inter-Domain Routing , Measurement, OptimizationPerformance, Traffic Engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15152986 A Probabilistic Optimization Approach for a Gas Processing Plant under Uncertain Feed Conditions and Product Requirements
Authors: G. Mesfin, M. Shuhaimi
Abstract:
This paper proposes a new optimization techniques for the optimization a gas processing plant uncertain feed and product flows. The problem is first formulated using a continuous linear deterministic approach. Subsequently, the single and joint chance constraint models for steady state process with timedependent uncertainties have been developed. The solution approach is based on converting the probabilistic problems into their equivalent deterministic form and solved at different confidence levels Case study for a real plant operation has been used to effectively implement the proposed model. The optimization results indicate that prior decision has to be made for in-operating plant under uncertain feed and product flows by satisfying all the constraints at 95% confidence level for single chance constrained and 85% confidence level for joint chance constrained optimizations cases.Keywords: Butane, Feed composition, LPG, Productspecification, Propane.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13972985 Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow
Authors: M. R. AlRashidi, M. F. AlHajri, M. E. El-Hawary
Abstract:
An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.Keywords: Particle Swarm Optimization, Optimal Power Flow, Economic Dispatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23672984 Cessna Citation X Performances Improvement by an Adaptive Winglet during the Cruise Flight
Authors: Marine Segui, Simon Bezin, Ruxandra Mihaela Botez
Abstract:
As part of a ‘Morphing-Wing’ idea, this study consists of measuring how a winglet, which is able to change its shape during the flight, is efficient. Conventionally, winglets are fixed-vertical platforms at the wingtips, optimized for a cruise condition that the airplane should use most of the time. However, during a cruise, an airplane flies through a lot of cruise conditions corresponding to altitudes variations from 30,000 to 45,000 ft. The fixed winglets are not optimized for these variations, and consequently, they are supposed to generate some drag, and thus to deteriorate aircraft fuel consumption. This research assumes that it exists a winglet position that reduces the fuel consumption for each cruise condition. In this way, the methodology aims to find these optimal winglet positions, and to further simulate, and thus estimate the fuel consumption of an aircraft wearing this type of adaptive winglet during several cruise conditions. The adaptive winglet is assumed to have degrees of freedom given by the various changes of following surfaces: the tip chord, the sweep and the dihedral angles. Finally, results obtained during cruise simulations are presented in this paper. These results show that an adaptive winglet can reduce, thus improve up to 2.12% the fuel consumption of an aircraft during a cruise.Keywords: Aerodynamics, Cessna Citation X, optimization, winglet, adaptive, morphing, wing, aircraft.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12382983 Aerodynamics and Optimization of Airfoil Under Ground Effect
Authors: Kyoungwoo Park, Byeong Sam Kim, Juhee Lee, Kwang Soo Kim
Abstract:
The Prediction of aerodynamic characteristics and shape optimization of airfoil under the ground effect have been carried out by integration of computational fluid dynamics and the multiobjective Pareto-based genetic algorithm. The main flow characteristics around an airfoil of WIG craft are lift force, lift-to-drag ratio and static height stability (H.S). However, they show a strong trade-off phenomenon so that it is not easy to satisfy the design requirements simultaneously. This difficulty can be resolved by the optimal design. The above mentioned three characteristics are chosen as the objective functions and NACA0015 airfoil is considered as a baseline model in the present study. The profile of airfoil is constructed by Bezier curves with fourteen control points and these control points are adopted as the design variables. For multi-objective optimization problems, the optimal solutions are not unique but a set of non-dominated optima and they are called Pareto frontiers or Pareto sets. As the results of optimization, forty numbers of non- dominated Pareto optima can be obtained at thirty evolutions.Keywords: Aerodynamics, Shape optimization, Airfoil on WIGcraft, Genetic algorithm, Computational fluid dynamics (CFD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32282982 Modeling and Optimization of Aggregate Production Planning - A Genetic Algorithm Approach
Authors: B. Fahimnia, L.H.S. Luong, R. M. Marian
Abstract:
The Aggregate Production Plan (APP) is a schedule of the organization-s overall operations over a planning horizon to satisfy demand while minimizing costs. It is the baseline for any further planning and formulating the master production scheduling, resources, capacity and raw material planning. This paper presents a methodology to model the Aggregate Production Planning problem, which is combinatorial in nature, when optimized with Genetic Algorithms. This is done considering a multitude of constraints of contradictory nature and the optimization criterion – overall cost, made up of costs with production, work force, inventory, and subcontracting. A case study of substantial size, used to develop the model, is presented, along with the genetic operators.Keywords: Aggregate Production Planning, Costs, and Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25852981 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels
Authors: Florin Leon, Silvia Curteanu
Abstract:
The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.
Keywords: Bacterial foraging optimization, hydrogels, neural networks, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7302980 Multidimensional Compromise Optimization for Development Ranking of the Gulf Cooperation Council Countries and Turkey
Authors: C. Ardil
Abstract:
In this research, a multidimensional compromise optimization method is proposed for multidimensional decision making analysis in the development ranking of the Gulf Cooperation Council Countries and Turkey. The proposed approach presents ranking solutions resulting from different multicriteria decision analyses, which yield different ranking orders for the same ranking problem, consisting of a set of alternatives in terms of numerous competing criteria when they are applied with the same numerical data. The multiobjective optimization decision making problem is considered in three sequential steps. In the first step, five different criteria related to the development ranking are gathered from the research field. In the second step, identified evaluation criteria are, objectively, weighted using standard deviation procedure. In the third step, a country selection problem is illustrated with a numerical example as an application of the proposed multidimensional compromise optimization model. Finally, multidimensional compromise optimization approach is applied to rank the Gulf Cooperation Council Countries and Turkey.
Keywords: Standard deviation, performance evaluation, multicriteria decision making, multidimensional compromise optimization, vector normalization, multicriteria decision making, multicriteria analysis, multidimensional decision analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8112979 Multi-Objective Optimization of Combined System Reliability and Redundancy Allocation Problem
Authors: Vijaya K. Srivastava, Davide Spinello
Abstract:
This paper presents established 3n enumeration procedure for mixed integer optimization problems for solving multi-objective reliability and redundancy allocation problem subject to design constraints. The formulated problem is to find the optimum level of unit reliability and the number of units for each subsystem. A number of illustrative examples are provided and compared to indicate the application of the superiority of the proposed method.
Keywords: Integer programming, mixed integer programming, multi-objective optimization, reliability redundancy allocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6672978 Feature Subset Selection Using Ant Colony Optimization
Authors: Ahmed Al-Ani
Abstract:
Feature selection is an important step in many pattern classification problems. It is applied to select a subset of features, from a much larger set, such that the selected subset is sufficient to perform the classification task. Due to its importance, the problem of feature selection has been investigated by many researchers. In this paper, a novel feature subset search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.Keywords: Ant Colony Optimization, ant systems, feature selection, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16012977 Multi-objective Optimization of Graph Partitioning using Genetic Algorithm
Authors: M. Farshbaf, M. R. Feizi-Derakhshi
Abstract:
Graph partitioning is a NP-hard problem with multiple conflicting objectives. The graph partitioning should minimize the inter-partition relationship while maximizing the intra-partition relationship. Furthermore, the partition load should be evenly distributed over the respective partitions. Therefore this is a multiobjective optimization problem (MOO). One of the approaches to MOO is Pareto optimization which has been used in this paper. The proposed methods of this paper used to improve the performance are injecting best solutions of previous runs into the first generation of next runs and also storing the non-dominated set of previous generations to combine with later generation's non-dominated set. These improvements prevent the GA from getting stuck in the local optima and increase the probability of finding more optimal solutions. Finally, a simulation research is carried out to investigate the effectiveness of the proposed algorithm. The simulation results confirm the effectiveness of the proposed method.Keywords: Graph partitioning, Genetic algorithm, Multiobjective optimization, Pareto front.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19672976 Affine Projection Algorithm with Variable Data-Reuse Factor
Authors: ChangWoo Lee, Young Kow Lee, Sung Jun Ban, SungHoo Choi, Sang Woo Kim
Abstract:
This paper suggests a new Affine Projection (AP) algorithm with variable data-reuse factor using the condition number as a decision factor. To reduce computational burden, we adopt a recently reported technique which estimates the condition number of an input data matrix. Several simulations show that the new algorithm has better performance than that of the conventional AP algorithm.
Keywords: Affine projection algorithm, variable data-reuse factor, condition number, convergence rate, misalignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15452975 A Hybrid Multi-Objective Firefly-Sine Cosine Algorithm for Multi-Objective Optimization Problem
Authors: Gaohuizi Guo, Ning Zhang
Abstract:
Firefly algorithm (FA) and Sine Cosine algorithm (SCA) are two very popular and advanced metaheuristic algorithms. However, these algorithms applied to multi-objective optimization problems have some shortcomings, respectively, such as premature convergence and limited exploration capability. Combining the privileges of FA and SCA while avoiding their deficiencies may improve the accuracy and efficiency of the algorithm. This paper proposes a hybridization of FA and SCA algorithms, named multi-objective firefly-sine cosine algorithm (MFA-SCA), to develop a more efficient meta-heuristic algorithm than FA and SCA.Keywords: Firefly algorithm, hybrid algorithm, multi-objective optimization, Sine Cosine algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5132974 Small Signal Stability Assessment Employing PSO Based TCSC Controller with Comparison to GA Based Design
Authors: D. Mondal, A. Chakrabarti, A. Sengupta
Abstract:
This paper aims to select the optimal location and setting parameters of TCSC (Thyristor Controlled Series Compensator) controller using Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) to mitigate small signal oscillations in a multimachine power system. Though Power System Stabilizers (PSSs) are prime choice in this issue, installation of FACTS device has been suggested here in order to achieve appreciable damping of system oscillations. However, performance of any FACTS devices highly depends upon its parameters and suitable location in the power network. In this paper PSO as well as GA based techniques are used separately and compared their performances to investigate this problem. The results of small signal stability analysis have been represented employing eigenvalue as well as time domain response in face of two common power system disturbances e.g., varying load and transmission line outage. It has been revealed that the PSO based TCSC controller is more effective than GA based controller even during critical loading condition.Keywords: Genetic Algorithm, Particle Swarm Optimization, Small Signal Stability, Thyristor Controlled Series Compensator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19552973 Evaluation of the exIWO Algorithm Based On the Traveling Salesman Problem
Authors: Daniel Kostrzewa, Henryk Josiński
Abstract:
The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values.
Keywords: Expanded Invasive Weed Optimization algorithm (exIWO), Traveling Salesman Problem (TSP), heuristic approach, inversion operator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22512972 Unrelated Parallel Machines Scheduling Problem Using an Ant Colony Optimization Approach
Authors: Y. K. Lin, H. T. Hsieh, F. Y. Hsieh
Abstract:
Total weighted tardiness is a measure of customer satisfaction. Minimizing it represents satisfying the general requirement of on-time delivery. In this research, we consider an ant colony optimization (ACO) algorithm to solve the problem of scheduling unrelated parallel machines to minimize total weighted tardiness. The problem is NP-hard in the strong sense. Computational results show that the proposed ACO algorithm is giving promising results compared to other existing algorithms.Keywords: ant colony optimization, total weighted tardiness, unrelated parallel machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18902971 Solving the Set Covering Problem Using the Binary Cat Swarm Optimization Metaheuristic
Authors: Broderick Crawford, Ricardo Soto, Natalia Berrios, Eduardo Olguin
Abstract:
In this paper, we present a binary cat swarm optimization for solving the Set covering problem. The set covering problem is a well-known NP-hard problem with many practical applications, including those involving scheduling, production planning and location problems. Binary cat swarm optimization is a recent swarm metaheuristic technique based on the behavior of discrete cats. Domestic cats show the ability to hunt and are curious about moving objects. The cats have two modes of behavior: seeking mode and tracing mode. We illustrate this approach with 65 instances of the problem from the OR-Library. Moreover, we solve this problem with 40 new binarization techniques and we select the technical with the best results obtained. Finally, we make a comparison between results obtained in previous studies and the new binarization technique, that is, with roulette wheel as transfer function and V3 as discretization technique.Keywords: Binary cat swarm optimization, set covering problem, metaheuristic, binarization methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23282970 Tuning of Power System Stabilizers in a Multi- Machine Power System using C-Catfish PSO
Authors: M. H. Moradi, S. M. Moosavi, A. R. Reisi
Abstract:
The main objective of this paper is to investigate the enhancement of power system stability via coordinated tuning of Power System Stabilizers (PSSs) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem. Chaotic catfish particle swarm optimization (C-Catfish PSO) algorithm is used to minimize the ITAE objective function. The proposed algorithm is evaluated on a two-area, 4- machines system. The robustness of the proposed algorithm is verified on this system under different operating conditions and applying a three-phase fault. The nonlinear time-domain simulation results and some performance indices show the effectiveness of the proposed controller in damping power system oscillations and this novel optimization algorithm is compared with particle swarm optimization (PSO).Keywords: Power system stabilizer, C-Catfish PSO, ITAE objective function, Power system control, Multi-machine power system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24162969 Extent of Highway Capacity Loss Due to Rainfall
Authors: Hashim Mohammed Alhassan, Johnnie Ben-Edigbe
Abstract:
Traffic flow in adverse weather conditions have been investigated in this study for general traffic, week day and week end traffic. The empirical evidence is strong in support of the view that rainfall affects macroscopic traffic flow parameters. Data generated from a basic highway section along J5 in Johor Bahru, Malaysia was synchronized with 161 rain events over a period of three months. This revealed a 4.90%, 6.60% and 11.32% reduction in speed for light rain, moderate rain and heavy rain conditions respectively. The corresponding capacity reductions in the three rainfall regimes are 1.08% for light rain, 6.27% for moderate rain and 29.25% for heavy rain. In the week day traffic, speed drops of 8.1% and 16.05% were observed for light and heavy conditions. The moderate rain condition speed increased by 12.6%. The capacity drops for week day traffic are 4.40% for light rain, 9.77% for moderate rain and 45.90% for heavy rain. The weekend traffic indicated speed difference between the dry condition and the three rainy conditions as 6.70% for light rain, 8.90% for moderate rain and 13.10% for heavy rain. The capacity changes computed for the weekend traffic were 0.20% in light rain, 13.90% in moderate rain and 16.70% in heavy rain. No traffic instabilities were observed throughout the observation period and the capacities reported for each rain condition were below the norain condition capacity. Rainfall has tremendous impact on traffic flow and this may have implications for shock wave propagation.
Keywords: Highway Capacity, Dry condition, Rainfall Intensity, Rainy condition, Traffic Flow Rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20762968 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems
Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong
Abstract:
For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.
Keywords: Differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11732967 Optimization of Hydraulic Fluid Parameters in Automotive Torque Converters
Authors: S. Venkateswaran, C. Mallika Parveen
Abstract:
The fluid flow and the properties of the hydraulic fluid inside a torque converter are the main topics of interest in this research. The primary goal is to investigate the applicability of various viscous fluids inside the torque converter. The Taguchi optimization method is adopted to analyse the fluid flow in a torque converter from a design perspective. Calculations are conducted in maximizing the pressure since greater the pressure, greater the torque developed. Using the values of the S/N ratios obtained, graphs are plotted. Computational Fluid Dynamics (CFD) analysis is also conducted.Keywords: Hydraulic fluid, Taguchi's method, optimization, pressure, torque.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30792966 Vibration Base Identification of Impact Force Using Genetic Algorithm
Authors: R. Hashemi, M.H.Kargarnovin
Abstract:
This paper presents the identification of the impact force acting on a simply supported beam. The force identification is an inverse problem in which the measured response of the structure is used to determine the applied force. The identification problem is formulated as an optimization problem and the genetic algorithm is utilized to solve the optimization problem. The objective function is calculated on the difference between analytical and measured responses and the decision variables are the location and magnitude of the applied force. The results from simulation show the effectiveness of the approach and its robustness vs. the measurement noise and sensor location.Keywords: Genetic Algorithm, Inverse problem, Optimization, Vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15532965 A Joint Routing-Scheduling Approach for Throughput Optimization in WMNs
Authors: Hossein Nourkhiz Mahjoub, Mohsen Shiva
Abstract:
Wireless Mesh Networking is a promising proposal for broadband data transmission in a large area with low cost and acceptable QoS. These features- trade offs in WMNs is a hot research field nowadays. In this paper a mathematical optimization framework has been developed to maximize throughput according to upper bound delay constraints. IEEE 802.11 based infrastructure backhauling mode of WMNs has been considered to formulate the MINLP optimization problem. Proposed method gives the full routing and scheduling procedure in WMN in order to obtain mentioned goals.Keywords: Mixed-Integer Non Linear Programming (MINLP), routing and scheduling, throughput, wireless mesh networks (WMNs)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13712964 Multiple Object Tracking using Particle Swarm Optimization
Authors: Chen-Chien Hsu, Guo-Tang Dai
Abstract:
This paper presents a particle swarm optimization (PSO) based approach for multiple object tracking based on histogram matching. To start with, gray-level histograms are calculated to establish a feature model for each of the target object. The difference between the gray-level histogram corresponding to each particle in the search space and the target object is used as the fitness value. Multiple swarms are created depending on the number of the target objects under tracking. Because of the efficiency and simplicity of the PSO algorithm for global optimization, target objects can be tracked as iterations continue. Experimental results confirm that the proposed PSO algorithm can rapidly converge, allowing real-time tracking of each target object. When the objects being tracked move outside the tracking range, global search capability of the PSO resumes to re-trace the target objects.Keywords: multiple object tracking, particle swarm optimization, gray-level histogram, image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41002963 Optimization of Microwave-Assisted Extraction of Cherry Laurel (Prunus laurocerasus L.) Fruit Using Response Surface Methodology
Authors: Ivana T. Karabegović, Saša S. Stojičević, Dragan T. Veličković, Nada Č. Nikolić, Miodrag L. Lazić
Abstract:
Optimization of a microwave-assisted extraction of cherry laurel (Prunus laurocerasus) fruit using methanol was studied. The influence of process parameters (microwave power, plant material-to-solvent ratio and the extraction time) on the extraction efficiency were optimized by using response surface methodology. The predicted maximum yield of extractive substances (41.85 g/100 g fresh plant material) was obtained at microwave power of 600 W and plant material to solvent ratio of 0.2 g/cm3 after 26 minutes of extraction, while a mean value of 40.80±0.41 g/100 g fresh plant material was obtained from laboratory experiments. This proves applicability of the model in predicting optimal extraction conditions with minimal laborious and time consuming. The results indicated that all process parameters were effective on the extraction efficiency, while the most important factor was extraction time. In order to rationalize production the optimal economical condition which gave a large total extract yield with minimal energy and solvent consumption was found.
Keywords: Cherry laurel, Extraction, Multiple regression modeling, Microwave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22312962 Shape Restoration of the Left Ventricle
Authors: May-Ling Tan, Yi Su, Chi-Wan Lim, Liang Zhong, Ru-San Tan
Abstract:
This paper describes an automatic algorithm to restore the shape of three-dimensional (3D) left ventricle (LV) models created from magnetic resonance imaging (MRI) data using a geometry-driven optimization approach. Our basic premise is to restore the LV shape such that the LV epicardial surface is smooth after the restoration. A geometrical measure known as the Minimum Principle Curvature (κ2) is used to assess the smoothness of the LV. This measure is used to construct the objective function of a two-step optimization process. The objective of the optimization is to achieve a smooth epicardial shape by iterative in-plane translation of the MRI slices. Quantitatively, this yields a minimum sum in terms of the magnitude of κ 2, when κ2 is negative. A limited memory quasi-Newton algorithm, L-BFGS-B, is used to solve the optimization problem. We tested our algorithm on an in vitro theoretical LV model and 10 in vivo patient-specific models which contain significant motion artifacts. The results show that our method is able to automatically restore the shape of LV models back to smoothness without altering the general shape of the model. The magnitudes of in-plane translations are also consistent with existing registration techniques and experimental findings.Keywords: Magnetic Resonance Imaging, Left Ventricle, ShapeRestoration, Principle Curvature, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16382961 Study on Discharge Current Phenomena of Epoxy Resin Insulator Specimen
Authors: Waluyo, Ngapuli I. Sinisuka, Suwarno, Maman A. Djauhari
Abstract:
This paper presents the experimental results of discharge current phenomena on various humidity, temperature, pressure and pollutant conditions of epoxy resin specimen. The leakage distance of specimen was 3 cm, that it was supplied by high voltage. The polluted condition was given with NaCl artificial pollutant. The conducted measurements were discharge current and applied voltage. The specimen was put in a hermetically sealed chamber, and the current waveforms were analyzed with FFT. The result indicated that on discharge condition, the fifth harmonics still had dominant, rather than third one. The third harmonics tent to be appeared on low pressure heavily polluted condition, and followed by high humidity heavily polluted condition. On the heavily polluted specimen, the peaks discharge current points would be high and more frequent. Nevertheless, the specimen still had capacitive property. Besides that, usually discharge current points were more frequent. The influence of low pressure was still dominant to be easier to discharge. The non-linear property would be appear explicitly on low pressure and heavily polluted condition.Keywords: discharge current, third harmonic, fifth harmonic, epoxy resin, non-linear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14362960 Investigating the Effectiveness of Iranian Architecture on Sustainable Space Creation
Authors: Mansour Nikpour, Mohsen Ghasemi, Elahe Mosavi, Mohd Zin Kandar
Abstract:
lack of convenience condition is one of the problems in open spaces in hot and dry regions. Nowadays parks and green landscapes was designed and constructed without any attention to convenience condition. If this process continues, Citizens will encounter with some problems. Harsh climatic condition decreases the efficiency of people-s activities. However there is hard environment condition in hot and dry regions, Convenience condition has been provided in Iranian traditional architecture by using techniques and methods. In this research at the first step characteristics of Iranian garden that can effect on creating sustainable spaces were investigated through observation method. Pleasure space in cities will be created with using these methods and techniques in future cities. Furthermore the comparison between Iranian garden and landscape in today-s cities demonstrate the effectiveness of Iranian garden characteristics on sustainable spaces. Iranian architects used simple and available methods for creating open architectural spaces. In addition desirable conditions were provided with taking in to account both physically and spiritually. Parks and landscapes in future cities can be designed and constructed with respect to architectural techniques that used in Iranian gardens in hot and arid regions.Keywords: Iranian garden, convenience condition, landscape, sustainable
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18512959 Evaluating Sinusoidal Functions by a Low Complexity Cubic Spline Interpolator with Error Optimization
Authors: Abhijit Mitra, Harpreet Singh Dhillon
Abstract:
We present a novel scheme to evaluate sinusoidal functions with low complexity and high precision using cubic spline interpolation. To this end, two different approaches are proposed to find the interpolating polynomial of sin(x) within the range [- π , π]. The first one deals with only a single data point while the other with two to keep the realization cost as low as possible. An approximation error optimization technique for cubic spline interpolation is introduced next and is shown to increase the interpolator accuracy without increasing complexity of the associated hardware. The architectures for the proposed approaches are also developed, which exhibit flexibility of implementation with low power requirement.
Keywords: Arithmetic, spline interpolator, hardware design, erroranalysis, optimization methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20562958 PSO Based Optimal Design of Fractional Order Controller for Industrial Application
Authors: Rohit Gupta, Ruchika
Abstract:
In this paper, a PSO based fractional order PID (FOPID) controller is proposed for concentration control of an isothermal Continuous Stirred Tank Reactor (CSTR) problem. CSTR is used to carry out chemical reactions in industries, which possesses complex nonlinear dynamic characteristics. Particle Swarm Optimization algorithm technique, which is an evolutionary optimization technique based on the movement and intelligence of swarm is proposed for tuning of the controller for this system. Comparisons of proposed controller with conventional and fuzzy based controller illustrate the superiority of proposed PSO-FOPID controller.Keywords: CSTR, Fractional Order PID Controller, Partical Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486