Search results for: path recognition
1098 Reducing the False Rejection Rate of Iris Recognition Using Textural and Topological Features
Authors: M. Vatsa, R. Singh, A. Noore
Abstract:
This paper presents a novel iris recognition system using 1D log polar Gabor wavelet and Euler numbers. 1D log polar Gabor wavelet is used to extract the textural features, and Euler numbers are used to extract topological features of the iris. The proposed decision strategy uses these features to authenticate an individual-s identity while maintaining a low false rejection rate. The algorithm was tested on CASIA iris image database and found to perform better than existing approaches with an overall accuracy of 99.93%.Keywords: Iris recognition, textural features, topological features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19441097 Face Recognition using Features Combination and a New Non-linear Kernel
Authors: Essam Al Daoud
Abstract:
To improve the classification rate of the face recognition, features combination and a novel non-linear kernel are proposed. The feature vector concatenates three different radius of local binary patterns and Gabor wavelet features. Gabor features are the mean, standard deviation and the skew of each scaling and orientation parameter. The aim of the new kernel is to incorporate the power of the kernel methods with the optimal balance between the features. To verify the effectiveness of the proposed method, numerous methods are tested by using four datasets, which are consisting of various emotions, orientations, configuration, expressions and lighting conditions. Empirical results show the superiority of the proposed technique when compared to other methods.Keywords: Face recognition, Gabor wavelet, LBP, Non-linearkerner
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15391096 The Capacity of Mel Frequency Cepstral Coefficients for Speech Recognition
Authors: Fawaz S. Al-Anzi, Dia AbuZeina
Abstract:
Speech recognition is of an important contribution in promoting new technologies in human computer interaction. Today, there is a growing need to employ speech technology in daily life and business activities. However, speech recognition is a challenging task that requires different stages before obtaining the desired output. Among automatic speech recognition (ASR) components is the feature extraction process, which parameterizes the speech signal to produce the corresponding feature vectors. Feature extraction process aims at approximating the linguistic content that is conveyed by the input speech signal. In speech processing field, there are several methods to extract speech features, however, Mel Frequency Cepstral Coefficients (MFCC) is the popular technique. It has been long observed that the MFCC is dominantly used in the well-known recognizers such as the Carnegie Mellon University (CMU) Sphinx and the Markov Model Toolkit (HTK). Hence, this paper focuses on the MFCC method as the standard choice to identify the different speech segments in order to obtain the language phonemes for further training and decoding steps. Due to MFCC good performance, the previous studies show that the MFCC dominates the Arabic ASR research. In this paper, we demonstrate MFCC as well as the intermediate steps that are performed to get these coefficients using the HTK toolkit.
Keywords: Speech recognition, acoustic features, Mel Frequency Cepstral Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19721095 Classification Algorithms in Human Activity Recognition using Smartphones
Authors: Mohd Fikri Azli bin Abdullah, Ali Fahmi Perwira Negara, Md. Shohel Sayeed, Deok-Jai Choi, Kalaiarasi Sonai Muthu
Abstract:
Rapid advancement in computing technology brings computers and humans to be seamlessly integrated in future. The emergence of smartphone has driven computing era towards ubiquitous and pervasive computing. Recognizing human activity has garnered a lot of interest and has raised significant researches- concerns in identifying contextual information useful to human activity recognition. Not only unobtrusive to users in daily life, smartphone has embedded built-in sensors that capable to sense contextual information of its users supported with wide range capability of network connections. In this paper, we will discuss the classification algorithms used in smartphone-based human activity. Existing technologies pertaining to smartphone-based researches in human activity recognition will be highlighted and discussed. Our paper will also present our findings and opinions to formulate improvement ideas in current researches- trends. Understanding research trends will enable researchers to have clearer research direction and common vision on latest smartphone-based human activity recognition area.Keywords: Classification algorithms, Human Activity Recognition (HAR), Smartphones
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62981094 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.
Keywords: Tifinagh character recognition, Neural networks, Local cost computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12851093 Exploring the Behavior of Recreational Bicyclists: an Empirical Study in Danshuei and Bali, Northern Taiwan
Authors: Chih-Cheng Chen, Meng-Lung Lin, Yung-Tan Lee Tsun-I Hsiao, Yi-Cheng Chen
Abstract:
The Taiwan government has invested approximately 21 billion NT dollars in the construction of bicycle paths since bicycling has gained huge popularity as a healthy leisure and recreational activity. This study focuses on the behavior of recreational bicyclists in Danshuei and Bali, northern Taiwan. Data were collected from a field investigation carried out along the Danshuei bicycle path and Bali left-bank bicycle path. A total of 578 questionnaires were gathered for data analysis. Descriptive statistics and Chi-Square tests were used to assess bicyclists- behaviors. The frequency shows that, in these areas, Danshuei and Bali, most bicyclists rented bicycles, rode the bicycle path in the afternoon for about 2 hours. The used the bicycle path one time per week. For most, it was the first time to ride these bicycle paths. There were significant differences in distribution of bicycle ownership, time of day, duration of ride, ride frequency, and whether riding occurred on weekdays or weekends. Results indicated that most bicyclists in Danshuei and Bali were infrequent users.Keywords: recreational bicyclist, bicyclist behaviors, NorthernTaiwan
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15281092 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network
Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu
Abstract:
The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than Optical Character Recognition (OCR) results.
Keywords: Biological pathway, image understanding, gene name recognition, object detection, Siamese network, Visual Geometry Group.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6741091 Genetic Algorithm for In-Theatre Military Logistics Search-and-Delivery Path Planning
Authors: Jean Berger, Mohamed Barkaoui
Abstract:
Discrete search path planning in time-constrained uncertain environment relying upon imperfect sensors is known to be hard, and current problem-solving techniques proposed so far to compute near real-time efficient path plans are mainly bounded to provide a few move solutions. A new information-theoretic –based open-loop decision model explicitly incorporating false alarm sensor readings, to solve a single agent military logistics search-and-delivery path planning problem with anticipated feedback is presented. The decision model consists in minimizing expected entropy considering anticipated possible observation outcomes over a given time horizon. The model captures uncertainty associated with observation events for all possible scenarios. Entropy represents a measure of uncertainty about the searched target location. Feedback information resulting from possible sensor observations outcomes along the projected path plan is exploited to update anticipated unit target occupancy beliefs. For the first time, a compact belief update formulation is generalized to explicitly include false positive observation events that may occur during plan execution. A novel genetic algorithm is then proposed to efficiently solve search path planning, providing near-optimal solutions for practical realistic problem instances. Given the run-time performance of the algorithm, natural extension to a closed-loop environment to progressively integrate real visit outcomes on a rolling time horizon can be easily envisioned. Computational results show the value of the approach in comparison to alternate heuristics.
Keywords: Search path planning, false alarm, search-and-delivery, entropy, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19661090 Indoor Localization by Pattern Matching Method Based On Extended Database
Authors: Gyumin Hwang, Jihong Lee
Abstract:
This paper studied the CSS-based indoor localization system which is easy to implement, inexpensive to compose the systems, additionally CSS-based indoor localization system covers larger area than other system. However, this system has problem which is affected by reflected distance data. This problem in localization is caused by the multi-path effect. Error caused by multi-path is difficult to be corrected because the indoor environment cannot be described. In this paper, in order to solve the problem by multi-path, we have supplemented the localization system by using pattern matching method based on extended database. Thereby, this method improves precision of estimated. Also this method is verified by experiments in gymnasium. Database was constructed by 1m intervals, and 16 sample data were collected from random position inside the region of DB points. As a result, this paper shows higher accuracy than existing method through graph and table.
Keywords: Chirp Spread Spectrum (CSS), Indoor Localization, Pattern-Matching, Time of Arrival (ToA), Multi-Path, Mahalanobis Distance, Reception Rate, Simultaneous Localization and Mapping (SLAM), Laser Range Finder (LRF).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18901089 Pattern Recognition as an Internalized Motor Programme
Authors: M. Jändel
Abstract:
A new conceptual architecture for low-level neural pattern recognition is presented. The key ideas are that the brain implements support vector machines and that support vectors are represented as memory patterns in competitive queuing memories. A binary classifier is built from two competitive queuing memories holding positive and negative valence training examples respectively. The support vector machine classification function is calculated in synchronized evaluation cycles. The kernel is computed by bisymmetric feed-forward networks feed by sensory input and by competitive queuing memories traversing the complete sequence of support vectors. Temporary summation generates the output classification. It is speculated that perception apparatus in the brain reuses structures that have evolved for enabling fluent execution of prepared action sequences so that pattern recognition is built on internalized motor programmes.Keywords: Competitive queuing model, Olfactory system, Pattern recognition, Support vector machine, Thalamus
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13681088 Multipath Routing Protocol Using Basic Reconstruction Routing (BRR) Algorithm in Wireless Sensor Network
Authors: K. Rajasekaran, Kannan Balasubramanian
Abstract:
A sensory network consists of multiple detection locations called sensor nodes, each of which is tiny, featherweight and portable. A single path routing protocols in wireless sensor network can lead to holes in the network, since only the nodes present in the single path is used for the data transmission. Apart from the advantages like reduced computation, complexity and resource utilization, there are some drawbacks like throughput, increased traffic load and delay in data delivery. Therefore, multipath routing protocols are preferred for WSN. Distributing the traffic among multiple paths increases the network lifetime. We propose a scheme, for the data to be transmitted through a dominant path to save energy. In order to obtain a high delivery ratio, a basic route reconstruction protocol is utilized to reconstruct the path whenever a failure is detected. A basic reconstruction routing (BRR) algorithm is proposed, in which a node can leap over path failure by using the already existing routing information from its neighbourhood while the composed data is transmitted from the source to the sink. In order to save the energy and attain high data delivery ratio, data is transmitted along a multiple path, which is achieved by BRR algorithm whenever a failure is detected. Further, the analysis of how the proposed protocol overcomes the drawback of the existing protocols is presented. The performance of our protocol is compared to AOMDV and energy efficient node-disjoint multipath routing protocol (EENDMRP). The system is implemented using NS-2.34. The simulation results show that the proposed protocol has high delivery ratio with low energy consumption.Keywords: Multipath routing, WSN, energy efficient routing, alternate route, assured data delivery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17211087 The Effect of Nonnormality on CB-SEM and PLS-SEM Path Estimates
Authors: Z. Jannoo, B. W. Yap, N. Auchoybur, M. A. Lazim
Abstract:
The two common approaches to Structural Equation Modeling (SEM) are the Covariance-Based SEM (CB-SEM) and Partial Least Squares SEM (PLS-SEM). There is much debate on the performance of CB-SEM and PLS-SEM for small sample size and when distributions are nonnormal. This study evaluates the performance of CB-SEM and PLS-SEM under normality and nonnormality conditions via a simulation. Monte Carlo Simulation in R programming language was employed to generate data based on the theoretical model with one endogenous and four exogenous variables. Each latent variable has three indicators. For normal distributions, CB-SEM estimates were found to be inaccurate for small sample size while PLS-SEM could produce the path estimates. Meanwhile, for a larger sample size, CB-SEM estimates have lower variability compared to PLS-SEM. Under nonnormality, CB-SEM path estimates were inaccurate for small sample size. However, CB-SEM estimates are more accurate than those of PLS-SEM for sample size of 50 and above. The PLS-SEM estimates are not accurate unless sample size is very large.
Keywords: CB-SEM, Monte Carlo simulation, Normality conditions, Nonnormality, PLS-SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51371086 Morphological Description of Cervical Cell Images for the Pathological Recognition
Authors: N. Lassouaoui, L. Hamami, N. Nouali
Abstract:
The tracking allows to detect the tumor affections of cervical cancer, it is particularly complex and consuming time, because it consists in seeking some abnormal cells among a cluster of normal cells. In this paper, we present our proposed computer system for helping the doctors in tracking the cervical cancer. Knowing that the diagnosis of the malignancy is based in the set of atypical morphological details of all cells, herein, we present an unsupervised genetic algorithm for the separation of cell components since the diagnosis is doing by analysis of the core and the cytoplasm. We give also the various algorithms used for computing the morphological characteristics of cells (Ratio core/cytoplasm, cellular deformity, ...) necessary for the recognition of illness.
Keywords: Cervical cell, morphological analysis, recognition, segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19381085 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform
Abstract:
Image recognition enables machine-like robotics to understand a scene and plays an important role in computer vision applications. Computer vision platforms as physical infrastructure, supporting Neural Networks for image recognition, are deterministic to leverage the performance of different Neural Networks. In this paper, three different computer vision platforms – edge AI (Jetson Nano, with 4GB), a standalone laptop (with RTX 3000s, using CUDA), and a web-based device (Google Colab, using GPU) are investigated. In the case study, four prominent neural network architectures (including AlexNet, VGG16, GoogleNet, and ResNet (34/50)), are deployed. By using public ImageNets (Cifar-10), our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.
Keywords: AlexNet, VGG, GoogleNet, ResNet, ImageNet, Cifar-10, Edge AI, Jetson Nano, CUDA, GPU.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191084 Robust Face Recognition Using Eigen Faces and Karhunen-Loeve Algorithm
Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Prateek Gupta
Abstract:
The current research paper is an implementation of Eigen Faces and Karhunen-Loeve Algorithm for face recognition. The designed program works in a manner where a unique identification number is given to each face under trial. These faces are kept in a database from where any particular face can be matched and found out of the available test faces. The Karhunen –Loeve Algorithm has been implemented to find out the appropriate right face (with same features) with respect to given input image as test data image having unique identification number. The procedure involves usage of Eigen faces for the recognition of faces.Keywords: Eigen Faces, Karhunen-Loeve Algorithm, FaceRecognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17371083 Face Texture Reconstruction for Illumination Variant Face Recognition
Authors: Pengfei Xiong, Lei Huang, Changping Liu
Abstract:
In illumination variant face recognition, existing methods extracting face albedo as light normalized image may lead to loss of extensive facial details, with light template discarded. To improve that, a novel approach for realistic facial texture reconstruction by combining original image and albedo image is proposed. First, light subspaces of different identities are established from the given reference face images; then by projecting the original and albedo image into each light subspace respectively, texture reference images with corresponding lighting are reconstructed and two texture subspaces are formed. According to the projections in texture subspaces, facial texture with normal light can be synthesized. Due to the combination of original image, facial details can be preserved with face albedo. In addition, image partition is applied to improve the synthesization performance. Experiments on Yale B and CMUPIE databases demonstrate that this algorithm outperforms the others both in image representation and in face recognition.Keywords: texture reconstruction, illumination, face recognition, subspaces
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14811082 A Human Activity Recognition System Based On Sensory Data Related to Object Usage
Authors: M. Abdullah-Al-Wadud
Abstract:
Sensor-based Activity Recognition systems usually accounts which sensors have been activated to perform an activity. The system then combines the conditional probabilities of those sensors to represent different activities and takes the decision based on that. However, the information about the sensors which are not activated may also be of great help in deciding which activity has been performed. This paper proposes an approach where the sensory data related to both usage and non-usage of objects are utilized to make the classification of activities. Experimental results also show the promising performance of the proposed method.
Keywords: Naïve Bayesian-based classification, Activity recognition, sensor data, object-usage model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18241081 Player Number Localization and Recognition in Soccer Video using HSV Color Space and Internal Contours
Authors: Matko Šaric, Hrvoje Dujmic, Vladan Papic, Nikola Rožic
Abstract:
Detection of player identity is challenging task in sport video content analysis. In case of soccer video player number recognition is effective and precise solution. Jersey numbers can be considered as scene text and difficulties in localization and recognition appear due to variations in orientation, size, illumination, motion etc. This paper proposed new method for player number localization and recognition. By observing hue, saturation and value for 50 different jersey examples we noticed that most often combination of low and high saturated pixels is used to separate number and jersey region. Image segmentation method based on this observation is introduced. Then, novel method for player number localization based on internal contours is proposed. False number candidates are filtered using area and aspect ratio. Before OCR processing extracted numbers are enhanced using image smoothing and rotation normalization.
Keywords: player number, soccer video, HSV color space
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19861080 A Robust Eyelashes and Eyelid Detection in Transformation Invariant Iris Recognition: In Application with LRC Security System
Authors: R. Bremananth
Abstract:
Biometric authentication is an essential task for any kind of real-life applications. In this paper, we contribute two primary paradigms to Iris recognition such as Robust Eyelash Detection (RED) using pathway kernels and hair curve fitting synthesized model. Based on these two paradigms, rotation invariant iris recognition is enhanced. In addition, the presented framework is tested with real-life iris data to provide the authentication for LRC (Learning Resource Center) users. Recognition performance is significantly improved based on the contributed schemes by evaluating real-life irises. Furthermore, the framework has been implemented using Java programming language. Experiments are performed based on 1250 diverse subjects in different angles of variations on the authentication process. The results revealed that the methodology can deploy in the process on LRC management system and other security required applications.Keywords: Authentication, biometric, eye lashes detection, iris scanning, LRC security, secure access.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10341079 Printed Arabic Sub-Word Recognition Using Moments
Authors: Ibrahim A. El rube, Mohamed T. El Sonni, Soha S. Saleh
Abstract:
the cursive nature of the Arabic writing makes it difficult to accurately segment characters or even deal with the whole word efficiently. Therefore, in this paper, a printed Arabic sub-word recognition system is proposed. The suggested algorithm utilizes geometrical moments as descriptors for the separated sub-words. Three types of moments are investigated and applied to the printed sub-word images after dividing each image into multiple parts using windowing. Since moments are global descriptors, the windowing mechanism allows the moments to be applied to local regions of the sub-word. The local-global mixture of the proposed scheme increases the discrimination power of the moments while keeping the simplicity and ease of use of moments.Keywords: Arabic sub-word recognition, windowing, aspectratio, moments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15641078 Analysis of Equal cost Adaptive Routing Algorithms using Connection-Oriented and Connectionless Protocols
Authors: ER. Yashpaul Singh, A. Swarup
Abstract:
This research paper evaluates and compares the performance of equal cost adaptive multi-path routing algorithms taking the transport protocols TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) using network simulator ns2 and concludes which one is better.Keywords: Multi-path routing algorithm, Datagram, Virtual Circuit, Throughput, Network services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14981077 Providing On-Demand Path and Arrival Time Information Considering Realtime Delays of Buses
Authors: Yoshifumi Ishizaki, Naoki Kanatani, Masaki Ito, Toshihiko Sasama, Takao Kawamura, Kazunori Sugahara
Abstract:
This paper demonstrates the bus location system for the route bus through the experiment in the real environment. A bus location system is a system that provides information such as the bus delay and positions. This system uses actual services and positions data of buses, and those information should match data on the database. The system has two possible problems. One, the system could cost high in preparing devices to get bus positions. Two, it could be difficult to match services data of buses. To avoid these problems, we have developed this system at low cost and short time by using the smart phone with GPS and the bus route system. This system realizes the path planning considering bus delay and displaying position of buses on the map. The bus location system was demonstrated on route buses with smart phones for two months.Keywords: Route Bus, Path Planning System, GPS, Smart Phone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14481076 A Self Configuring System for Object Recognition in Color Images
Authors: Michela Lecca
Abstract:
System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a highly user-friendly tool.
Keywords: Automatic object recognition, clustering, content based image retrieval system, image segmentation, region adjacency graph, region grouping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14071075 Automatic Number Plate Recognition System Based on Deep Learning
Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi
Abstract:
In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.
Keywords: Automatic number plate recognition, character segmentation, convolutional neural network, CNN, deep learning, number plate localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12841074 Automatic Recognition of an Unknown and Time-Varying Number of Simultaneous Environmental Sound Sources
Authors: S. Ntalampiras, I. Potamitis, N. Fakotakis, S. Kouzoupis
Abstract:
The present work faces the problem of automatic enumeration and recognition of an unknown and time-varying number of environmental sound sources while using a single microphone. The assumption that is made is that the sound recorded is a realization of sound sources belonging to a group of audio classes which is known a-priori. We describe two variations of the same principle which is to calculate the distance between the current unknown audio frame and all possible combinations of the classes that are assumed to span the soundscene. We concentrate on categorizing environmental sound sources, such as birds, insects etc. in the task of monitoring the biodiversity of a specific habitat.
Keywords: automatic recognition of multiple sound sources, enumeration of sound sources, computational ecology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15561073 Patient-Specific Modeling Algorithm for Medical Data Based on AUC
Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper
Abstract:
Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.Keywords: Approach instance-based, area Under the ROC Curve, Patient-specific Decision Path, clinical predictions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15791072 Gender Differences in Spatial Navigation
Authors: Bia Kim, Sewon Lee, Jaesik Lee
Abstract:
This study aims to investigate the gender differences in spatial navigation using the tasks of 2-D matrix navigation and recognition of real driving scene. The results can be summarized as followings. First, female subjects responded faster in 2-D matrix navigation task than male subjects when landmark instructions were provided. Second, in recognition task, male subjects recognized the key elements involved in the past driving scene more accurately than female subjects. In particular, female subjects tended to miss peripheral information. These results suggest the possibility of gender differences in spatial navigation.Keywords: Gender differences, Spatial navigation, 2-D matrixnavigation, Recognition of driving scene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27371071 Parametric Primitives for Hand Gesture Recognition
Authors: Sanmohan Krüger, Volker Krüger
Abstract:
Imitation learning is considered to be an effective way of teaching humanoid robots and action recognition is the key step to imitation learning. In this paper an online algorithm to recognize parametric actions with object context is presented. Objects are key instruments in understanding an action when there is uncertainty. Ambiguities arising in similar actions can be resolved with objectn context. We classify actions according to the changes they make to the object space. Actions that produce the same state change in the object movement space are classified to belong to the same class. This allow us to define several classes of actions where members of each class are connected with a semantic interpretation.Keywords: Parametric actions, Action primitives, Hand gesture recognition, Imitation learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14841070 Improved Dynamic Bayesian Networks Applied to Arabic on Line Characters Recognition
Authors: Redouane Tlemsani, Abdelkader Benyettou
Abstract:
Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology.
This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data.
Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables.
In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization.
The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.
Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17801069 Extended Set of DCT-TPLBP and DCT-FPLBP for Face Recognition
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we describe an application for face recognition. Many studies have used local descriptors to characterize a face, the performance of these local descriptors remain low by global descriptors (working on the entire image). The application of local descriptors (cutting image into blocks) must be able to store both the advantages of global and local methods in the Discrete Cosine Transform (DCT) domain. This system uses neural network techniques. The letter method provides a good compromise between the two approaches in terms of simplifying of calculation and classifying performance. Finally, we compare our results with those obtained from other local and global conventional approaches.Keywords: Face detection, face recognition, discrete cosine transform (DCT), FPLBP, TPLBP, NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1972