Search results for: machine defect frequency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3004

Search results for: machine defect frequency

2764 Frequency-Variation Based Method for Parameter Estimation of Transistor Amplifier

Authors: Akash Rathee, Harish Parthasarathy

Abstract:

In this paper, a frequency-variation based method has been proposed for transistor parameter estimation in a commonemitter transistor amplifier circuit. We design an algorithm to estimate the transistor parameters, based on noisy measurements of the output voltage when the input voltage is a sine wave of variable frequency and constant amplitude. The common emitter amplifier circuit has been modelled using the transistor Ebers-Moll equations and the perturbation technique has been used for separating the linear and nonlinear parts of the Ebers-Moll equations. This model of the amplifier has been used to determine the amplitude of the output sinusoid as a function of the frequency and the parameter vector. Then, applying the proposed method to the frequency components, the transistor parameters have been estimated. As compared to the conventional time-domain least squares method, the proposed method requires much less data storage and it results in more accurate parameter estimation, as it exploits the information in the time and frequency domain, simultaneously. The proposed method can be utilized for parameter estimation of an analog device in its operating range of frequencies, as it uses data collected from different frequencies output signals for parameter estimation.

Keywords: Perturbation Technique, Parameter estimation, frequency-variation based method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
2763 Mechanism of Damping in Welded Structures using Finite Element Approach

Authors: B. Singh, B. K. Nanda

Abstract:

The characterization and modeling of the dynamic behavior of many built-up structures under vibration conditions is still a subject of current research. The present study emphasizes the theoretical investigation of slip damping in layered and jointed welded cantilever structures using finite element approach. Application of finite element method in damping analysis is relatively recent, as such, some problems particularly slip damping analysis has not received enough attention. To validate the finite element model developed, experiments have been conducted on a number of mild steel specimens under different initial conditions of vibration. Finite element model developed affirms that the damping capacity of such structures is influenced by a number of vital parameters such as; pressure distribution, kinematic coefficient of friction and micro-slip at the interfaces, amplitude, frequency of vibration, length and thickness of the specimen. Finite element model developed can be utilized effectively in the design of machine tools, automobiles, aerodynamic and space structures, frames and machine members for enhancing their damping capacity.

Keywords: Amplitude, finite element method, slip damping, tack welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
2762 Enhancement in a Mechatronic Aluminum Beverage Cans Recycling Machine

Authors: H. M. El-Zomor, M. Hany

Abstract:

Recycling of aluminum beverage cans is an important issue due to its economic and environmental effect. One of the significant factors in aluminum cans recycling process is the transportation cost from the landfill space. An automatic compression baler (ACB) machine has been designed and built to densify the aluminum beverage cans. It has been constructed using numerous fabricated components. Two types of control methodology have been introduced in this ACB machine to achieve its goal. The first is a semi-automatic system, and the second is a mechatronic system by using a Programmable Logic Control (PLC). The effect of single and double pre-compression for the beverage cans have been evaluated by using the PLC control. Comparisons have been performed between the two types of control methodologies by operating this ACB machine in different working conditions. The double pre-compression in PLC control proves that there is an enhancement in the ACB performance by 133% greater than the direct compression in the semi-automatic control. In addition, the percentage of the reduction ratio in volume reaches 77%, and the compaction ratio reaches about four times of the initial volume.

Keywords: Aluminum can recycling, Fully automatic machine, Hydraulic system control, Multi-compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2582
2761 Volume Density of Power of Multivector Electric Machine

Authors: Aldan A. Sapargaliyev, Yerbol A. Sapargaliyev

Abstract:

Since the invention, the electric machine (EM) can be defined as oEM – one-vector electric machine, as it works due to one-vector inductive coupling with use of one-vector electromagnet. The disadvantages of oEM are large size and limited efficiency at low and medium power applications. This paper describes multi-vector electric machine (mEM) based on multi-vector inductive coupling, which is characterized by the increased surface area of ​​the inductive coupling per EM volume, with a reduced share of inefficient and energy-consuming part of the winding, in comparison with oEM’s. Particularly, it is considered, calculated and compared the performance of three different electrical motors and their power at the same volumes and rotor frequencies. It is also presented the result of calculation of correlation between power density and volume for oEM and mEM. The method of multi-vector inductive coupling enables mEM to possess 1.5-4.0 greater density of power per volume and significantly higher efficiency, in comparison with today’s oEM, especially in low and medium power applications. mEM has distinct advantages, when used in transport vehicles such as electric cars and aircrafts.

Keywords: Electric machine, electric motor, electromagnet, efficiency of electric motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1037
2760 Blind Impulse Response Identification of Frequency Radio Channels: Application to Bran A Channel

Authors: S. Safi, M. Frikel, M. M'Saad, A. Zeroual

Abstract:

This paper describes a blind algorithm for estimating a time varying and frequency selective fading channel. In order to identify blindly the impulse response of these channels, we have used Higher Order Statistics (HOS) to build our algorithm. In this paper, we have selected two theoretical frequency selective channels as the Proakis-s 'B' channel and the Macchi-s channel, and one practical frequency selective fading channel called Broadband Radio Access Network (BRAN A). The simulation results in noisy environment and for different data input channel, demonstrate that the proposed method could estimate the phase and magnitude of these channels blindly and without any information about the input, except that the input excitation is i.i.d (Identically and Independent Distributed) and non-Gaussian.

Keywords: Frequency response, system identification, higher order statistics, communication channels, phase estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
2759 Effect of Oxygen Annealing on the Surface Defects and Photoconductivity of Vertically Aligned ZnO Nanowire Array

Authors: Ajay Kushwaha, Hemen Kalita, M. Aslam

Abstract:

Post growth annealing of solution grown ZnO nanowire array is performed under controlled oxygen ambience. The role of annealing over surface defects and their consequence on dark/photo-conductivity and photosensitivity of nanowire array is investigated. Surface defect properties are explored using various measurement tools such as contact angle, photoluminescence, Raman spectroscopy and XPS measurements. The contact angle of the NW films reduces due to oxygen annealing and nanowire film surface changes from hydrophobic (96°) to hydrophilic (16°). Raman and XPS spectroscopy reveal that oxygen annealing improves the crystal quality of the nanowire films. The defect band emission intensity (relative to band edge emission, ID/IUV) reduces from 1.3 to 0.2 after annealing at 600 °C at 10 SCCM flow of oxygen. An order enhancement in dark conductivity is observed in O2 annealed samples, while photoconductivity is found to be slightly reduced due to lower concentration of surface related oxygen defects.

Keywords: Zinc Oxide, Surface defects, Photoluminescence, Photoconductivity, Photosensor and Nanowire thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3555
2758 Effect of Applied Voltage Frequency on Electrical Treeing in 22 kV Cross-linked Polyethylene Insulated Cable

Authors: R. Thiamsri, N. Ruangkajonmathee, A. Oonsivilaiand B. Marungsri

Abstract:

This paper presents the experimental results on effect of applied voltage stress frequency to the occurrence of electrical treeing in 22 kV cross linked polyethylene (XLPE) insulated cable.Hallow disk of XLPE insulating material with thickness 5 mm taken from unused high voltage cable was used as the specimen in this study. Stainless steel needle was inserted gradually into the specimen to give a tip to earth plane electrode separation of 2.50.2 mm at elevated temperature 105-110°C. The specimen was then annealed for 5 minute to minimize any mechanical stress build up around the needle-plane region before it was cooled down to room temperature. Each specimen were subjected to the same applied voltage stress level at 8 kV AC rms, with various frequency, 50, 100, 500, 1000 and 2000 Hz. Initiation time, propagation speed and pattern of electrical treeing were examined in order to study the effect of applied voltage stress frequency. By the experimental results, initial time of visible treeing decreases with increasing in applied voltage frequency. Also, obviously, propagation speed of electrical treeing increases with increasing in applied voltage frequency.Furthermore, two types of electrical treeing, bush-like and branch-like treeing were observed.The experimental results confirmed the effect of voltage stress frequency as well.

Keywords: Voltage stress frequency, cross-linked polyethylene, electrical treeing, treeing propagation, treeing pattern

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621
2757 The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Door

Authors: Emin Z. Mahmud

Abstract:

This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a door – specimens CMDuS (confined masonry wall with opening for a door before strengthening) and CMDS (confined masonry wall with opening for a door after strengthening). Frequency and stiffness changes before and after GFRP (Glass Fiber Reinforced Plastic) wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMDuS and CMDS are subjected to the same effects. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS), Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP and re-tested. The initial frequency of the undamaged model CMDuS is 13.55 Hz, while at the end of the testing, the frequency decreased to 6.38 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening of the damaged wall, the natural frequency increases to 10.89 Hz. This highlights the beneficial effect of the strengthening. After completion of dynamic testing at CMDS, the natural frequency is reduced to 6.66 Hz.

Keywords: Behavior of masonry structures, Eurocode, fundamental frequency, masonry, shaking table test, strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556
2756 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: Machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
2755 Broadband Baseband Impedance Control for Linearity Enhancement in Microwave Devices

Authors: Muhammad Akmal Chaudhary

Abstract:

The out-of-band impedance environment is considered to be of paramount importance in engineering the in-band impedance environment. Presenting the frequency independent and constant outof- band impedances across the wide modulation bandwidth is extremely important for reliable device characterization for future wireless systems. This paper presents an out-of-band impedance optimization scheme based on simultaneous engineering of significant baseband components IF1 (twice the modulation frequency) and IF2 (four times the modulation frequency) and higher baseband components such as IF3 (six times the modulation frequency) and IF4 (eight times the modulation frequency) to engineer the in-band impedance environment. The investigations were carried out on a 10W GaN HEMT device driven to deliver a peak envelope power of approximately 40.5dBm under modulated excitation. The presentation of frequency independent baseband impedances to all the significant baseband components whilst maintaining the optimum termination for fundamental tones as well as reactive termination for 2nd harmonic under class-J mode of operation has outlined separate optimum impedances for best intermodulation (IM) linearity.

Keywords: Active load-pull, baseband, device characterisation, waveform measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
2754 Optimized Preprocessing for Accurate and Efficient Bioassay Prediction with Machine Learning Algorithms

Authors: Jeff Clarine, Chang-Shyh Peng, Daisy Sang

Abstract:

Bioassay is the measurement of the potency of a chemical substance by its effect on a living animal or plant tissue. Bioassay data and chemical structures from pharmacokinetic and drug metabolism screening are mined from and housed in multiple databases. Bioassay prediction is calculated accordingly to determine further advancement. This paper proposes a four-step preprocessing of datasets for improving the bioassay predictions. The first step is instance selection in which dataset is categorized into training, testing, and validation sets. The second step is discretization that partitions the data in consideration of accuracy vs. precision. The third step is normalization where data are normalized between 0 and 1 for subsequent machine learning processing. The fourth step is feature selection where key chemical properties and attributes are generated. The streamlined results are then analyzed for the prediction of effectiveness by various machine learning algorithms including Pipeline Pilot, R, Weka, and Excel. Experiments and evaluations reveal the effectiveness of various combination of preprocessing steps and machine learning algorithms in more consistent and accurate prediction.

Keywords: Bioassay, machine learning, preprocessing, virtual screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981
2753 Rapid Frequency Response Measurement of Power Conversion Products with Coherence-Based Confidence Analysis

Authors: Tomi Roinila, Aki Taskinen, Matti Vilkko

Abstract:

Switched-mode converters play now a significant role in modern society. Their operation are often crucial in various electrical applications affecting the every day life. Therefore, the quality of the converters needs to be reliably verified. Recent studies have shown that the converters can be fully characterized by a set of frequency responses which can be efficiently used to validate the proper operation of the converters. Consequently, several methods have been proposed to measure the frequency responses fast and accurately. Most often correlation-based techniques have been applied. The presented measurement methods are highly sensitive to external errors and system nonlinearities. This fact has been often forgotten and the necessary uncertainty analysis of the measured responses has been neglected. This paper presents a simple approach to analyze the noise and nonlinearities in the frequency-response measurements of switched-mode converters. Coherence analysis is applied to form a confidence interval characterizing the noise and nonlinearities involved in the measurements. The presented method is verified by practical measurements from a high-frequency switchedmode converter.

Keywords: Switched-mode converters, Frequency analysis, CoherenceAnalysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
2752 Double Aperture Camera for High Resolution Measurement

Authors: Venkatesh Bagaria, Nagesh AS, Varun AV

Abstract:

In the domain of machine vision, the measurement of length is done using cameras where the accuracy is directly proportional to the resolution of the camera and inversely to the size of the object. Since most of the pixels are wasted imaging the entire body as opposed to just imaging the edges in a conventional system, a double aperture system is constructed to focus on the edges to measure at higher resolution. The paper discusses the complexities and how they are mitigated to realize a practical machine vision system.

Keywords: Machine Vision, double aperture camera, accurate length measurement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
2751 Critical Analysis of Decision Making Experience with a Machine Learning Approach in Playing Ayo Game

Authors: Ibidapo O. Akinyemi, Ezekiel F. Adebiyi, Harrison O. D. Longe

Abstract:

The major goal in defining and examining game scenarios is to find good strategies as solutions to the game. A plausible solution is a recommendation to the players on how to play the game, which is represented as strategies guided by the various choices available to the players. These choices invariably compel the players (decision makers) to execute an action following some conscious tactics. In this paper, we proposed a refinement-based heuristic as a machine learning technique for human-like decision making in playing Ayo game. The result showed that our machine learning technique is more adaptable and more responsive in making decision than human intelligence. The technique has the advantage that a search is astutely conducted in a shallow horizon game tree. Our simulation was tested against Awale shareware and an appealing result was obtained.

Keywords: Decision making, Machine learning, Strategy, Ayo game.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
2750 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique

Authors: Ghada A. Alfattni

Abstract:

Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates. 

Keywords: Imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314
2749 Analysis of Synchronous Machine Excitation Systems: Comparative Study

Authors: Shewit Tsegaye, Kinde A. Fante

Abstract:

This paper presents the comparison and performance evaluation of synchronous machine excitation models. The two models, DC1A and AC4A, are among the IEEE standardized model structures for representing the wide variety of synchronous machine excitation systems. The performance evaluation of these models is done using SIMULINK simulation software. The simulation results obtained using transient analysis show that the DC1A excitation system is more reliable and stable than AC4A excitation system.

Keywords: Excitation system, synchronous machines, AC and DC regulators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3883
2748 A Dual Band Microstrip Patch Antenna for WLAN and WiMAX Applications

Authors: P. Krachodnok

Abstract:

In this paper, the design of a multiple U-slotted microstrip patch antenna with frequency selective surface (FSS) as a superstrate for WLAN and WiMAX applications is presented. The proposed antenna is designed by using substrate FR4 having permittivity of 4.4 and air substrate. The characteristics of the antenna are designed and evaluated the performance of modelled antenna using CST Microwave studio. The proposed antenna dual resonant frequency has been achieved in the band of 2.37-2.55 GHz and 3.4-3.6 GHz. Because of the impact of FSS superstrate, it is found that the bandwidths have been improved from 6.12% to 7.35 % and 3.7% to 5.7% at resonant frequencies 2.45 GHz and 3.5 GHz, respectively. The maximum gain at the resonant frequency of 2.45 and 3.5 GHz are 9.3 and 11.33 dBi, respectively.

Keywords: Multi-Slotted Antenna, Microstrip Patch Antenna, Frequency Selective Surface, Artificial Magnetic Conduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3588
2747 Application of He-s Amplitude Frequency Formulation for a Nonlinear Oscillator with Fractional Potential

Authors: Meng Hu, Lili Wang

Abstract:

In this paper, He-s amplitude frequency formulation is used to obtain a periodic solution for a nonlinear oscillator with fractional potential. By calculation and computer simulations, compared with the exact solution shows that the result obtained is of high accuracy.

Keywords: He's amplitude frequency formulation, Periodic solution, Nonlinear oscillator, Fractional potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
2746 Time and Frequency Domain Analysis of Heart Rate Variability and their Correlations in Diabetes Mellitus

Authors: P. T. Ahamed Seyd, V. I. Thajudin Ahamed, Jeevamma Jacob, Paul Joseph K

Abstract:

Diabetes mellitus (DM) is frequently characterized by autonomic nervous dysfunction. Analysis of heart rate variability (HRV) has become a popular noninvasive tool for assessing the activities of autonomic nervous system (ANS). In this paper, changes in ANS activity are quantified by means of frequency and time domain analysis of R-R interval variability. Electrocardiograms (ECG) of 16 patients suffering from DM and of 16 healthy volunteers were recorded. Frequency domain analysis of extracted normal to normal interval (NN interval) data indicates significant difference in very low frequency (VLF) power, low frequency (LF) power and high frequency (HF) power, between the DM patients and control group. Time domain measures, standard deviation of NN interval (SDNN), root mean square of successive NN interval differences (RMSSD), successive NN intervals differing more than 50 ms (NN50 Count), percentage value of NN50 count (pNN50), HRV triangular index and triangular interpolation of NN intervals (TINN) also show significant difference between the DM patients and control group.

Keywords: Autonomic nervous system, diabetes mellitus, frequency domain and time domain analysis, heart rate variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3112
2745 Automatic Generating CNC-Code for Milling Machine

Authors: Chalakorn Chitsaart, Suchada Rianmora, Mann Rattana-Areeyagon, Wutichai Namjaiprasert

Abstract:

G-code is the main factor in computer numerical control (CNC) machine for controlling the toolpaths and generating the profile of the object’s features. For obtaining high surface accuracy of the surface finish, non-stop operation is required for CNC machine. Recently, to design a new product, the strategy that concerns about a change that has low impact on business and does not consume lot of resources has been introduced. Cost and time for designing minor changes can be reduced since the traditional geometric details of the existing models are applied. In order to support this strategy as the alternative channel for machining operation, this research proposes the automatic generating codes for CNC milling operation. Using this technique can assist the manufacturer to easily change the size and the geometric shape of the product during the operation where the time spent for setting up or processing the machine are reduced. The algorithm implemented on MATLAB platform is developed by analyzing and evaluating the geometric information of the part. Codes are created rapidly to control the operations of the machine. Comparing to the codes obtained from CAM, this developed algorithm can shortly generate and simulate the cutting profile of the part.

Keywords: Geometric shapes, Milling operation, Minor changes, CNC Machine, G-code, and Cutting parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7377
2744 Frequency and Amplitude Measurement of a Vibrating Object in Water Using Ultrasonic Speckle Technique

Authors: Hongmao Zhu, Jun Chu, Lei Shen, Zhihua Luo

Abstract:

The principle of frequency and amplitude measurement of a vibrating object in water using ultrasonic speckle technique is presented in this paper. Compared with other traditional techniques, the ultrasonic speckle technique can be applied to vibration measurement of a nonmetal object with rough surface in water in a noncontact way. The relationship between speckle movement and object movement was analyzed. Based on this study, an ultrasonic speckle measurement system was set up. With this system the frequency and amplitude of an underwater vibrating cantilever beam was detected. The result shows that the experimental data is in good agreement with the calibrating data.

Keywords: Frequency, Amplitude, Vibration measurement, Ultrasonic speckle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
2743 Design and Performance Analysis of a Hydro-Power Rim-Driven Superconducting Synchronous Generator

Authors: A. Hassannia, S. Ramezani

Abstract:

The technology of superconductivity has developed in many power system devices such as transmission cable, transformer, current limiter, motor and generator. Superconducting wires can carry high density current without loss, which is the capability that is used to design the compact, lightweight and more efficient electrical machines. Superconducting motors have found applications in marine and air propulsion systems as well as superconducting generators are considered in low power hydraulic and wind generators. This paper presents a rim-driven superconducting synchronous generator for hydraulic power plant. The rim-driven concept improves the performance of hydro turbine. Furthermore, high magnetic field that is produced by superconducting windings allows replacing the rotor core. As a consequent, the volume and weight of the machine is decreased significantly. In this paper, a 1 MW coreless rim-driven superconducting synchronous generator is designed. Main performance characteristics of the proposed machine are then evaluated using finite elements method and compared to an ordinary similar size synchronous generator.

Keywords: Coreless machine, electrical machine design, hydraulic generator, rim-driven machine, superconducting generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
2742 130 nm CMOS Mixer and VCO for 2.4 GHz Low-power Wireless Personal Area Networks

Authors: Gianluca Cornetta, David J. Santos

Abstract:

This paper describes a 2.4 GHz passive switch mixer and a 5/2.5 GHz voltage-controlled negative Gm oscillator (VCO) with an inversion-mode MOS varactor. Both circuits are implemented using a 1P8M 0.13 μm process. The switch mixer has an input referred 1 dB compression point of -3.89 dBm and a conversion gain of -0.96 dB when the local oscillator power is +2.5 dBm. The VCO consumes only 1.75 mW, while drawing 1.45 mA from a 1.2 V supply voltage. In order to reduce the passives size, the VCO natural oscillation frequency is 5 GHz. A clocked CMOS divideby- two circuit is used for frequency division and quadrature phase generation. The VCO has a -109 dBc/Hz phase noise at 1 MHz frequency offset and a 2.35-2.5 GHz tuning range (after the frequency division), thus complying with ZigBee requirements.

Keywords: Switch Mixers, Varactors, IEEE 802.15.4 (ZigBee), Direct Conversion Receiver, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209
2741 A Study on the Quality of Hexapod Machine Tool's Workspace

Authors: D. Karimi, M.J. Nategh

Abstract:

One of the main concerns about parallel mechanisms is the presence of singular points within their workspaces. In singular positions the mechanism gains or loses one or several degrees of freedom. It is impossible to control the mechanism in singular positions. Therefore, these positions have to be avoided. This is a vital need especially in computer controlled machine tools designed and manufactured on the basis of parallel mechanisms. This need has to be taken into consideration when selecting design parameters. A prerequisite to this is a thorough knowledge about the effect of design parameters and constraints on singularity. In this paper, quality condition index was introduced as a criterion for evaluating singularities of different configurations of a hexapod mechanism obtainable by different design parameters. It was illustrated that this method can effectively be employed to obtain the optimum configuration of hexapod mechanism with the aim of avoiding singularity within the workspace. This method was then employed to design the hexapod table of a CNC milling machine.

Keywords: Hexapod, Machine Tool, Singularity, Workspace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
2740 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: Deregulated energy market, forecasting, machine learning, system marginal price, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
2739 Evaluation of the Accuracy of Time of Arrival Source Location Algorithm of Acoustic Emission in Concrete-Mortar Structure

Authors: Hisham A. Elfergani, Ayad A. Abdalla, Ahmed R. Ballil

Abstract:

Acoustic Emission (AE) is one of the most effective non-destructive tests that can be used to detect the defect process as it is occurring. AE techniques can be used to monitor a wide range of structures and materials such as metals, non-metals and combinations of these when load is applied. The current work investigates the effectiveness and accuracy of TOA method in AE tests involving reinforced composite concrete-mortar structures. A series of experimental tests were performed using the Hsu-Neilson (H-N) source to study 2-D location accuracy using this method on concrete-mortar (400×400 mm) specimens. Four AE sensors (R3I – resonant frequency 30 kHz) were mounted to the mortar surface and six sources were performed at each point of preselected locations on the upper surface of the mortar. Results show that the TOA method can be used effectively to locate signals on composite concrete/mortar specimen and has high accuracy.

Keywords: Acoustic emission, time of arrival, composite materials, reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
2738 Protein Residue Contact Prediction using Support Vector Machine

Authors: Chan Weng Howe, Mohd Saberi Mohamad

Abstract:

Protein residue contact map is a compact representation of secondary structure of protein. Due to the information hold in the contact map, attentions from researchers in related field were drawn and plenty of works have been done throughout the past decade. Artificial intelligence approaches have been widely adapted in related works such as neural networks, genetic programming, and Hidden Markov model as well as support vector machine. However, the performance of the prediction was not generalized which probably depends on the data used to train and generate the prediction model. This situation shown the importance of the features or information used in affecting the prediction performance. In this research, support vector machine was used to predict protein residue contact map on different combination of features in order to show and analyze the effectiveness of the features.

Keywords: contact map, protein residue contact, support vector machine, protein structure prediction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
2737 Application of Wavelet Neural Networks in Optimization of Skeletal Buildings under Frequency Constraints

Authors: Mohammad Reza Ghasemi, Amin Ghorbani

Abstract:

The main goal of the present work is to decrease the computational burden for optimum design of steel frames with frequency constraints using a new type of neural networks called Wavelet Neural Network. It is contested to train a suitable neural network for frequency approximation work as the analysis program. The combination of wavelet theory and Neural Networks (NN) has lead to the development of wavelet neural networks. Wavelet neural networks are feed-forward networks using wavelet as activation function. Wavelets are mathematical functions within suitable inner parameters, which help them to approximate arbitrary functions. WNN was used to predict the frequency of the structures. In WNN a RAtional function with Second order Poles (RASP) wavelet was used as a transfer function. It is shown that the convergence speed was faster than other neural networks. Also comparisons of WNN with the embedded Artificial Neural Network (ANN) and with approximate techniques and also with analytical solutions are available in the literature.

Keywords: Weight Minimization, Frequency Constraints, Steel Frames, ANN, WNN, RASP Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1740
2736 Power Control in a Doubly Fed Induction Machine

Authors: A. Ourici

Abstract:

This paper proposes a direct power control for doubly-fed induction machine for variable speed wind power generation. It provides decoupled regulation of the primary side active and reactive power and it is suitable for both electric energy generation and drive applications. In order to control the power flowing between the stator of the DFIG and the network, a decoupled control of active and reactive power is synthesized using PI controllers.The obtained simulation results show the feasibility and the effectiveness of the suggested method

Keywords: Doubly fed induction machine , decoupled power control , vector control , active and reactive power, PWM inverter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
2735 Error Factors in Vertical Positioning System

Authors: Hyun-Gwang Cho, Wan-Seok Yang, Su-Jin Kim, Jeong-Seok Oh, Chun-Hong Park

Abstract:

Machine tools are improved capacity remarkably during the 20th century. Improving the precision of machine tools are related with precision of products and accurate processing is always associated with the subject of interest. There are a lot of the elements that determine the precision of the machine, as guides, motors, structure, control, etc. In this paper we focused on the phenomenon that vertical movement system has worse precision than horizontal movement system even they were made up with same components. The vertical movement system needs to be studied differently from the horizontal movement system to develop its precision. The vertical movement system has load on its transfer direction and it makes the movement system weak in precision than the horizontal one. Some machines have mechanical counter balance, hydraulic or pneumatic counter balance to compensate the weight of the machine head. And there is several type of compensating the weight. It can push the machine head and also can use chain or wire lope to transfer the compensating force from counter balance to machine head. According to the type of compensating, there could be error from friction, pressure error of hydraulic or pressure control error. Also according to what to use for transferring the compensating force, transfer error of compensating force could be occur.

Keywords: Chain chordal action, counter balance, setup error, vertical positioning system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101