Search results for: fuzzy uncertainty theory (FUT)
2434 Fuzzy Voting in Internal Elections of Educational and Party Organizations
Authors: R. Hosseingholizadeh
Abstract:
This article presents a method for elections between the members of a group that is founded by fuzzy logic. Linguistic variables are objects for decision on election cards and deduction is based on t-norms and s-norms. In this election-s method election cards are questionnaire. The questionnaires are comprised of some questions with some choices. The choices are words from natural language. Presented method is accompanied by center of gravity (COG) defuzzification added up to a computer program by MATLAB. Finally the method is illustrated by solving two examples; choose a head for a research group-s members and a representative for students.
Keywords: fuzzy election, fuzzy electoral card, fuzzy inference, questionnaire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14222433 H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems
Authors: N. Kaewpraek, W. Assawinchaichote
Abstract:
This paper considers an H∞ TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an H∞ TS fuzzy state-derivative feedback control law which guarantees L2-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and H∞ performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller.Keywords: H∞ fuzzy control, LMI, Takagi-Sugano (TS) fuzzy model, nonlinear dynamic systems, state-derivative feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9422432 A Multi-objective Fuzzy Optimization Method of Resource Input Based on Genetic Algorithm
Abstract:
With the increasing complexity of engineering problems, the traditional, single-objective and deterministic optimization method can not meet people-s requirements. A multi-objective fuzzy optimization model of resource input is built for M chlor-alkali chemical eco-industrial park in this paper. First, the model is changed into the form that can be solved by genetic algorithm using fuzzy theory. And then, a fitness function is constructed for genetic algorithm. Finally, a numerical example is presented to show that the method compared with traditional single-objective optimization method is more practical and efficient.Keywords: Fitness function, genetic algorithm, multi-objectivefuzzy optimization, satisfaction degree membership function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13552431 A New Quantile Based Fuzzy Time Series Forecasting Model
Authors: Tahseen A. Jilani, Aqil S. Burney, C. Ardil
Abstract:
Time series models have been used to make predictions of academic enrollments, weather, road accident, casualties and stock prices, etc. Based on the concepts of quartile regression models, we have developed a simple time variant quantile based fuzzy time series forecasting method. The proposed method bases the forecast using prediction of future trend of the data. In place of actual quantiles of the data at each point, we have converted the statistical concept into fuzzy concept by using fuzzy quantiles using fuzzy membership function ensemble. We have given a fuzzy metric to use the trend forecast and calculate the future value. The proposed model is applied for TAIFEX forecasting. It is shown that proposed method work best as compared to other models when compared with respect to model complexity and forecasting accuracy.
Keywords: Quantile Regression, Fuzzy time series, fuzzy logicalrelationship groups, heuristic trend prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19962430 Support Vector Fuzzy Based Neural Networks For Exchange Rate Modeling
Authors: Prof. Chokri SLIM
Abstract:
A Novel fuzzy neural network combining with support vector learning mechanism called support-vector-based fuzzy neural networks (SVBFNN) is proposed. The SVBFNN combine the capability of minimizing the empirical risk (training error) and expected risk (testing error) of support vector learning in high dimensional data spaces and the efficient human-like reasoning of FNN.
Keywords: Neural network, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166872429 Multivariate High Order Fuzzy Time Series Forecasting for Car Road Accidents
Authors: Tahseen A. Jilani, S. M. Aqil Burney, C. Ardil
Abstract:
In this paper, we have presented a new multivariate fuzzy time series forecasting method. This method assumes mfactors with one main factor of interest. History of past three years is used for making new forecasts. This new method is applied in forecasting total number of car accidents in Belgium using four secondary factors. We also make comparison of our proposed method with existing methods of fuzzy time series forecasting. Experimentally, it is shown that our proposed method perform better than existing fuzzy time series forecasting methods. Practically, actuaries are interested in analysis of the patterns of causalities in road accidents. Thus using fuzzy time series, actuaries can define fuzzy premium and fuzzy underwriting of car insurance and life insurance for car insurance. National Institute of Statistics, Belgium provides region of risk classification for each road. Thus using this risk classification, we can predict premium rate and underwriting of insurance policy holders.Keywords: Average forecasting error rate (AFER), Fuzziness offuzzy sets Fuzzy, If-Then rules, Multivariate fuzzy time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24902428 A Neutral Set Approach for Applying TOPSIS in Maintenance Strategy Selection
Authors: C. Ardil
Abstract:
This paper introduces the concept of neutral sets (NSs) and explores various operations on NSs, along with their associated properties. The foundation of the Neutral Set framework lies in ontological neutrality and the principles of logic, including the Law of Non-Contradiction. By encompassing components for possibility, indeterminacy, and necessity, the NS framework provides a flexible representation of truth, uncertainty, and necessity, accommodating diverse ontological perspectives without presupposing specific existential commitments. The inclusion of Possibility acknowledges the spectrum of potential states or propositions, promoting neutrality by accommodating various viewpoints. Indeterminacy reflects the inherent uncertainty in understanding reality, refraining from making definitive ontological commitments in uncertain situations. Necessity captures propositions that must hold true under all circumstances, aligning with the principle of logical consistency and implicitly supporting the Law of Non-Contradiction. Subsequently, a neutral set-TOPSIS approach is applied in the maintenance strategy selection problem, demonstrating the practical applicability of the NS framework. The paper further explores uncertainty relations and presents the fundamental preliminaries of NS theory, emphasizing its role in fostering ontological neutrality and logical coherence in reasoning.
Keywords: Uncertainty sets, neutral sets, maintenance strategy selection multiple criteria decision-making analysis, MCDM, uncertainty decision analysis, distance function, multiple attribute, decision making, selection method, uncertainty, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1172427 Measuring Banks’ Antifragility via Fuzzy Logic
Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti
Abstract:
Analysing the world banking sector, we realize that traditional risk measurement methodologies no longer reflect the actual scenario with uncertainty and leave out events that can change the dynamics of markets. Considering this, regulators and financial institutions began to search more realistic models. The aim is to include external influences and interdependencies between agents, to describe and measure the operationalization of these complex systems and their risks in a more coherent and credible way. Within this context, X-Events are more frequent than assumed and, with uncertainties and constant changes, the concept of antifragility starts to gain great prominence in comparison to others methodologies of risk management. It is very useful to analyse whether a system succumbs (fragile), resists (robust) or gets benefits (antifragile) from disorder and stress. Thus, this work proposes the creation of the Banking Antifragility Index (BAI), which is based on the calculation of a triangular fuzzy number – to "quantify" qualitative criteria linked to antifragility.
Keywords: Complex adaptive systems, X-events, risk management, antifragility, banking antifragility index, triangular fuzzy number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8972426 Fuzzy Logic Speed Control of Three Phase Induction Motor Drive
Authors: P.Tripura, Y.Srinivasa Kishore Babu
Abstract:
This paper presents an intelligent speed control system based on fuzzy logic for a voltage source PWM inverter-fed indirect vector controlled induction motor drive. Traditional indirect vector control system of induction motor introduces conventional PI regulator in outer speed loop; it is proved that the low precision of the speed regulator debases the performance of the whole system. To overcome this problem, replacement of PI controller by an intelligent controller based on fuzzy set theory is proposed. The performance of the intelligent controller has been investigated through digital simulation using MATLAB-SIMULINK package for different operating conditions such as sudden change in reference speed and load torque. The simulation results demonstrate that the performance of the proposed controller is better than that of the conventional PI controller.Keywords: Fuzzy Logic, Intelligent controllers, Conventional PI controller, Induction motor drives, indirect vector control, Speed control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 64992425 Possibilistic Aggregations in the Investment Decision Making
Authors: I. Khutsishvili, G. Sirbiladze, B. Ghvaberidze
Abstract:
This work proposes a fuzzy methodology to support the investment decisions. While choosing among competitive investment projects, the methodology makes ranking of projects using the new aggregation OWA operator – AsPOWA, presented in the environment of possibility uncertainty. For numerical evaluation of the weighting vector associated with the AsPOWA operator the mathematical programming problem is constructed. On the basis of the AsPOWA operator the projects’ group ranking maximum criteria is constructed. The methodology also allows making the most profitable investments into several of the project using the method developed by the authors for discrete possibilistic bicriteria problems. The article provides an example of the investment decision-making that explains the work of the proposed methodology.
Keywords: Expert evaluations, investment decision making, OWA operator, possibility uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20262424 Fuzzy Control of Macroeconomic Models
Authors: Andre A. Keller
Abstract:
The optimal control is one of the possible controllers for a dynamic system, having a linear quadratic regulator and using the Pontryagin-s principle or the dynamic programming method . Stochastic disturbances may affect the coefficients (multiplicative disturbances) or the equations (additive disturbances), provided that the shocks are not too great . Nevertheless, this approach encounters difficulties when uncertainties are very important or when the probability calculus is of no help with very imprecise data. The fuzzy logic contributes to a pragmatic solution of such a problem since it operates on fuzzy numbers. A fuzzy controller acts as an artificial decision maker that operates in a closed-loop system in real time. This contribution seeks to explore the tracking problem and control of dynamic macroeconomic models using a fuzzy learning algorithm. A two inputs - single output (TISO) fuzzy model is applied to the linear fluctuation model of Phillips and to the nonlinear growth model of Goodwin.Keywords: fuzzy control, macroeconomic model, multiplier - accelerator, nonlinear accelerator, stabilization policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19942423 Fuzzy Sliding Mode Control of an MR Mount for Vibration Attenuation
Authors: Jinsiang Shaw, Ray Pan, Yin-Chieh Chang
Abstract:
In this paper, an magnetorheological (MR) mount with fuzzy sliding mode controller (FSMC) is studied for vibration suppression when the system is subject to base excitations. In recent years, magnetorheological fluids are becoming a popular material in the field of the semi-active control. However, the dynamic equation of an MR mount is highly nonlinear and it is difficult to identify. FSMC provides a simple method to achieve vibration attenuation of the nonlinear system with uncertain disturbances. This method is capable of handling the chattering problem of sliding mode control effectively and the fuzzy control rules are obtained by using the Lyapunov stability theory. The numerical simulations using one-dimension and two-dimension FSMC show effectiveness of the proposed controller for vibration suppression. Further, the well-known skyhook control scheme and an adaptive sliding mode controller are also included in the simulation for comparison with the proposed FSMC.Keywords: adaptive sliding mode controller, fuzzy sliding modecontroller, magnetorheological mount, skyhook control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17952422 Fuzzy Logic PID Control of Automatic Voltage Regulator System
Authors: Aye Aye Mon
Abstract:
The application of a simple microcontroller to deal with a three variable input and a single output fuzzy logic controller, with Proportional – Integral – Derivative (PID) response control built-in has been tested for an automatic voltage regulator. The fuzzifiers are based on fixed range of the variables of output voltage. The control output is used to control the wiper motor of the auto transformer to adjust the voltage, using fuzzy logic principles, so that the voltage is stabilized. In this report, the author will demonstrate how fuzzy logic might provide elegant and efficient solutions in the design of multivariable control based on experimental results rather than on mathematical models.Keywords: Fuzzy logic system, PID Controller, control systems, controlled A V R
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38932421 Robust Fuzzy Control of Nonlinear Fuzzy Impulsive Singular Perturbed Systems with Time-varying Delay
Authors: Caigen Zhou, Haibo Jiang
Abstract:
The problem of robust fuzzy control for a class of nonlinear fuzzy impulsive singular perturbed systems with time-varying delay is investigated by employing Lyapunov functions. The nonlinear delay system is built based on the well-known T–S fuzzy model. The so-called parallel distributed compensation idea is employed to design the state feedback controller. Sufficient conditions for global exponential stability of the closed-loop system are derived in terms of linear matrix inequalities (LMIs), which can be easily solved by LMI technique. Some simulations illustrate the effectiveness of the proposed method.Keywords: T–S fuzzy model, singular perturbed systems, time-varying delay, robust control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16962420 A Comparison of Grey Model and Fuzzy Predictive Model for Time Series
Authors: A. I. Dounis, P. Tiropanis, D. Tseles, G. Nikolaou, G. P. Syrcos
Abstract:
The prediction of meteorological parameters at a meteorological station is an interesting and open problem. A firstorder linear dynamic model GM(1,1) is the main component of the grey system theory. The grey model requires only a few previous data points in order to make a real-time forecast. In this paper, we consider the daily average ambient temperature as a time series and the grey model GM(1,1) applied to local prediction (short-term prediction) of the temperature. In the same case study we use a fuzzy predictive model for global prediction. We conclude the paper with a comparison between local and global prediction schemes.Keywords: Fuzzy predictive model, grey model, local andglobal prediction, meteorological forecasting, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21552419 Adomian Method for Second-order Fuzzy Differential Equation
Authors: Lei Wang, Sizong Guo
Abstract:
In this paper, we study the numerical method for solving second-order fuzzy differential equations using Adomian method under strongly generalized differentiability. And, we present an example with initial condition having four different solutions to illustrate the efficiency of the proposed method under strongly generalized differentiability.
Keywords: Fuzzy-valued function, fuzzy initial value problem, strongly generalized differentiability, adomian decomposition method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25352418 Processing Web-Cam Images by a Neuro-Fuzzy Approach for Vehicular Traffic Monitoring
Authors: A. Faro, D. Giordano, C. Spampinato
Abstract:
Traffic management in an urban area is highly facilitated by the knowledge of the traffic conditions in every street or highway involved in the vehicular mobility system. Aim of the paper is to propose a neuro-fuzzy approach able to compute the main parameters of a traffic system, i.e., car density, velocity and flow, by using the images collected by the web-cams located at the crossroads of the traffic network. The performances of this approach encourage its application when the traffic system is far from the saturation. A fuzzy model is also outlined to evaluate when it is suitable to use more accurate, even if more time consuming, algorithms for measuring traffic conditions near to saturation.
Keywords: Neuro-fuzzy networks, computer vision, Fuzzy systems, intelligent transportation system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15922417 Exponential Stability of Uncertain Takagi-Sugeno Fuzzy Hopfield Neural Networks with Time Delays
Abstract:
In this paper, based on linear matrix inequality (LMI), by using Lyapunov functional theory, the exponential stability criterion is obtained for a class of uncertain Takagi-Sugeno fuzzy Hopfield neural networks (TSFHNNs) with time delays. Here we choose a generalized Lyapunov functional and introduce a parameterized model transformation with free weighting matrices to it, these techniques lead to generalized and less conservative stability condition that guarantee the wide stability region. Finally, an example is given to illustrate our results by using MATLAB LMI toolbox.
Keywords: Hopfield neural network, linear matrix inequality, exponential stability, time delay, T-S fuzzy model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15102416 Self – Tuning Method of Fuzzy System: An Application on Greenhouse Process
Authors: M. Massour El Aoud, M. Franceschi, M. Maher
Abstract:
The approach proposed here is oriented in the direction of fuzzy system for the analysis and the synthesis of intelligent climate controllers, the simulation of the internal climate of the greenhouse is achieved by a linear model whose coefficients are obtained by identification. The use of fuzzy logic controllers for the regulation of climate variables represents a powerful way to minimize the energy cost. Strategies of reduction and optimization are adopted to facilitate the tuning and to reduce the complexity of the controller.
Keywords: Greenhouse, fuzzy logic, optimization, gradient descent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19472415 Solving Fully Fuzzy Linear Systems by use of a Certain Decomposition of the Coefficient Matrix
Authors: S. H. Nasseri, M. Sohrabi, E. Ardil
Abstract:
In this paper, we give a certain decomposition of the coefficient matrix of the fully fuzzy linear system (FFLS) to obtain a simple algorithm for solving these systems. The new algorithm can solve FFLS in a smaller computing process. We will illustrate our method by solving some examples.Keywords: Fully fuzzy linear system, Fuzzy number, LUdecomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17102414 A Fuzzy Dynamic Load Balancing Algorithm for Homogenous Distributed Systems
Authors: Ali M. Alakeel
Abstract:
Load balancing in distributed computer systems is the process of redistributing the work load among processors in the system to improve system performance. Most of previous research in using fuzzy logic for the purpose of load balancing has only concentrated in utilizing fuzzy logic concepts in describing processors load and tasks execution length. The responsibility of the fuzzy-based load balancing process itself, however, has not been discussed and in most reported work is assumed to be performed in a distributed fashion by all nodes in the network. This paper proposes a new fuzzy dynamic load balancing algorithm for homogenous distributed systems. The proposed algorithm utilizes fuzzy logic in dealing with inaccurate load information, making load distribution decisions, and maintaining overall system stability. In terms of control, we propose a new approach that specifies how, when, and by which node the load balancing is implemented. Our approach is called Centralized-But-Distributed (CBD).Keywords: Dynamic load balancing, fuzzy logic, distributed systems, algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24552413 Neural Network Tuned Fuzzy Controller for MIMO System
Authors: Seema Chopra, R. Mitra, Vijay Kumar
Abstract:
In this paper, a neural network tuned fuzzy controller is proposed for controlling Multi-Input Multi-Output (MIMO) systems. For the convenience of analysis, the structure of MIMO fuzzy controller is divided into single input single-output (SISO) controllers for controlling each degree of freedom. Secondly, according to the characteristics of the system-s dynamics coupling, an appropriate coupling fuzzy controller is incorporated to improve the performance. The simulation analysis on a two-level mass–spring MIMO vibration system is carried out and results show the effectiveness of the proposed fuzzy controller. The performance though improved, the computational time and memory used is comparatively higher, because it has four fuzzy reasoning blocks and number may increase in case of other MIMO system. Then a fuzzy neural network is designed from a set of input-output training data to reduce the computing burden during implementation. This control strategy can not only simplify the implementation problem of fuzzy control, but also reduce computational time and consume less memory.Keywords: Fuzzy Control, Neural Network, MIMO System, Optimization of Membership functions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32102412 Autonomous Virtual Agent Navigation in Virtual Environments
Authors: Jafreezal Jaafar, Eric McKenzie
Abstract:
This paper presents a solution for the behavioural animation of autonomous virtual agent navigation in virtual environments. We focus on using Dempster-Shafer-s Theory of Evidence in developing visual sensor for virtual agent. The role of the visual sensor is to capture the information about the virtual environment or identifie which part of an obstacle can be seen from the position of the virtual agent. This information is require for vitual agent to coordinate navigation in virtual environment. The virual agent uses fuzzy controller as a navigation system and Fuzzy α - level for the action selection method. The result clearly demonstrates the path produced is reasonably smooth even though there is some sharp turn and also still not diverted too far from the potential shortest path. This had indicated the benefit of our method, where more reliable and accurate paths produced during navigation task.Keywords: Agent, Navigation, Demster Shafer, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16272411 Speed Control of Permanent Magnet Synchronous Motor Using Evolutionary Fuzzy PID Controller
Authors: M. Umabharathi, S. Vijayabaskar
Abstract:
Evolutionary Fuzzy PID Speed Controller for Permanent Magnet Synchronous Motor (PMSM) is developed to achieve the Speed control of PMSM in Closed Loop operation and to deal with the existence of transients. Consider a Fuzzy PID control design problem, based on common control Engineering Knowledge. If the transient error is big, that Good transient performance can be obtained by increasing the P and I gains and decreasing the D gains. To autotune the control parameters of the Fuzzy PID controller, the Evolutionary Algorithms (EA) are developed. EA based Fuzzy PID controller provides better speed control and guarantees the closed loop stability. The Evolutionary Fuzzy PID controller can be implemented in real time Applications without any concern about instabilities that leads to system failure or damage.
Keywords: Evolutionary Algorithm (EA), Fuzzy system, Genetic Algorithm (GA), Membership, Permanent Magnet Synchronous Motor (PMSM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29592410 Comparison of Mamdani and Sugeno Fuzzy Interference Systems for the Breast Cancer Risk
Authors: Alshalaa A. Shleeg, Issmail M. Ellabib
Abstract:
Breast cancer is a major health burden worldwide being a major cause of death amongst women. In this paper, Fuzzy Inference Systems (FIS) are developed for the evaluation of breast cancer risk using Mamdani-type and Sugeno-type models. The paper outlines the basic difference between Mamdani-type FIS and Sugeno-type FIS. The results demonstrated the performance comparison of the two systems and the advantages of using Sugeno- type over Mamdani-type.
Keywords: Breast cancer diagnosis, Fuzzy Inference System (FIS), Fuzzy Logic, fuzzy intelligent technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71702409 Analyzing Periurban Fringe with Rough Set
Authors: Benedetto Manganelli, Beniamino Murgante
Abstract:
The distinction among urban, periurban and rural areas represents a classical example of uncertainty in land classification. Satellite images, geostatistical analysis and all kinds of spatial data are very useful in urban sprawl studies, but it is important to define precise rules in combining great amounts of data to build complex knowledge about territory. Rough Set theory may be a useful method to employ in this field. It represents a different mathematical approach to uncertainty by capturing the indiscernibility. Two different phenomena can be indiscernible in some contexts and classified in the same way when combining available information about them. This approach has been applied in a case of study, comparing the results achieved with both Map Algebra technique and Spatial Rough Set. The study case area, Potenza Province, is particularly suitable for the application of this theory, because it includes 100 municipalities with different number of inhabitants and morphologic features.
Keywords: Land Classification, Map Algebra, Periurban Fringe, Rough Set, Urban Planning, Urban Sprawl.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17242408 Iraqi Short Term Electrical Load Forecasting Based On Interval Type-2 Fuzzy Logic
Authors: Firas M. Tuaimah, Huda M. Abdul Abbas
Abstract:
Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.
Keywords: Short term load forecasting, prediction interval, type 2 fuzzy logic systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18882407 Minimal Spanning Tree based Fuzzy Clustering
Authors: Ágnes Vathy-Fogarassy, Balázs Feil, János Abonyi
Abstract:
Most of fuzzy clustering algorithms have some discrepancies, e.g. they are not able to detect clusters with convex shapes, the number of the clusters should be a priori known, they suffer from numerical problems, like sensitiveness to the initialization, etc. This paper studies the synergistic combination of the hierarchical and graph theoretic minimal spanning tree based clustering algorithm with the partitional Gath-Geva fuzzy clustering algorithm. The aim of this hybridization is to increase the robustness and consistency of the clustering results and to decrease the number of the heuristically defined parameters of these algorithms to decrease the influence of the user on the clustering results. For the analysis of the resulted fuzzy clusters a new fuzzy similarity measure based tool has been presented. The calculated similarities of the clusters can be used for the hierarchical clustering of the resulted fuzzy clusters, which information is useful for cluster merging and for the visualization of the clustering results. As the examples used for the illustration of the operation of the new algorithm will show, the proposed algorithm can detect clusters from data with arbitrary shape and does not suffer from the numerical problems of the classical Gath-Geva fuzzy clustering algorithm.Keywords: Clustering, fuzzy clustering, minimal spanning tree, cluster validity, fuzzy similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24062406 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning
Authors: Ahcene Habbi, Yassine Boudouaoui
Abstract:
This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.
Keywords: Automatic design, learning, fuzzy rules, hybrid, swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21572405 Proposal of Additional Fuzzy Membership Functions in Smoothing Transition Autoregressive Models
Authors: Ε. Giovanis
Abstract:
In this paper we present, propose and examine additional membership functions for the Smoothing Transition Autoregressive (STAR) models. More specifically, we present the tangent hyperbolic, Gaussian and Generalized bell functions. Because Smoothing Transition Autoregressive (STAR) models follow fuzzy logic approach, more fuzzy membership functions should be tested. Furthermore, fuzzy rules can be incorporated or other training or computational methods can be applied as the error backpropagation or genetic algorithm instead to nonlinear squares. We examine two macroeconomic variables of US economy, the inflation rate and the 6-monthly treasury bills interest rates.Keywords: Forecast , Fuzzy membership functions, Smoothingtransition, Time-series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526