
 

 

  
Abstract—Most of fuzzy clustering algorithms have some 

discrepancies, e.g. they are not able to detect clusters with convex 
shapes, the number of the clusters should be a priori known, they 
suffer from numerical problems, like sensitiveness to the 
initialization, etc. This paper studies the synergistic combination of 
the hierarchical and graph theoretic minimal spanning tree based 
clustering algorithm with the partitional Gath-Geva fuzzy clustering 
algorithm. The aim of this hybridization is to increase the robustness 
and consistency of the clustering results and to decrease the number 
of the heuristically defined parameters of these algorithms to 
decrease the influence of the user on the clustering results. For the 
analysis of the resulted fuzzy clusters a new fuzzy similarity measure 
based tool has been presented. The calculated similarities of the 
clusters can be used for the hierarchical clustering of the resulted 
fuzzy clusters, which information is useful for cluster merging and 
for the visualization of the clustering results. As the examples used 
for the illustration of the operation of the new algorithm will show, 
the proposed algorithm can detect clusters from data with arbitrary 
shape and does not suffer from the numerical problems of the 
classical Gath-Geva fuzzy clustering algorithm. 
 

Keywords—Clustering, fuzzy clustering, minimal spanning tree, 
cluster validity, fuzzy similarity. 

I. INTRODUCTION 
AST and robust clustering algorithms play an important 
role in extracting useful information from large databases. 

The aim of cluster analysis is to partition a set of N objects in 
c clusters such that objects within clusters should be similar to 
each other and objects in different clusters should be 
dissimilar from each other. Clustering can be used to quantize 
the available data, to extract a set of cluster prototypes for the 
compact representation of the dataset, to select the relevant 
features, to segment the dataset into homogenous subsets, and 
to initialize regression and classification models.  

There are two main approaches in the clustering: Hard 
clustering algorithms allocate each object to a single cluster 
during their operation and in its output. Fuzzy clustering 
methods assign degrees of membership in several clusters to 
each input pattern. So, the fuzzy clustering methods result 
more dynamic separation of the patterns. 
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In the literature a wide variety of algorithms (partitional, 
hierarchical, density-based, graph-based, model-based, etc.) 
have been proposed, but it is a difficult challenge to find a 
general and powerful method that is quite robust and that does 
not require the fine-tuning of the user. Most of these 
algorithms have some discrepancies.  

For example the basic partitional methods are not able to 
detect convex clusters; when using hierarchical methods the 
number of the clusters should be a priori known, and they are 
not efficient enough for large datasets; while linkage-based 
methods often suffer from the chaining effect. A problem 
accompanying the use of a partitional algorithm is that the 
number of the desired clusters should be given in advance. 
The partitional techniques usually produce clusters by 
optimizing a criterion function defined either locally (on a 
subset of the patterns) or globally (defined over all of the 
patterns).  Generally, different cluster shapes (orientations, 
volumes) are required for the different clusters (partitions), 
but there is no guideline as to how to choose them a priori. 
The norm-inducing matrix of the cluster prototypes can be 
adapted by using estimates of the data covariance, and can be 
used to estimate the statistical dependence of the data in each 
cluster. The Gaussian mixture based fuzzy maximum 
likelihood estimation algorithm (Gath-Geva algorithm (GG)) 
is based on such an adaptive distance measure, it can adapt the 
distance norm to the underlying distribution of the data which 
is reflected in the different sizes of the clusters, hence it is able 
to detect clusters with different orientation and volume. 
Unfortunately the GG algorithm is very sensitive to 
initialization, hence often it cannot be directly applied to the 
data. 

The hierarchical clustering approaches are related to graph-
theoretic clustering. These algorithms are able to detect 
clusters of various shapes and sizes, and they do not require 
initialization. One of the best-known graph-based divisive 
clustering algorithm is based on the construction of the 
minimal spanning tree (MST) of the objects [3,7,9,13,16]. By 
the elimination of any edge from the MST we get subtrees 
which correspond to clusters. Clustering methods using a 
minimal spanning tree take advantages of the MST. The MST 
ignores many possible connections between the data patterns, 
so the cost of clustering can be decreased. Single-link clusters 
are subgraphs of the minimum spanning tree of the data 
[10,11] which are also the connected components. Complete-
link clusters are maximal complete subgraphs, and are related 
to the node colorability of graphs [2]. The maximal complete 
subgraph was considered the strictest definition of a cluster in 
[1,15]. Clustering, as an unsupervised learning, is mainly 
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carried out on the basis of the data structure itself, so the 
influence of the user should be minimal on the results of the 
clustering. However, the MST based clustering algorithm has 
many user-defined parameters that significantly influence the 
clustering results. 

In this paper we propose a hybrid MST and GG clustering 
algorithm to handle the above mentioned discrepancies. Based 
on the fuzziness of the resulted clusters (fuzzy membership 
values) the goodness and the similarities of the received 
clusters are also evaluated. This information can be effectively 
used for the analysis and visualization of the clustering results, 
hence the proposed tool is really useful for data mining.  In 
Section II we discuss the possibilities of the use of minimal 
spanning trees in the clustering procedure. In this section we 
cover some well-known terminating criteria of the MST 
algorithm too. In Section III the new algorithm will be 
described. We introduce the major steps of the process, and 
suggest some evaluation criteria for the possible results. 
Section IV contains application examples based on illustrative 
datasets to illustrate the usefulness of the proposed method. 
Section V. concludes the paper. 

II.   CLUSTERING BASED ON MINIMAL SPANNING TREE 
The use of the minimal spanning tree in the clustering 

methods was initially proposed by Zahn [17]. Fig. 1 depicts a 
minimal spanning tree, on which points are distributed into 
three clusters. The objects belonging to different clusters are 
marked with different dot notations.  

A minimal spanning tree is a weighted connected graph, 
where the sum of the weights is minimal. In a G=(V,E) graph 
an element of E, called edge, is ei,j=(vi,vj), where vi,vj∈V 
(vertices). There is a w weight function is defined, which 
function determines a wi,j weight for each ei,j edge. Creating 
the minimal spanning tree means, that we are searching the 
G'=(V,E') connected subgraph of G, where E'⊂E and the cost 
is minimum. The cost is computed in the following way: 

 
∈
∑
e E'

w(e)  (1) 

where w(e) denotes the weight of the e∈E edge. In a G graph, 
where the number of the vertices is N, MST has exactly N-1 
edges. The major advantage of the clustering with using MST 
is, that while the complete graph including N vertices has 

exactly ⎛ ⎞
⎜ ⎟
⎝ ⎠

N
2

 edges, in the MST we can find only N-1 edges. 

So the answering the possible most exciting question, namely 
which edge is the best choice for the elimination, becomes less 
expensive. A minimal spanning tree can be efficiently 
computed in O(N2) time using either Prim's [14] or Kruskal's 
[12] algorithm. 
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Fig. 1 Example of a minimal spanning tree 

A minimal spanning tree can be used in clustering in the 
following way: let X={x1, x2,..., xN} be a set of the data with N 
distinct objects which we want to distribute in different 
clusters. xi denotes the i-th object, which consists n measured 
variables, grouped into an n-dimensional column vector 
xi=[x1,i, x2,i,..., xn,i]T, xi∈Rn. Let di,j=d(xi,xj) be the distance 
defined between any xi and xj. This distance can be computed 
in different ways (e.g. Euclidean distance, Manhattan 
distance, Mahalanobis distance, mutual neighbour distance, 
etc.). Removing edges from the MST leads to a collection of 
connected subgraphs of G, which can be considered as 
clusters. Using MST for clustering we are interested in finding 
the inconsistent edges, which lead to the best clustering result. 

Clustering by minimal spanning tree can be viewed as a 
hierarchical clustering algorithm which follows the divisive 
approach. Using this method firstly we construct a linked 
structure of the objects, and then the clusters are recursively 
divided into subclusters. Elimination of k edges from a 
minimal spanning tree results in k+1 disconnected subtrees. 
Denote δ the length of the deleted edge, and let V1, V2 be the 
sets of the points in the resulting two clusters. In the set of 
clusters we can state that there are no pairs of points (x1,x2), 
x1∈V1, x2∈V2, such that d(x1,x2)< δ.  

The identification of the inconsistent edges causes problems 
in the MST clustering algorithms. There exist numerous ways 
to divide clusters successively, but there is not a suitable 
choice for all cases. In special cases the elimination is carried 
out in one step. In these cases a global parameter is used, 
which determines the edges to be removed from the MST. 
When this elimination is repeated, we must determine a 
terminating criterion, when the running of the algorithm is 
finished, and the current trees can be seen as clusters. 
Determination of the terminating criterion is also a difficult 
challenge. The methods which use recursive cutting define 
some possible terminating criteria. In the next paragraphs we 
will overview some well-known cutting conditions and 
terminating criteria, then we introduce our suggestions for 
using the minimal spanning tree for clustering with new 
cutting criteria. 
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Criterion-1: The simplest way to delete edges from the 
minimal spanning tree is based on the distance between the 
vertices. By deleting the longest edge in each iteration step we 
get a nested sequence of subgraphs. As other hierarchical 
methods, this approach also requires a terminating condition. 
Several ways are known to stop the algorithms, for example 
the user can define the number of clusters, or we can give a 
threshold value on the length also. 

Zahn [17] suggested a global threshold value, δ which 
considers the distribution of the data in the feature space. In 
[17] this δ threshold is based on the average weight 
(distances) of the MST : 

 ∑
∈e E'

1
δ = λ w(e)

N - 1
 (2) 

where λ is a user defined parameter. Of course, λ can be 
defined in several manner. 

Criterion-2: Long edges of the MST do not indicate cluster 
separation always. When the hidden clusters show different 
densities, the recursive cutting of the longest edges does not 
results the expected cluster scheme. Solving this problem 
Zahn [17] proposed also another idea to detect the hidden 
separations in the data. Zahn's suggestion is based on the 
distance of the separated subtrees. He suggested, that an edge 
is inconsistent if its length is at least f times as long as the 
average of the length of nearby edges. The input parameter f 
must be adjusted by the user. To determine which edges are 
“nearby” is another question. It can be determined by the user, 
or we can say, that point xi is nearby point of xj if point xi is 
connected to the point xj by a path in a minimal spanning tree 
containing k or fewer edges. This method has the advantage of 
determining clusters which have different distances separating 
one another. Another use of the MST based on this criterion is 
to find dense clusters embedded in a sparse set of points. All 
that has to be done is to remove all edges longer than some 
predetermined length in order to extract clusters which are 
closer than the specified length to each other. If the length is 
chosen accordingly, the dense clusters are extracted from a 
sparse set of points easily. The drawback of this method is that 
the influence of the user is significant at the selection of the f 
and k parameters. 

Criterion-3: The first two criteria are based on the merging 
or splitting of the objects or clusters using a distance defined 
between them. Occurrence of a data chain between two 
clusters can cause that these methods can not separate these 
clusters. In many approaches the separation is specified with 
the goodness of the obtained partitions. Cluster validity refers 
to the problem whether a given partition fits to the data all. 
The clustering algorithm always tries to find the best fit for a 
fixed number of clusters and the parameterized cluster shapes. 
However this does not mean that even the best fit is 
meaningful at all. Either the number of clusters might be 
wrong or the cluster shapes might not correspond to the 
groups in the data, if the data can be grouped in a meaningful 
way at all. Two main approaches to determining the 
appropriate number of clusters in data can be distinguished: 

• The compatible cluster merging approaches start with a 
sufficiently large number of clusters, and successively 
reduce this number by merging clusters that are similar 
(compatible) with respect to some predefined criteria. 

• Many approaches use validity measures to assess the 
goodness of the obtained partitions. This can be done 
in two ways: 

o The first approach defines a validity function 
which evaluates a complete partition. An 
upper bound for the number of clusters must 
be estimated (cmax), and the algorithms have to 
be run with each c∈{2,3,…,cmax}. For each 
partition, the validity function provides a 
value such that the results of the analysis can 
be compared indirectly. 

o The second approach consists of the definition 
of a validity function that evaluates individual 
clusters of a cluster partition. Again, cmax has 
to be estimated and the cluster analysis has to 
be carried out for cmax. The resulting clusters 
are compared to each other on the basis of the 
validity function. Similar clusters are collected 
in one cluster, very bad clusters are 
eliminated, so the number of clusters is 
reduced. The procedure can be repeated until 
there are bad clusters. 

In the literature for the hard clustering different scalar validity 
measures have been proposed, but none of them is perfect on 
its own. For example partition index [5] is the ratio of the sum 
of compactness and separation of the clusters. Separation 
index [5] uses a minimum distance separation for partition 
validity. Dunn's index [6] is originally proposed to be used at 
the identification of compact and well separated clusters. They 
are known as Dunn-like indices since they are based on Dunn 
index. One of the three indices uses for the definition the 
concepts MST. The number of clusters at which this index 
takes its maximum value indicates the number of clusters in 
the underlying data. 

Varma and Simon [16] used the Fukuyama-Sugeno 
clustering measure for deleting different edges from the MST. 
Denote S the sample index set, and let S1, S2 be partitions of S. 
Nk denotes the number of the objects for each Sk. The 
Fukuyama-Sugeno clustering measure is defined in the 
following way: 

 ⎡ ⎤
⎢ ⎥⎣ ⎦∑∑

kN2 2 2k
j k k

k=1 j=1
FS(S) = - --x v µ v  (3) 

where v denotes the global mean of all objects, vk denotes the 
mean of the objects in Sk. The symbol k

jx  refers to the j-th 

object in the cluster Sk. If the value of FS(S) is small, it 
indicates tight clusters with large separations between them. 
Varma and Simon found, that the Fukuyama-Sugeno measure 
gives the best performance in a dataset with a large number of 
noisy features. 
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III. HYBRID MST-GG CLUSTERING ALGORITHM 

A.  Fuzzy Validity Measures 
The previous cluster validity measures are good for the 

evaluation of crisp clustering results. There are several 
validity indices based on fuzzy approach. In the literature two 
categories of fuzzy validity indices are discussed. The first 
category uses only the membership values µij, of a fuzzy 
partition of data. The second involves both the fuzzy partition 
matrix and the dataset itself. 

For the evaluation of the result of fuzzy clustering Bezdek 
proposed the use of partition coefficient [4]. This measure is 
defined in the following way: 

 ∑∑
N c

2
ij

i=1 j=1

1
PC = µ

N
, (4) 

where N denotes the number of data points, and c is the 
number of clusters. The value of the PC index is in the range 
of [1/ c, 1]. PC values closer to 1/c indicate no clustering 
tendency in the considered dataset or the clustering algorithm 
failed to reveal it. The drawbacks of this index are: i) 
monotonous dependency on the number of clusters; ii) it is 
sensitive to the fuzzifier parameter (m). If m→1 the index give 
the same values for all values of c. On the other hand when 
m→∞ PC exhibits significant knee at c=2.; iii) the lack of 
direct connection to the geometry of the data, since they do 
not use the data themselves. 

There is an extension of Fukuyama-Sugeno index, which 
involves the membership values and also the dataset. In this 
form the Fukuyama-Sugeno index is defined as 

 ⎡ ⎤
⎢ ⎥⎣ ⎦∑∑

N c 2 2m
ij i j j

i=1 j=1
mFS = µ - --x v v v , (5) 

where v is the mean vector of the objects, and vj is the mean 
vector of the j-th cluster. It is clear that for compact and well-
separated clusters we expect small values for FSm. The first 
term in brackets measures the compactness of the clusters 
while the second one measures the distances of the cluster 
representatives. 

Other fuzzy validity indices are proposed by Gath and Geva 
[8], which are based on the concepts of hyper volume and 
density. Let Σj the fuzzy covariance matrix of the j-th cluster 
defined as 

 ∑
∑

∑

x v x v
N

m
ij i j i j

i=1
j N

m
ik

i=1

T(µ ) ( - )( - )

(µ )
= , (6) 

where vj denotes the mean vector of Cj.  
The fuzzy hyper volume of j-th cluster is given by equation 
 1/2

j jV = det( )∑  (7) 

Then the total fuzzy hyper volume is defined as 

 ∑
c

j
j=1

FH = V  (8) 

The resulting clusters can be compared to each other on the 
basis of their volume. Very bad clusters with large volumes 
can be further partitioned, so the number of clusters can be 
recursively increased. The procedure can be repeated until 
there are bad clusters. 

Since in this paper the MST will be used for the 
initialization of GG clustering, the splitting criterion based on 
the fuzzy hyper volume will be used as the third criterion of 
the MST based clustering algorithm. In the following the 
whole algorithm will be described. 

 

B.  The Hybrid MST-GG Clustering Algorithm 
STEP 0 Perform the classical MST-based clustering based 

on Criterion-1 and Criterion-2. This step detects the 
well separated clusters and separates clusters with 
significantly different densities. 

STEP 1 Binary Splitting. At the sub-cluster with the largest 
volume Vi in the so-far formed hierarchical tree, each 
of the edges in the corresponding sub-MST is cut. With 
each cut a binary split of the objects is formed. If the 
current sub-MST includes Ni objects then Ni-1 such 
splits are formed. The two sub-clusters, formed by the 
binary split, plus the clusters formed so far (excluding 
the current node) compose a potential partition. 

STEP 2 Best split. The hyper volumes (FH) of all formed Ni-
1 potential partitions are computed. The one that 
exhibits the lowest FH is selected as the best partition 
of the objects in the current sub-MST. (Criterion-3). 

STEP 3 Iteration and Termination criterion. Following a 
depth-first tree-growing process, steps 1 and 2 are 
iteratively performed. The final outcome is a 
hierarchical clustering tree where the termination nodes 
are the final clusters. Special parameters control the 
generalization level of the hierarchical clustering tree 
(e.g., minimum number of objects in each sub-cluster). 

STEP 4 When the compact parametric representation of the 
result of the clustering is needed, the GG clustering is 
performed, where the number of the Gaussians is equal 
to the termination nodes, and the iterative algorithm is 
initialized based on the partition obtained at the 
previous step. 

 

C.  Analysis of the Clustering Results 
The previously introduced hybrid MST-GG clustering 

algorithm results a dendrogram, including different possible 
clustering outcomes. Choosing the best consequence from 
these embedded results, we must define the term of the best 
clustering result. In our approach we construct this concept on 
the following tree criteria: i) goodness of a particular cluster; 
ii) goodness of the separation; iii) goodness of the whole 
clustering result. The second criterion refers to the cluster 
separation. In the Step 3 of the hybrid MST-GG a binary 
splitting is executed. This means an elimination of an edge 
from the minimal spanning tree. Let eij be the selected edge 
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with the end points xi and xj, and the produced clusters Ca and 
Cb. We can say that this edge was selected adequate, if in the 
recomputed fuzzy partition matrix the object xi belongs more 
to the partition say Ca and less to the partition Cb. Similarly 
the same must hold for xj, the other way around. The cluster 
separation in the l-th iteration step with the use of the values 
of the fuzzy partition matrix formally can be expressed in the 
following way: 

 ∑ (l) (l)
ij ki kj

k=a,b
CP(e ) µ - µ=  (9) 

Values of CP(eij)→2 denotes an excellent cluster separations. 
The last evaluation criterion takes the goodness of the result 

into consideration. The result of clustering shows suitable 
partitions, if objects belong with high probability to own 
cluster. The expression (5) can be used for the evaluation of 
the considered result. 

In this work, the visualization of fuzzy clustering is also in 
focus. In the first step after clustering, there is a need to 
determine how similar the resulted clusters are. For that 
purpose, a fuzzy set similarity measure can be used because 
fuzzy clusters can be seen as fuzzy sets. The similarity of two 
sets, A and B can be expressed as follows:  

BA
BAS B,A ∪

∩
=             (10) 

In case of the analysis of fuzzy clusters as multivariate fuzzy 
sets, the min and max operators can be used as set operators 
intersection and union. 

( )

( )∑

∑

=

=

µµ

µµ

= N

1k
j,ki,k

N

1k
j,ki,k

j,i

,max

,min
S        (11) 

 In this way, all clusters can be compared to each other. 
Based on the obtained symmetric similarity matrix, 
dendrogram can be drawn to visualize and hierarchically 
cluster the fuzzy clusters (an example can be seen in Fig. 4). 
Using this diagram, the human “data miner” can get a 
conception how similar the clusters are in the original space 
and are able to determine which clusters should be merged if it 
is needed. 

IV. APPLICATION EXAMPLES 
In this section we present the results obtained on the 

clustering of some illustrative datasets. 
 
A.  Handling the Chaining Effect 
The first example is intended to illustrate that the proposed 

cluster volume based splitting extension of the basic MST 
based clustering algorithm is able to handle (avoid) the 
chaining phenomena. For this toy example the classical MST 
based algorithm detects only two clusters. With the use of the 
volume-based partitioning criterion, the first cluster has been 
splitted (Fig. 1).  
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Fig. 2 Minimal spanning tree resulted by the proposed algorithm 
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Fig. 3 Result of MST-GG algorithm  
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Fig. 4 Similarity of clusters resulted by MST-GG algorithm 
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Fig. 5 Result of GG algorithm initialized from FCM 
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Fig. 6 Cluster similarity resulted by GG algorithm initialized by 

FCM 
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B.  Handling the Convex Shapes of Clusters – Effect of the 
Initialization 

The previous short example illustrated the main benefit of 
the incorporation of the cluster validity based criterion into the 
classical MST based clustering algorithm. In the following it 
will be shown how the resulted nonparametric clusters can be 
approximated by mixture of Gaussians, and how this approach 
is beneficial for the initialization of these iterative partitional 
algorithms. 

Let us consider a more complex clustering problem with 
convex shape of clusters. As Fig. 2 shows, the proposed MST 
based clustering algorithm is able to detect properly cluster of 
these data. The partitioning of the clusters has not been 
stopped at the detection of the well separated clusters but the 
resulting clusters have been further splitted to get clusters with 
small volumes. The main benefit of the resulted partitioning is 
that it can be easily approximated by mixture of multivariate 
Gaussians (ellipsoids). This approximation is useful since the 
obtained Gaussians give a compact and parametric description 
of the clusters, and the result of the clustering is soft (fuzzy). 
Fig. 3 shows the results of the clustering we obtained after 
performing the iteration steps of the Gaussian mixtures based 
EM algorithm given in [8]. In this figure the dots represent the 
data points and the 'o' markers are the cluster centers. The 
membership values are also shown, since the curves represent 
the isosurfaces of the membership values that are inversely 
proportional to the distances. As can be seen, the clusters 
provide an excellent description of the distribution of the data. 
The clusters with complex shape are approximated by a set of 
ellipsoids. It is interesting to note, that this clustering step only 
slightly modifies the placement of the clusters. In order to 
demonstrate the effectiveness of the proposed initialization 
scheme, Fig. 5 illustrates the result of the Gaussian mixture 
based clustering, where the clustering was initialized by the 
classical fuzzy c-means (FCM) algorithm. As can be seen, this 
widely applied approach failed to find the proper clustering of 
the data set, only a sub-optimal solution has been found. The 
difference between these two approaches can be seen in the 
dendrograms as well (Fig. 4 and Fig. 5). 

V.   CONCLUSION 
The best-known graph-theoretic divisive clustering 

algorithm is based on construction of the minimal spanning 
tree (MST). This paper presented a new splitting criterion to 
improve the performance of this MST based clustering 
algorithm based on the calculation of the hyper volume of the 
clusters that are approximated by a multivariate Gaussian 
functions. The result of this clustering can be effectively used 
for the initialization of Gaussian mixture model based (Gath-
Geva) clustering algorithms. Illustrative clustering results 
showed the advantages of the proposed hybridization of the 
hierarchical graph-theoretic and partitional model based 
clustering algorithm. The chaining effect of the MST and the 
sensitivity to the initialization of the Gath-Geva clustering 
algorithms have been properly handled, and the resulted 
clusters are easily interpretable since the compact parametric 

description of the multivariate Gaussian clusters (fuzzy 
covariance matrices).  The resulted fuzzy clusters can be 
effectively analyzed based on the proposed similarity 
criterion. The proposed MST-GG algorithm has been 
implemented in MATLAB, and it is downloadable from the 
website of the authors: www.fmt.vein.hu/softcomp. 
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