Search results for: Earthquake early warning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 941

Search results for: Earthquake early warning

701 Performance Analysis of Ferrocement Retrofitted Masonry Wall Units under Cyclic Loading

Authors: Raquib Ahsan, Md. Mahir Asif, Md. Zahidul Alam

Abstract:

A huge portion of old masonry buildings in Bangladesh are vulnerable to earthquake. In most of the cases these buildings contain unreinforced masonry wall which are most likely to be subjected to earthquake damages. Due to deterioration of mortar joint and aging, shear resistance of these unreinforced masonry walls dwindle. So, retrofitting of these old buildings has become an important issue. Among many researched and experimented techniques, ferrocement retrofitting can be a low cost technique in context of the economic condition of Bangladesh. This study aims at investigating the behavior of ferrocement retrofitted unconfined URM walls under different types of cyclic loading. Four 725 mm × 725 mm masonry wall units were prepared with bricks jointed by stretcher bond with 12.5 mm mortar between two adjacent layers of bricks. To compare the effectiveness of ferrocement retrofitting a particular type wire mesh was used in this experiment which is 20 gauge woven wire mesh with 12.5 mm × 12.5 mm square opening. After retrofitting with ferrocement these wall units were tested by applying cyclic deformation along the diagonals of the specimens. Then a comparative study was performed between the retrofitted specimens and control specimens for both partially reversed cyclic load condition and cyclic compression load condition. The experiment results show that ultimate load carrying capacities of ferrocement retrofitted specimens are 35% and 27% greater than the control specimen under partially reversed cyclic loading and cyclic compression respectively. And before failure the deformations of ferrocement retrofitted specimens are 43% and 33% greater than the control specimen under reversed cyclic loading and cyclic compression respectively. Therefore, the test results show that the ultimate load carrying capacity and ductility of ferrocement retrofitted specimens have improved.

Keywords: Cyclic compression, ferrocement, masonry wall, partially reversed cyclic load, retrofitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 921
700 Experimental Investigation on the Effect of Bond Thickness on the Interface Behaviour of Fibre Reinforced Polymer Sheet Bonded to Timber

Authors: Abbas Vahedian, Rijun Shrestha, Keith Crews

Abstract:

The bond mechanism between timber and fibre reinforced polymer (FRP) is relatively complex and is influenced by a number of variables including bond thickness, bond width, bond length, material properties, and geometries. This study investigates the influence of bond thickness on the behaviour of interface, failure mode, and bond strength of externally bonded FRP-to-timber interface. In the present study, 106 single shear joint specimens have been investigated. Experiment results showed that higher layers of FRP increase the ultimate load carrying capacity of interface; conversely, such increase led to decrease the slip of interface. Moreover, samples with more layers of FRPs may fail in a brittle manner without noticeable warning that collapse is imminent.

Keywords: FRP, single shear test, bond thickness, bond strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756
699 An Approach Based on Statistics and Multi-Resolution Representation to Classify Mammograms

Authors: Nebi Gedik

Abstract:

One of the significant and continual public health problems in the world is breast cancer. Early detection is very important to fight the disease, and mammography has been one of the most common and reliable methods to detect the disease in the early stages. However, it is a difficult task, and computer-aided diagnosis (CAD) systems are needed to assist radiologists in providing both accurate and uniform evaluation for mass in mammograms. In this study, a multiresolution statistical method to classify mammograms as normal and abnormal in digitized mammograms is used to construct a CAD system. The mammogram images are represented by wave atom transform, and this representation is made by certain groups of coefficients, independently. The CAD system is designed by calculating some statistical features using each group of coefficients. The classification is performed by using support vector machine (SVM).

Keywords: Wave atom transform, statistical features, multi-resolution representation, mammogram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882
698 High-Intensity Nanosecond Pulsed Electric Field effects on Early Physiological Development in Arabidopsis thaliana

Authors: Wisuwat Songnuan, Phumin Kirawanich

Abstract:

The influences of pulsed electric fields on early physiological development in Arabidopsis thaliana were studied. Inside a 4-mm electroporation cuvette, pre-germination seeds were subjected to high-intensity, nanosecond electrical pulses generated using laboratory-assembled pulsed electric field system. The field strength was varied from 5 to 20 kV.cm-1 and the pulse width and the pulse number were maintained at 10 ns and 100, respectively, corresponding to the specific treatment energy from 300 J.kg-1 to 4.5 kJ.kg-1. Statistical analyses on the average leaf area 5 and 15 days following pulsed electric field treatment showed that the effects appear significant the second week after treatments with a maximum increase of 80% compared to the control (P < 0.01).

Keywords: Arabidopsis thaliana, full-wave analysis, leaf area, high-intensity nanosecond pulsed electric fields

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192
697 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers

Authors: Helen Zhang

Abstract:

Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogenous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.

Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 287
696 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms

Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary

Abstract:

Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.

Keywords: ADHD, autism, epilepsy, EEG, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 997
695 Java Based Automatic Curriculum Generator for Children with Trisomy 21

Authors: E. Supriyanto, S. C. Seow

Abstract:

Early Intervention Program (EIP) is required to improve the overall development of children with Trisomy 21 (Down syndrome). In order to help trainer and parent in the implementation of EIP, a support system has been developed. The support system is able to screen data automatically, store and analyze data, generate individual EIP (curriculum) with optimal training duration and to generate training automatically. The system consists of hardware and software where the software has been implemented using Java language and Linux Fedora. The software has been tested to ensure the functionality and reliability. The prototype has been also tested in Down syndrome centers. Test result shows that the system is reliable to be used for generation of an individual curriculum which includes the training program to improve the motor, cognitive, and combination abilities of Down syndrome children under 6 years.

Keywords: Early intervention program (curriculum), Trisomy21, support system, Java.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
694 Transcriptomics Analysis on Comparing Non-Small Cell Lung Cancer versus Normal Lung, and Early Stage Compared versus Late-Stages of Non-Small Cell Lung Cancer

Authors: Achitphol Chookaew, Paramee Thongsukhsai, Patamarerk Engsontia, Narongwit Nakwan, Pritsana Raugrut

Abstract:

Lung cancer is one of the most common malignancies and primary cause of death due to cancer worldwide. Non-small cell lung cancer (NSCLC) is the main subtype in which majority of patients present with advanced-stage disease. Herein, we analyzed differentially expressed genes to find potential biomarkers for lung cancer diagnosis as well as prognostic markers. We used transcriptome data from our 2 NSCLC patients and public data (GSE81089) composing of 8 NSCLC and 10 normal lung tissues. Differentially expressed genes (DEGs) between NSCLC and normal tissue and between early-stage and late-stage NSCLC were analyzed by the DESeq2. Pairwise correlation was used to find the DEGs with false discovery rate (FDR) adjusted p-value £ 0.05 and |log2 fold change| ³ 4 for NSCLC versus normal and FDR adjusted p-value £ 0.05 with |log2 fold change| ³ 2 for early versus late-stage NSCLC. Bioinformatic tools were used for functional and pathway analysis. Moreover, the top ten genes in each comparison group were verified the expression and survival analysis via GEPIA. We found 150 up-regulated and 45 down-regulated genes in NSCLC compared to normal tissues. Many immnunoglobulin-related genes e.g., IGHV4-4, IGHV5-10-1, IGHV4-31, IGHV4-61, and IGHV1-69D were significantly up-regulated. 22 genes were up-regulated, and five genes were down-regulated in late-stage compared to early-stage NSCLC. The top five DEGs genes were KRT6B, SPRR1A, KRT13, KRT6A and KRT5. Keratin 6B (KRT6B) was the most significantly increased gene in the late-stage NSCLC. From GEPIA analysis, we concluded that IGHV4-31 and IGKV1-9 might be used as diagnostic biomarkers, while KRT6B and KRT6A might be used as prognostic biomarkers. However, further clinical validation is needed.

Keywords: Bioinformatics, differentially expressed genes, non-small cell lung cancer, transcriptomics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
693 Evaluation of Two Earliness Cotton Genotypes in Three Ecological Regions

Authors: Gholamhossein Hosseini

Abstract:

Two earliness cotton genotypes I and II, which had been developed by hybridization and backcross methods between sindise-80 as an early maturing gene parent and two other lines i.e. Red leaf and Bulgare-557 as a second parent, are subjected to different environmental conditions. The early maturing genotypes with coded names of I and II were compared with four native cotton cultivars in randomized complete block design (RCBD) with four replications in three ecological regions of Iran from 2016-2017. Two early maturing genotypes along with four native cultivars viz. Varamin, Oltan, Sahel and Arya were planted in Agricultural Research Station of Varamin, Moghan and Kashmar for evaluation. Earliness data were collected for six treatments during two years in the three regions except missing data for the second year of Kashmar. Therefore, missed data were estimated and imputed. For testing the homogeneity of error variances, each experiment at a given location or year is analyzed separately using Hartley and Bartlett’s Chi-square tests and both tests confirmed homogeneity of variance. Combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects were compared with Duncan’s multiple range tests. Finally combined analysis of variance showed that genotypes I and II were superior in Varamin, Moghan and Kashmar regions. Earliness means and their interaction effects are compared with Duncan’s multiple range tests.

Keywords: Cotton, combined, analysis, earliness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 571
692 BIP-Based Alarm Declaration and Clearing in SONET Networks Employing Automatic Protection Switching

Authors: Vitalice K. Oduol, C. Ardil

Abstract:

The paper examines the performance of bit-interleaved parity (BIP) methods in error rate monitoring, and in declaration and clearing of alarms in those transport networks that employ automatic protection switching (APS). The BIP-based error rate monitoring is attractive for its simplicity and ease of implementation. The BIP-based results are compared with exact results and are found to declare the alarms too late, and to clear the alarms too early. It is concluded that the standards development and systems implementation should take into account the fact of early clearing and late declaration of alarms. The window parameters defining the detection and clearing thresholds should be set so as to build sufficient hysteresis into the system to ensure that BIP-based implementations yield acceptable performance results.

Keywords: Automatic protection switching, bit interleaved parity, excessive bit error rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
691 Effects of Drought on Yield and Some Yield Components of Chickpea

Authors: E. Ceyhan, M. Önder, A. Kahraman, R. Topak, M.K. Ateş, S. Karadas, M.A. Avcı

Abstract:

This research was conducted to determine responses of chickpeas to drought in different periods (early period, late period, no-irrigation, two times irrigation as control). The trial was made in “Randomized Complete Block Design" with three replications on 2010 and 2011 years in Konya-Turkey. Genotypes were consisted from 7 lines of ICARDA, 2 certified lines and 1 local population. The results showed that; as means of years and genotypes, early period stress showed highest (207.47 kg da-1) seed yield and it was followed by control (202.33 kg da-1), late period (144.64 kg da-1) and normal (106.93 kg da-1) stress applications. The genotypes were affected too much by drought and, the lowest seed was taken from non-irrigated plots. As the means of years and stress applications, the highest (196.01 kg da-1) yield was taken from genotype 22255. The reason of yield variation could be derived from different responses of genotypes to drought.

Keywords: Chickpea, drought, seed yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1959
690 Evolving Digital Circuits for Early Stage Breast Cancer Detection Using Cartesian Genetic Programming

Authors: Zahra Khalid, Gul Muhammad Khan, Arbab Masood Ahmad

Abstract:

Cartesian Genetic Programming (CGP) is explored to design an optimal circuit capable of early stage breast cancer detection. CGP is used to evolve simple multiplexer circuits for detection of malignancy in the Fine Needle Aspiration (FNA) samples of breast. The data set used is extracted from Wisconsins Breast Cancer Database (WBCD). A range of experiments were performed, each with different set of network parameters. The best evolved network detected malignancy with an accuracy of 99.14%, which is higher than that produced with most of the contemporary non-linear techniques that are computational expensive than the proposed system. The evolved network comprises of simple multiplexers and can be implemented easily in hardware without any further complications or inaccuracy, being the digital circuit.

Keywords: Breast cancer detection, cartesian genetic programming, evolvable hardware, fine needle aspiration (FNA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 816
689 From Micro to Nanosystems: An Exploratory Study of Influences on Innovation Teams

Authors: Norbert Burger, Thorsten Staake

Abstract:

What influences microsystems (MEMS) and nanosystems (NEMS) innovation teams apart from technology complexity? Based on in-depth interviews with innovators, this research explores the key influences on innovation teams in the early phases of MEMS/NEMS. Projects are rare and may last from 5 to 10 years or more from idea to concept. As fundamental technology development in MEMS/NEMS is highly complex and interdisciplinary by involving expertise from different basic and engineering disciplines, R&D is rather a 'testing of ideas' with many uncertainties than a clearly structured process. The purpose of this study is to explore the innovation teams- environment and give specific insights for future management practices. The findings are grouped into three major areas: people, know-how and experience, and market. The results highlight the importance and differences of innovation teams- composition, transdisciplinary knowledge, project evaluation and management compared to the counterparts from new product development teams.

Keywords: Innovation teams, early phases, Microsystems, Nanosystems, technology developments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
688 Fast and Robust Long-term Tracking with Effective Searching Model

Authors: Thang V. Kieu, Long P. Nguyen

Abstract:

Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.

Keywords: Correlation filter, long-term tracking, random fern, real-time tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
687 Bluetooth Piconet System for Child Care Applications

Authors: Ching-Sung Wang, Teng-Wei Wang, Zhen-Ting Zheng

Abstract:

This study mainly concerns a safety device designed for child care. When children are out of sight or the caregivers cannot always pay attention to the situation, through the functions of this device, caregivers can immediately be informed to make sure that the children do not get lost or hurt, and thus, ensure their safety. Starting from this concept, a device is produced based on the relatively low-cost Bluetooth piconet system and a three-axis gyroscope sensor. This device can transmit data to a mobile phone app through Bluetooth, in order that the user can learn the situation at any time. By simply clipping the device in a pocket or on the waist, after switching on/starting the device, it will send data to the phone to detect the child’s fall and distance. Once the child is beyond the angle or distance set by the app, it will issue a warning to inform the phone owner.

Keywords: Children care, piconet system, three-axis gyroscope, distance detection, falls detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
686 Data-Driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: Startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
685 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme Gradient Boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impairment, multiclass classification, ADNI, support vector machine, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
684 A Computer Model of Language Acquisition – Syllable Learning – Based on Hebbian Cell Assemblies and Reinforcement Learning

Authors: Sepideh Fazeli, Fariba Bahrami

Abstract:

Investigating language acquisition is one of the most challenging problems in the area of studying language. Syllable learning as a level of language acquisition has a considerable significance since it plays an important role in language acquisition. Because of impossibility of studying language acquisition directly with children, especially in its developmental phases, computer models will be useful in examining language acquisition. In this paper a computer model of early language learning for syllable learning is proposed. It is guided by a conceptual model of syllable learning which is named Directions Into Velocities of Articulators model (DIVA). The computer model uses simple associational and reinforcement learning rules within neural network architecture which are inspired by neuroscience. Our simulation results verify the ability of the proposed computer model in producing phonemes during babbling and early speech. Also, it provides a framework for examining the neural basis of language learning and communication disorders.

Keywords: Brain modeling, computer models, language acquisition, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
683 A Comprehensive Key Performance Indicators Dashboard for Emergency Medical Services

Authors: G. Feletti, D. Tedesco, P. Trucco

Abstract:

The present study aims to develop a dashboard of Key Performance Indicators (KPI) to enhance information and predictive capabilities in Emergency Medical Services (EMS) systems, supporting both operational and strategic decisions of different actors. The employed research methodology consists of a first phase of revision of the technical-scientific literature concerning the indicators currently in use for the performance measurement of EMS. It emerges that current studies focus on two distinct areas and independent objectives: the ambulance service, a fundamental component of pre-hospital health treatment, and the patient care in the Emergency Department (ED). Conversely, the perspective proposed by this study is to consider an integrated view of the ambulance service process and the ED process, both essential to ensure high quality of care and patient safety. Thus, the proposal covers the end-to-end healthcare service process and, as such, allows considering the interconnection between the two EMS processes, the pre-hospital and hospital ones, connected by the assignment of the patient to a specific ED. In this way, it is possible to optimize the entire patient management. Therefore, attention is paid even to EMS aspects that in current literature tend to be neglected or underestimated. In particular, the integration of the two processes enables to evaluate the advantage of an ED selection decision having visibility on EDs’ saturation status and therefore considering, besides the distance, the available resources and the expected waiting times. Starting from a critical review of the KPIs proposed in extant literature, the design of the dashboard was carried out: the high number of analyzed KPIs was reduced by eliminating firstly the ones not in line with the aim of the study and then the ones supporting a similar functionality. The KPIs finally selected were tested on a realistic dataset, which draw us to exclude additional indicators due to unavailability of data required for their computation. The final dashboard, that was discussed and validated by experts in the field, includes a variety of KPIs able to support operational and planning decisions, early warning, and citizens’ awareness on EDs accessibility in real time. The association of each KPI to the EMS phase it refers to enabled the design of a well-balanced dashboard, covering both efficiency and effectiveness performance objectives of the entire EMS process. Indeed, just the initial phases related to the interconnection between ambulance service and patient care are covered by traditional KPIs. Future developments could be directed to building a hierarchical dashboard, composed by a high-level minimal set of KPIs for measuring the basic performance of the EMS system, at an aggregate level, and lower levels of KPIs that bring additional and more detailed information on specific performance dimensions or EMS phases.

Keywords: Emergency Medical Services, Key Performance Indicators, Dashboard, Decision Support.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 472
682 Salinity on Survival and Early Development of Biofuel Feedstock Crops

Authors: Vincent M. Russo

Abstract:

Salinity level may affect early development of biofuel feedstock crops. The biofuel feedstock crops canola (Brassica napus L.), sorghum [Sorghum bicolor (L.) Moench], and sunflower (Helianthus annuus L.); and the potential feedstock crop sweet corn (Zea mays L.) were planted in media in pots and treated with aqueous solutions of 0, 0.1, 0.5 and 1.0 M NaCl once at: 1) planting; 2) 7-10 days after planting or 3) first true leaf expansion. An additional treatment (4) comprised of one-half strength of the 0.1, 0.5 and 1.0 M (concentrations 0.05, 0.25, 0.5 M at each application) was applied at first true leaf expansion and four days later. Survival of most crops decreased below 90% above 0.5 M; survival of canola decreased above 0.1 M. Application timing had little effect on crop survival. For canola root fresh and dry weights improved when application was at plant emergence; for sorghum top and root fresh weights improved when the split application was used. When application was at planting root dry weight was improved over most other applications. Sunflower top fresh weight was among the highest when saline solutions were split and top dry weight was among the highest when application was at plant emergence. Sweet corn root fresh weight was improved when the split application was used or application was at planting. Sweet corn root dry weight was highest when application was at planting or plant emergence. Even at high salinity rates survival rates greater than what might be expected occurred. Plants that survived appear to be able to adjust to saline during the early stages of development.

Keywords: Canola, Development, Sorghum, Sunflower, Sweetcorn, Survival

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
681 Use of Locomotor Activity of Rainbow Trout Juveniles in Identifying Sublethal Concentrations of Landfill Leachate

Authors: Tomas Makaras, Gintaras Svecevičius

Abstract:

Landfill waste is a common problem as it has an economic and environmental impact even if it is closed. Landfill waste contains a high density of various persistent compounds such as heavy metals, organic and inorganic materials. As persistent compounds are slowly-degradable or even non-degradable in the environment, they often produce sublethal or even lethal effects on aquatic organisms. The aims of the present study were to estimate sublethal effects of the Kairiai landfill (WGS: 55°55‘46.74“, 23°23‘28.4“) leachate on the locomotor activity of rainbow trout Oncorhynchus mykiss juveniles using the original system package developed in our laboratory for automated monitoring, recording and analysis of aquatic organisms’ activity, and to determine patterns of fish behavioral response to sublethal effects of leachate. Four different concentrations of leachate were chosen: 0.125; 0.25; 0.5 and 1.0 mL/L (0.0025; 0.005; 0.01 and 0.002 as part of 96-hour LC50, respectively). Locomotor activity was measured after 5, 10 and 30 minutes of exposure during 1-minute test-periods of each fish (7 fish per treatment). The threshold-effect-concentration amounted to 0.18 mL/L (0.0036 parts of 96-hour LC50). This concentration was found to be even 2.8-fold lower than the concentration generally assumed to be “safe” for fish. At higher concentrations, the landfill leachate solution elicited behavioral response of test fish to sublethal levels of pollutants. The ability of the rainbow trout to detect and avoid contaminants occurred after 5 minutes of exposure. The intensity of locomotor activity reached a peak within 10 minutes, evidently decreasing after 30 minutes. This could be explained by the physiological and biochemical adaptation of fish to altered environmental conditions. It has been established that the locomotor activity of juvenile trout depends on leachate concentration and exposure duration. Modeling of these parameters showed that the activity of juveniles increased at higher leachate concentrations, but slightly decreased with the increasing exposure duration. Experiment results confirm that the behavior of rainbow trout juveniles is a sensitive and rapid biomarker that can be used in combination with the system for fish behavior monitoring, registration and analysis to determine sublethal concentrations of pollutants in ambient water. Further research should be focused on software improvement aimed to include more parameters of aquatic organisms’ behavior and to investigate the most rapid and appropriate behavioral responses in different species. In practice, this study could be the basis for the development and creation of biological early-warning systems (BEWS).

Keywords: Fish behavior biomarker, landfill leachate, locomotor activity, rainbow trout juveniles, sublethal effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
680 Optical Road Monitoring of the Future Smart Roads – Preliminary Results

Authors: Maria Jokela, Matti Kutila, Jukka Laitinen, Florian Ahlers, Nicolas Hautière, TobiasSchendzielorz

Abstract:

It has been shown that in most accidents the driver is responsible due to being distracted or misjudging the situation. In order to solve such problems research has been dedicated to developing driver assistance systems that are able to monitor the traffic situation around the vehicle. This paper presents methods for recognizing several circumstances on a road. The methods use both the in-vehicle warning systems and the roadside infrastructure. Preliminary evaluation results for fog and ice-on-road detection are presented. The ice detection results are based on data recorded in a test track dedicated to tyre friction testing. The achieved results anticipate that ice detection could work at a performance of 70% detection with the right setup, which is a good foundation for implementation. However, the full benefit of the presented cooperative system is achieved by fusing the outputs of multiple data sources, which is the key point of discussion behind this publication.

Keywords: Smart roads, traffic monitoring, traffic scenedetection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627
679 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models

Authors: [email protected]

Abstract:

Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data need a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM), ensemble learning with hyper parameters optimization, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.

Keywords: Machine learning, Deep learning, cancer prediction, breast cancer, LSTM, Score-Level Fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 401
678 The Design of Picture Books for Children from Tales of Amphawa Fireflies

Authors: Marut Pichetvit

Abstract:

The research objective aims to search information about storytelling and fable associated with fireflies in Amphawa community, in order to design and create a story book which is appropriate for the interests of children in early childhood. This book should help building the development of learning about the natural environment, imagination, and creativity among children, which then, brings about the promotion of the development, conservation and dissemination of cultural values and uniqueness of the Amphawa community. The population used in this study were 30 students in early childhood aged between 6-8 years-old, grade 1-3 from the Demonstration School of Suan Sunandha Rajabhat University. The method used for this study was purposive sampling and the research conducted by the query and analysis of data from both the document and the narrative field tales and fable associated with the fireflies of Amphawa community. Then, using the results to synthesize and create a conceptual design in a form of 8 visual images which were later applied to 1 illustrated children’s book and presented to the experts to evaluate and test this media.

Keywords: Children’s illustrated book, Fireflies, Amphawa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
677 Synergy in Vertical Transformations of Expert Designers

Authors: G. Haupt

Abstract:

Existing literature ondesign reasoning seems to give either one sided accounts on expert design behaviour based on internal processing. In the same way ecological theoriesseem to focus one sidedly on external elementsthat result in a lack of unifying design cognition theory. Although current extended design cognition studies acknowledge the intellectual interaction between internal and external resources, there still seems to be insufficient understanding of the complexities involved in such interactive processes. As such,this paper proposes a novelmulti-directional model for design researchers tomap the complex and dynamic conduct controlling behaviour in which both the computational and ecological perspectives are integrated in a vertical manner. A clear distinction between identified intentional and emerging physical drivers, and relationships between them during the early phases of experts- design process, is demonstrated by presenting a case study in which the model was employed.

Keywords: External representation, early phases, extended design cognition, internal processes and external drivers, conduct controlling behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
676 Assessment of Landslide Volume for Alishan Highway Based On Database of Rainfall-Induced Slope Failure

Authors: Yun-Yao Chi, Ya-Fen Lee

Abstract:

In this paper, a study of slope failures along the Alishan Highway is carried out. An innovative empirical model is developed based on 15-year records of rainfall-induced slope failures. The statistical models are intended for assessing the volume of landslide for slope failure along the Alishan Highway in the future. The rainfall data considered in the proposed models include the effective cumulative rainfall and the critical rainfall intensity. The effective cumulative rainfall is defined at the point when the curve of cumulative rainfall goes from steep to flat. Then, the rainfall thresholds of landslide are established for assessing the volume of landslide and issuing warning and/or closure for the Alishan Highway during a future extreme rainfall. Slope failures during Typhoon Saola in 2012 demonstrate that the new empirical model is effective and applicable to other cases with similar rainfall conditions.

Keywords: Slope failure, landslide, volume, model, rainfall thresholds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772
675 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework

Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin

Abstract:

During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.

Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
674 A Background Subtraction Based Moving Object Detection around the Host Vehicle

Authors: Hyojin Lim, Cuong Nguyen Khac, Ho-Youl Jung

Abstract:

In this paper, we propose moving object detection method which is helpful for driver to safely take his/her car out of parking lot. When moving objects such as motorbikes, pedestrians, the other cars and some obstacles are detected at the rear-side of host vehicle, the proposed algorithm can provide to driver warning. We assume that the host vehicle is just before departure. Gaussian Mixture Model (GMM) based background subtraction is basically applied. Pre-processing such as smoothing and post-processing as morphological filtering are added. We examine “which color space has better performance for detection of moving objects?” Three color spaces including RGB, YCbCr, and Y are applied and compared, in terms of detection rate. Through simulation, we prove that RGB space is more suitable for moving object detection based on background subtraction.

Keywords: Gaussian mixture model, background subtraction, Moving object detection, color space, morphological filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556
673 Quantitative Indicator of Abdominal Aortic Aneurysm Rupture Risk Based on its Geometric Parameters

Authors: Guillermo Vilalta, Félix Nieto, Carlos Vaquero, José A. Vilalta

Abstract:

Abdominal aortic aneurysms rupture (AAAs) is one of the main causes of death in the world. This is a very complex phenomenon that usually occurs “without previous warning". Currently, criteria to assess the aneurysm rupture risk (peak diameter and growth rate) can not be considered as reliable indicators. In a first approach, the main geometric parameters of aneurysms have been linked into five biomechanical factors. These are combined to obtain a dimensionless rupture risk index, RI(t), which has been validated preliminarily with a clinical case and others from literature. This quantitative indicator is easy to understand, it allows estimating the aneurysms rupture risks and it is expected to be able to identify the one in aneurysm whose peak diameter is less than the threshold value. Based on initial results, a broader study has begun with twelve patients from the Clinic Hospital of Valladolid-Spain, which are submitted to periodic follow-up examinations.

Keywords: AAA, rupture risk prediction, biomechanical factors, AAA geometric characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531
672 A Taxonomy Proposal on Criterion Structure for Evaluating Freight Village Concepts in Early-Stage Design Projects

Authors: Rıza Gürhan Korkut, Metin Çelik, Süleyman Özkaynak

Abstract:

The early-stage design and development projects for the freight village initiatives require a comprehensive analysis of both qualitative and quantitative data. Considering the literature review on structural and operational management requirements, this study proposed an original taxonomy on criterion structure to assess freight village conceptualization. The potential challenges and uncertainties of the developed taxonomy are extended. Besides requirement analysis, this study is also expected to contribute to forthcoming research on benchmarking of freight villages in different regions. The methodology used in this research is a systematic review on several articles as per their modelling approaches, sustainability, entities and decisions made together with the uncertainties and features of their models taken into consideration. The major findings of the study that are the categories for assessing the projects attributes on their environmental, socio-economical, accessibility and location aspects.

Keywords: Freight village, logistics centers, operational management, taxonomy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 829