Search results for: Brain Drain
40 Investigation on Performance of Change Point Algorithm in Time Series Dynamical Regimes and Effect of Data Characteristics
Authors: Farhad Asadi, Mohammad Javad Mollakazemi
Abstract:
In this paper, Bayesian online inference in models of data series are constructed by change-points algorithm, which separated the observed time series into independent series and study the change and variation of the regime of the data with related statistical characteristics. variation of statistical characteristics of time series data often represent separated phenomena in the some dynamical system, like a change in state of brain dynamical reflected in EEG signal data measurement or a change in important regime of data in many dynamical system. In this paper, prediction algorithm for studying change point location in some time series data is simulated. It is verified that pattern of proposed distribution of data has important factor on simpler and smother fluctuation of hazard rate parameter and also for better identification of change point locations. Finally, the conditions of how the time series distribution effect on factors in this approach are explained and validated with different time series databases for some dynamical system.
Keywords: Time series, fluctuation in statistical characteristics, optimal learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181139 Designing a Football Team of Robots from Beginning to End
Authors: Maziar A. Sharbafi, Caro Lucas, Aida Mohammadinejad, Mostafa Yaghobi
Abstract:
The Combination of path planning and path following is the main purpose of this paper. This paper describes the developed practical approach to motion control of the MRL small size robots. An intelligent controller is applied to control omni-directional robots motion in simulation and real environment respectively. The Brain Emotional Learning Based Intelligent Controller (BELBIC), based on LQR control is adopted for the omni-directional robots. The contribution of BELBIC in improving the control system performance is shown as application of the emotional learning in a real world problem. Optimizing of the control effort can be achieved in this method too. Next the implicit communication method is used to determine the high level strategies and coordination of the robots. Some simple rules besides using the environment as a memory to improve the coordination between agents make the robots' decision making system. With this simple algorithm our team manifests a desirable cooperation.
Keywords: multi-agent systems (MAS), Emotional learning, MIMO system, BELBIC, LQR, Communication via environment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 185238 Handwriting Velocity Modeling by Artificial Neural Networks
Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb
Abstract:
The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.
Keywords: ElectroMyoGraphic (EMG) signals, Experimental approach, Handwriting process, Radial Basis Functions (RBF) neural networks, Velocity Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231337 Machine Learning Approach for Identifying Dementia from MRI Images
Authors: S. K. Aruna, S. Chitra
Abstract:
This research paper presents a framework for classifying Magnetic Resonance Imaging (MRI) images for Dementia. Dementia, an age-related cognitive decline is indicated by degeneration of cortical and sub-cortical structures. Characterizing morphological changes helps understand disease development and contributes to early prediction and prevention of the disease. Modelling, that captures the brain’s structural variability and which is valid in disease classification and interpretation is very challenging. Features are extracted using Gabor filter with 0, 30, 60, 90 orientations and Gray Level Co-occurrence Matrix (GLCM). It is proposed to normalize and fuse the features. Independent Component Analysis (ICA) selects features. Support Vector Machine (SVM) classifier with different kernels is evaluated, for efficiency to classify dementia. This study evaluates the presented framework using MRI images from OASIS dataset for identifying dementia. Results showed that the proposed feature fusion classifier achieves higher classification accuracy.
Keywords: Magnetic resonance imaging, dementia, Gabor filter, gray level co-occurrence matrix, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 211336 Predicting the Three Major Dimensions of the Learner-s Emotions from Brainwaves
Authors: Alicia Heraz, Claude Frasson
Abstract:
This paper investigates how the use of machine learning techniques can significantly predict the three major dimensions of learner-s emotions (pleasure, arousal and dominance) from brainwaves. This study has adopted an experimentation in which participants were exposed to a set of pictures from the International Affective Picture System (IAPS) while their electrical brain activity was recorded with an electroencephalogram (EEG). The pictures were already rated in a previous study via the affective rating system Self-Assessment Manikin (SAM) to assess the three dimensions of pleasure, arousal, and dominance. For each picture, we took the mean of these values for all subjects used in this previous study and associated them to the recorded brainwaves of the participants in our study. Correlation and regression analyses confirmed the hypothesis that brainwave measures could significantly predict emotional dimensions. This can be very useful in the case of impassive, taciturn or disabled learners. Standard classification techniques were used to assess the reliability of the automatic detection of learners- three major dimensions from the brainwaves. We discuss the results and the pertinence of such a method to assess learner-s emotions and integrate it into a brainwavesensing Intelligent Tutoring System.
Keywords: Algorithms, brainwaves, emotional dimensions, performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220235 Hippocampus Segmentation using a Local Prior Model on its Boundary
Authors: Dimitrios Zarpalas, Anastasios Zafeiropoulos, Petros Daras, Nicos Maglaveras
Abstract:
Segmentation techniques based on Active Contour Models have been strongly benefited from the use of prior information during their evolution. Shape prior information is captured from a training set and is introduced in the optimization procedure to restrict the evolution into allowable shapes. In this way, the evolution converges onto regions even with weak boundaries. Although significant effort has been devoted on different ways of capturing and analyzing prior information, very little thought has been devoted on the way of combining image information with prior information. This paper focuses on a more natural way of incorporating the prior information in the level set framework. For proof of concept the method is applied on hippocampus segmentation in T1-MR images. Hippocampus segmentation is a very challenging task, due to the multivariate surrounding region and the missing boundary with the neighboring amygdala, whose intensities are identical. The proposed method, mimics the human segmentation way and thus shows enhancements in the segmentation accuracy.Keywords: Medical imaging & processing, Brain MRI segmentation, hippocampus segmentation, hippocampus-amygdala missingboundary, weak boundary segmentation, region based segmentation, prior information, local weighting scheme in level sets, spatialdistribution of labels, gradient distribution on boundary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175134 Removing Ocular Artifacts from EEG Signals using Adaptive Filtering and ARMAX Modeling
Authors: Parisa Shooshtari, Gelareh Mohamadi, Behnam Molaee Ardekani, Mohammad Bagher Shamsollahi
Abstract:
EEG signal is one of the oldest measures of brain activity that has been used vastly for clinical diagnoses and biomedical researches. However, EEG signals are highly contaminated with various artifacts, both from the subject and from equipment interferences. Among these various kinds of artifacts, ocular noise is the most important one. Since many applications such as BCI require online and real-time processing of EEG signal, it is ideal if the removal of artifacts is performed in an online fashion. Recently, some methods for online ocular artifact removing have been proposed. One of these methods is ARMAX modeling of EEG signal. This method assumes that the recorded EEG signal is a combination of EOG artifacts and the background EEG. Then the background EEG is estimated via estimation of ARMAX parameters. The other recently proposed method is based on adaptive filtering. This method uses EOG signal as the reference input and subtracts EOG artifacts from recorded EEG signals. In this paper we investigate the efficiency of each method for removing of EOG artifacts. A comparison is made between these two methods. Our undertaken conclusion from this comparison is that adaptive filtering method has better results compared with the results achieved by ARMAX modeling.Keywords: Ocular Artifacts, EEG, Adaptive Filtering, ARMAX
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190233 A Survey on Early Screen Exposure during Infancy and Autism
Authors: I. Mahmood
Abstract:
This survey was conducted to explore the hypothesis that excessive screen exposure combined with a subsequent decrease in parent-child interaction during infancy might be associated with autism. The main questions being asked are: Were children with autism exposed to long hours of screen time during the first 2 years of life? And what was the reason(s) for exposure at such an early age? Other variables were also addressed in this survey. An Arabic questionnaire was administered online (June 2019) via a Facebook page, relatively well-known in Arab countries. 1725 parents of children diagnosed with autism participated in this survey. Results show that 80.9% of children surveyed who were diagnosed with autism had been exposed to screens for long periods of time during the first 2 years of life. It can be inferred from the results of this survey that over-exposure to screens disrupt the parent-child interaction which is shown to be associated with ASD. The results of this survey highlight the harmful effects of screen exposure during infancy and the importance of parent-child interaction during the critical period of brain development. This paper attempts to further explore the connection between parent-child interaction and ASD, as well as serve as a call for further research and investigation of the relation between screens and parent-child interactions during infancy and Autism.
Keywords: Attachment disorder, autism, screen exposure, virtual autism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81632 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study
Authors: Si Mon Kueh, Tom J. Kazmierski
Abstract:
There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.Keywords: Artificial Neural Networks, bit-serial neural processor, FPGA, Neural Processing Element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157131 Application of Mutual Information based Least dependent Component Analysis (MILCA) for Removal of Ocular Artifacts from Electroencephalogram
Authors: V Krishnaveni, S Jayaraman, K Ramadoss
Abstract:
The electrical potentials generated during eye movements and blinks are one of the main sources of artifacts in Electroencephalogram (EEG) recording and can propagate much across the scalp, masking and distorting brain signals. In recent times, signal separation algorithms are used widely for removing artifacts from the observed EEG data. In this paper, a recently introduced signal separation algorithm Mutual Information based Least dependent Component Analysis (MILCA) is employed to separate ocular artifacts from EEG. The aim of MILCA is to minimize the Mutual Information (MI) between the independent components (estimated sources) under a pure rotation. Performance of this algorithm is compared with eleven popular algorithms (Infomax, Extended Infomax, Fast ICA, SOBI, TDSEP, JADE, OGWE, MS-ICA, SHIBBS, Kernel-ICA, and RADICAL) for the actual independence and uniqueness of the estimated source components obtained for different sets of EEG data with ocular artifacts by using a reliable MI Estimator. Results show that MILCA is best in separating the ocular artifacts and EEG and is recommended for further analysis.
Keywords: Electroencephalogram, Ocular Artifacts (OA), Independent Component Analysis (ICA), Mutual Information (MI), Mutual Information based Least dependent Component Analysis(MILCA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219230 Designing a Patient Monitoring System Using Cloud and Semantic Web Technologies
Authors: Chryssa Thermolia, Ekaterini S. Bei, Stelios Sotiriadis, Kostas Stravoskoufos, Euripides G.M. Petrakis
Abstract:
Moving into a new era of healthcare, new tools and devices are developed to extend and improve health services, such as remote patient monitoring and risk prevention. In this concept, Internet of Things (IoT) and Cloud Computing present great advantages by providing remote and efficient services, as well as cooperation between patients, clinicians, researchers and other health professionals. This paper focuses on patients suffering from bipolar disorder, a brain disorder that belongs to a group of conditions called affective disorders, which is characterized by great mood swings. We exploit the advantages of Semantic Web and Cloud Technologies to develop a patient monitoring system to support clinicians. Based on intelligently filtering of evidence-knowledge and individual-specific information we aim to provide treatment notifications and recommended function tests at appropriate times or concluding into alerts for serious mood changes and patient’s nonresponse to treatment. We propose an architecture as the back-end part of a cloud platform for IoT, intertwining intelligence devices with patients’ daily routine and clinicians’ support.
Keywords: Bipolar disorder, intelligent systems patient monitoring, semantic web technologies, IoT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244029 An Investigation into Kanji Character Discrimination Process from EEG Signals
Authors: Hiroshi Abe, Minoru Nakayama
Abstract:
The frontal area in the brain is known to be involved in behavioral judgement. Because a Kanji character can be discriminated visually and linguistically from other characters, in Kanji character discrimination, we hypothesized that frontal event-related potential (ERP) waveforms reflect two discrimination processes in separate time periods: one based on visual analysis and the other based on lexcical access. To examine this hypothesis, we recorded ERPs while performing a Kanji lexical decision task. In this task, either a known Kanji character, an unknown Kanji character or a symbol was presented and the subject had to report if the presented character was a known Kanji character for the subject or not. The same response was required for unknown Kanji trials and symbol trials. As a preprocessing of signals, we examined the performance of a method using independent component analysis for artifact rejection and found it was effective. Therefore we used it. In the ERP results, there were two time periods in which the frontal ERP wavefoms were significantly different betweeen the unknown Kanji trials and the symbol trials: around 170ms and around 300ms after stimulus onset. This result supported our hypothesis. In addition, the result suggests that Kanji character lexical access may be fully completed by around 260ms after stimulus onset.Keywords: Character discrimination, Event-related Potential, IndependentComponent Analysis, Kanji, Lexical access.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178328 Artificial Neurons Based on Memristors for Spiking Neural Networks
Authors: Yan Yu, Wang Yu, Chen Xintong, Liu Yi, Zhang Yanzhong, Wang Yanji, Chen Xingyu, Zhang Miaocheng, Tong Yi
Abstract:
Neuromorphic computing based on spiking neural networks (SNNs) has emerged as a promising avenue for building the next generation of intelligent computing systems. Owing to their high-density integration, low power, and outstanding nonlinearity, memristors have attracted emerging attention on achieving SNNs. However, fabricating a low-power and robust memristor-based spiking neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a TiO2-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, used to realize single layer fully connected (FC) SNNs. Moreover, our TiO2-based resistive switching (RS) memristors realize spiking-time-dependent-plasticity (STDP), originating from the Ag diffusion-based filamentary mechanism. This work demonstrates that TiO2-based memristors may provide an efficient method to construct hardware neuromorphic computing systems.
Keywords: Leaky integrate-and-fire, memristor, spiking neural networks, spiking-time-dependent-plasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68927 Energy Management System and Interactive Functions of Smart Plug for Smart Home
Authors: Win Thandar Soe, Innocent Mpawenimana, Mathieu Di Fazio, Cécile Belleudy, Aung Ze Ya
Abstract:
Intelligent electronic equipment and automation network is the brain of high-tech energy management systems in critical role of smart homes dominance. Smart home is a technology integration for greater comfort, autonomy, reduced cost, and energy saving as well. These services can be provided to home owners for managing their home appliances locally or remotely and consequently allow them to automate intelligently and responsibly their consumption by individual or collective control systems. In this study, three smart plugs are described and one of them tested on typical household appliances. This article proposes to collect the data from the wireless technology and to extract some smart data for energy management system. This smart data is to quantify for three kinds of load: intermittent load, phantom load and continuous load. Phantom load is a waste power that is one of unnoticed power of each appliance while connected or disconnected to the main. Intermittent load and continuous load take in to consideration the power and using time of home appliances. By analysing the classification of loads, this smart data will be provided to reduce the communication of wireless sensor network for energy management system.Keywords: Energy management, load profile, smart plug, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139626 Simple Agents Benefit Only from Simple Brains
Authors: Valeri A. Makarov, Nazareth P. Castellanos, Manuel G. Velarde
Abstract:
In order to answer the general question: “What does a simple agent with a limited life-time require for constructing a useful representation of the environment?" we propose a robot platform including the simplest probabilistic sensory and motor layers. Then we use the platform as a test-bed for evaluation of the navigational capabilities of the robot with different “brains". We claim that a protocognitive behavior is not a consequence of highly sophisticated sensory–motor organs but instead emerges through an increment of the internal complexity and reutilization of the minimal sensory information. We show that the most fundamental robot element, the short-time memory, is essential in obstacle avoidance. However, in the simplest conditions of no obstacles the straightforward memoryless robot is usually superior. We also demonstrate how a low level action planning, involving essentially nonlinear dynamics, provides a considerable gain to the robot performance dynamically changing the robot strategy. Still, however, for very short life time the brainless robot is superior. Accordingly we suggest that small organisms (or agents) with short life-time does not require complex brains and even can benefit from simple brain-like (reflex) structures. To some extend this may mean that controlling blocks of modern robots are too complicated comparative to their life-time and mechanical abilities.
Keywords: Neural network, probabilistic control, robot navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142925 Automatic Sleep Stage Scoring with Wavelet Packets Based on Single EEG Recording
Authors: Luay A. Fraiwan, Natheer Y. Khaswaneh, Khaldon Y. Lweesy
Abstract:
Sleep stage scoring is the process of classifying the stage of the sleep in which the subject is in. Sleep is classified into two states based on the constellation of physiological parameters. The two states are the non-rapid eye movement (NREM) and the rapid eye movement (REM). The NREM sleep is also classified into four stages (1-4). These states and the state wakefulness are distinguished from each other based on the brain activity. In this work, a classification method for automated sleep stage scoring based on a single EEG recording using wavelet packet decomposition was implemented. Thirty two ploysomnographic recording from the MIT-BIH database were used for training and validation of the proposed method. A single EEG recording was extracted and smoothed using Savitzky-Golay filter. Wavelet packets decomposition up to the fourth level based on 20th order Daubechies filter was used to extract features from the EEG signal. A features vector of 54 features was formed. It was reduced to a size of 25 using the gain ratio method and fed into a classifier of regression trees. The regression trees were trained using 67% of the records available. The records for training were selected based on cross validation of the records. The remaining of the records was used for testing the classifier. The overall correct rate of the proposed method was found to be around 75%, which is acceptable compared to the techniques in the literature.Keywords: Features selection, regression trees, sleep stagescoring, wavelet packets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232824 Tele-Operated Anthropomorphic Arm and Hand Design
Authors: Namal A. Senanayake, Khoo B. How, Quah W. Wai
Abstract:
In this project, a tele-operated anthropomorphic robotic arm and hand is designed and built as a versatile robotic arm system. The robot has the ability to manipulate objects such as pick and place operations. It is also able to function by itself, in standalone mode. Firstly, the robotic arm is built in order to interface with a personal computer via a serial servo controller circuit board. The circuit board enables user to completely control the robotic arm and moreover, enables feedbacks from user. The control circuit board uses a powerful integrated microcontroller, a PIC (Programmable Interface Controller). The PIC is firstly programmed using BASIC (Beginner-s All-purpose Symbolic Instruction Code) and it is used as the 'brain' of the robot. In addition a user friendly Graphical User Interface (GUI) is developed as the serial servo interface software using Microsoft-s Visual Basic 6. The second part of the project is to use speech recognition control on the robotic arm. A speech recognition circuit board is constructed with onboard components such as PIC and other integrated circuits. It replaces the computers- Graphical User Interface. The robotic arm is able to receive instructions as spoken commands through a microphone and perform operations with respect to the commands such as picking and placing operations.Keywords: Tele-operated Anthropomorphic Robotic Arm and Hand, Robot Motion System, Serial Servo Controller, Speech Recognition Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176523 Using Emotional Learning in Rescue Simulation Environment
Authors: Maziar Ahmad Sharbafi, Caro Lucas, Abolfazel Toroghi Haghighat, Omid AmirGhiasvand, Omid Aghazade
Abstract:
RoboCup Rescue simulation as a large-scale Multi agent system (MAS) is one of the challenging environments for keeping coordination between agents to achieve the objectives despite sensing and communication limitations. The dynamicity of the environment and intensive dependency between actions of different kinds of agents make the problem more complex. This point encouraged us to use learning-based methods to adapt our decision making to different situations. Our approach is utilizing reinforcement leaning. Using learning in rescue simulation is one of the current ways which has been the subject of several researches in recent years. In this paper we present an innovative learning method implemented for Police Force (PF) Agent. This method can cope with the main difficulties that exist in other learning approaches. Different methods used in the literature have been examined. Their drawbacks and possible improvements have led us to the method proposed in this paper which is fast and accurate. The Brain Emotional Learning Based Intelligent Controller (BELBIC) is our solution for learning in this environment. BELBIC is a physiologically motivated approach based on a computational model of amygdale and limbic system. The paper presents the results obtained by the proposed approach, showing the power of BELBIC as a decision making tool in complex and dynamic situation.Keywords: Emotional learning, rescue, simulation environment, RoboCup, multi-agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161922 Saliva Cortisol and Yawning as a Predictor of Neurological Disease
Authors: Simon B. N. Thompson
Abstract:
Cortisol is important to our immune system, regulates our stress response, and is a factor in maintaining brain temperature. Saliva cortisol is a practical and useful non-invasive measurement that signifies the presence of the important hormone. Electrical activity in the jaw muscles typically rises when the muscles are moved during yawning and the electrical level is found to be correlated with the cortisol level. In two studies using identical paradigms, a total of 108 healthy subjects were exposed to yawning-provoking stimuli so that their cortisol levels and electrical nerve impulses from their jaw muscles was recorded. Electrical activity is highly correlated with cortisol levels in healthy people. The Hospital Anxiety and Depression Scale, Yawning Susceptibility Scale, General Health Questionnaire, demographic, health details were collected and exclusion criteria applied for voluntary recruitment: chronic fatigue, diabetes, fibromyalgia, heart condition, high blood pressure, hormone replacement therapy, multiple sclerosis, and stroke. Significant differences were found between the saliva cortisol samples for the yawners as compared with the non-yawners between rest and post-stimuli. Significant evidence supports the Thompson Cortisol Hypothesis that suggests rises in cortisol levels are associated with yawning. Ethics approval granted and professional code of conduct, confidentiality, and safety issues are approved therein.
Keywords: Cortisol, Diagnosis, Neurological Disease, Thompson Cortisol Hypothesis, Yawning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 154821 Electroencephalography Activity during Sensory Organization Balance Test
Authors: Tariq Ali Gujar, Anita Hökelmann
Abstract:
Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.
Keywords: Balance, electroencephalography activity, somatosensory, visual, vestibular.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60820 Neurological Manifestations in Patients with HIV Infection in the Era of Combined Antiretroviral Therapy
Authors: Sharan Badiger, Prema T. Akkasaligar, Deepak Kadeli, M. Vishok
Abstract:
Neurological disorders are the most debilitating of manifestations seen in patients infected with HIV. The clinical profile of neurological manifestations in HIV patients has undergone a shift in recent years with opportunistic infections being controlled with combination anti-retroviral therapy and the advent of drugs which have higher central nervous system penetrability. The aim of this paper is to study the clinical, investigation profile and various neurological disorders in HIV patients on anti‐retroviral therapy. Fifty HIV patients with neurological manifestations were studied. A complete neurological examination including neurocognitive functioning using Montreal Cognitive Assessment and HIV Dementia scale were assessed. Apart from relevant investigations, CD4 count, cerebrovascular fluid analysis, computed tomography (CT) and magnetic resonance imaging (MRI) of brain were done whenever required. Neurocognitive disorders formed the largest group with 42% suffering from HIV associated Neurocognitive Disorders. Among them, asymptomatic neurocognitive impairment was seen in 28%; mild neurocognitive disorder in 12%, and 2% had HIV‐associated dementia. Opportunistic infections of the nervous system accounted for 32%, with meningitis being the most common. Four patients had space occupying lesions of central nervous system; four tuberculomas, and one toxoplasmosis. With the advent of highly active retroviral therapy, HIV patients have longer life spans with suppression of viral load leading to decrease in opportunistic infections of the nervous system. Neurocognitive disorders are now the most common neurological dysfunction seen and thus neurocognitive assessment must be done in all patients with HIV.
Keywords: Anti retroviral therapy, cognitive dysfunction, dementia, neurological manifestations, opportunistic infections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166719 Permeable Asphalt Pavement as a Measure of Urban Green Infrastructure in the Extreme Events Mitigation
Authors: Márcia Afonso, Cristina Fael, Marisa Dinis-Almeida
Abstract:
Population growth in cities has led to an increase in the infrastructures construction, including buildings and roadways. This aspect leads directly to the soils waterproofing. In turn, changes in precipitation patterns are developing into higher and more frequent intensities. Thus, these two conjugated aspects decrease the rainwater infiltration into soils and increase the volume of surface runoff. The practice of green and sustainable urban solutions has encouraged research in these areas. The porous asphalt pavement, as a green infrastructure, is part of practical solutions set to address urban challenges related to land use and adaptation to climate change. In this field, permeable pavements with porous asphalt mixtures (PA) have several advantages in terms of reducing the runoff generated by the floods. The porous structure of these pavements, compared to a conventional asphalt pavement, allows the rainwater infiltration in the subsoil, and consequently, the water quality improvement. This green infrastructure solution can be applied in cities, particularly in streets or parking lots to mitigate the floods effects. Over the years, the pores of these pavements can be filled by sediment, reducing their function in the rainwater infiltration. Thus, double layer porous asphalt (DLPA) was developed to mitigate the clogging effect and facilitate the water infiltration into the lower layers. This study intends to deepen the knowledge of the performance of DLPA when subjected to clogging. The experimental methodology consisted on four evaluation phases of the DLPA infiltration capacity submitted to three precipitation events (100, 200 and 300 mm/h) in each phase. The evaluation first phase determined the behavior after DLPA construction. In phases two and three, two 500 g/m2 clogging cycles were performed, totaling a 1000 g/m2 final simulation. Sand with gradation accented in fine particles was used as clogging material. In the last phase, the DLPA was subjected to simple sweeping and vacuuming maintenance. A precipitation simulator, type sprinkler, capable of simulating the real precipitation was developed for this purpose. The main conclusions show that the DLPA has the capacity to drain the water, even after two clogging cycles. The infiltration results of flows lead to an efficient performance of the DPLA in the surface runoff attenuation, since this was not observed in any of the evaluation phases, even at intensities of 200 and 300 mm/h, simulating intense precipitation events. The infiltration capacity under clogging conditions decreased about 7% on average in the three intensities relative to the initial performance that is after construction. However, this was restored when subjected to simple maintenance, recovering the DLPA hydraulic functionality. In summary, the study proved the efficacy of using a DLPA when it retains thicker surface sediments and limits the fine sediments entry to the remaining layers. At the same time, it is guaranteed the rainwater infiltration and the surface runoff reduction and is therefore a viable solution to put into practice in permeable pavements.
Keywords: Clogging, double layer porous asphalt, infiltration capacity, rainfall intensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96318 Detection of Action Potentials in the Presence of Noise Using Phase-Space Techniques
Authors: Christopher Paterson, Richard Curry, Alan Purvis, Simon Johnson
Abstract:
Emerging Bio-engineering fields such as Brain Computer Interfaces, neuroprothesis devices and modeling and simulation of neural networks have led to increased research activity in algorithms for the detection, isolation and classification of Action Potentials (AP) from noisy data trains. Current techniques in the field of 'unsupervised no-prior knowledge' biosignal processing include energy operators, wavelet detection and adaptive thresholding. These tend to bias towards larger AP waveforms, AP may be missed due to deviations in spike shape and frequency and correlated noise spectrums can cause false detection. Also, such algorithms tend to suffer from large computational expense. A new signal detection technique based upon the ideas of phasespace diagrams and trajectories is proposed based upon the use of a delayed copy of the AP to highlight discontinuities relative to background noise. This idea has been used to create algorithms that are computationally inexpensive and address the above problems. Distinct AP have been picked out and manually classified from real physiological data recorded from a cockroach. To facilitate testing of the new technique, an Auto Regressive Moving Average (ARMA) noise model has been constructed bases upon background noise of the recordings. Along with the AP classification means this model enables generation of realistic neuronal data sets at arbitrary signal to noise ratio (SNR).Keywords: Action potential detection, Low SNR, Phase spacediagrams/trajectories, Unsupervised/no-prior knowledge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164217 Performance Analysis of Reconstruction Algorithms in Diffuse Optical Tomography
Authors: K. Uma Maheswari, S. Sathiyamoorthy, G. Lakshmi
Abstract:
Diffuse Optical Tomography (DOT) is a non-invasive imaging modality used in clinical diagnosis for earlier detection of carcinoma cells in brain tissue. It is a form of optical tomography which produces gives the reconstructed image of a human soft tissue with by using near-infra-red light. It comprises of two steps called forward model and inverse model. The forward model provides the light propagation in a biological medium. The inverse model uses the scattered light to collect the optical parameters of human tissue. DOT suffers from severe ill-posedness due to its incomplete measurement data. So the accurate analysis of this modality is very complicated. To overcome this problem, optical properties of the soft tissue such as absorption coefficient, scattering coefficient, optical flux are processed by the standard regularization technique called Levenberg - Marquardt regularization. The reconstruction algorithms such as Split Bregman and Gradient projection for sparse reconstruction (GPSR) methods are used to reconstruct the image of a human soft tissue for tumour detection. Among these algorithms, Split Bregman method provides better performance than GPSR algorithm. The parameters such as signal to noise ratio (SNR), contrast to noise ratio (CNR), relative error (RE) and CPU time for reconstructing images are analyzed to get a better performance.
Keywords: Diffuse optical tomography, ill-posedness, Levenberg Marquardt method, Split Bregman, the Gradient projection for sparse reconstruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161716 Memristor-A Promising Candidate for Neural Circuits in Neuromorphic Computing Systems
Authors: Juhi Faridi, Mohd. Ajmal Kafeel
Abstract:
The advancements in the field of Artificial Intelligence (AI) and technology has led to an evolution of an intelligent era. Neural networks, having the computational power and learning ability similar to the brain is one of the key AI technologies. Neuromorphic computing system (NCS) consists of the synaptic device, neuronal circuit, and neuromorphic architecture. Memristor are a promising candidate for neuromorphic computing systems, but when it comes to neuromorphic computing, the conductance behavior of the synaptic memristor or neuronal memristor needs to be studied thoroughly in order to fathom the neuroscience or computer science. Furthermore, there is a need of more simulation work for utilizing the existing device properties and providing guidance to the development of future devices for different performance requirements. Hence, development of NCS needs more simulation work to make use of existing device properties. This work aims to provide an insight to build neuronal circuits using memristors to achieve a Memristor based NCS. Here we throw a light on the research conducted in the field of memristors for building analog and digital circuits in order to motivate the research in the field of NCS by building memristor based neural circuits for advanced AI applications. This literature is a step in the direction where we describe the various Key findings about memristors and its analog and digital circuits implemented over the years which can be further utilized in implementing the neuronal circuits in the NCS. This work aims to help the electronic circuit designers to understand how the research progressed in memristors and how these findings can be used in implementing the neuronal circuits meant for the recent progress in the NCS.
Keywords: Analog circuits, digital circuits, memristors, neuromorphic computing systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121315 User-Perceived Quality Factors for Certification Model of Web-Based System
Authors: Jamaiah H. Yahaya, Aziz Deraman, Abdul Razak Hamdan, Yusmadi Yah Jusoh
Abstract:
One of the most essential issues in software products is to maintain it relevancy to the dynamics of the user’s requirements and expectation. Many studies have been carried out in quality aspect of software products to overcome these problems. Previous software quality assessment models and metrics have been introduced with strengths and limitations. In order to enhance the assurance and buoyancy of the software products, certification models have been introduced and developed. From our previous experiences in certification exercises and case studies collaborating with several agencies in Malaysia, the requirements for user based software certification approach is identified and demanded. The emergence of social network applications, the new development approach such as agile method and other varieties of software in the market have led to the domination of users over the software. As software become more accessible to the public through internet applications, users are becoming more critical in the quality of the services provided by the software. There are several categories of users in web-based systems with different interests and perspectives. The classifications and metrics are identified through brain storming approach with includes researchers, users and experts in this area. The new paradigm in software quality assessment is the main focus in our research. This paper discusses the classifications of users in web-based software system assessment and their associated factors and metrics for quality measurement. The quality model is derived based on IEEE structure and FCM model. The developments are beneficial and valuable to overcome the constraints and improve the application of software certification model in future.
Keywords: Software certification model, user centric approach, software quality factors, metrics and measurements, web-based system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214714 Investigation of Possible Behavioural and Molecular Effects of Mobile Phone Exposure on Rats
Authors: Ç. Gökçek-Saraç, Ş. Özen, N. Derin
Abstract:
The N-methyl-D-aspartate (NMDA)-dependent pathway is the major intracellular signaling pathway implemented in both short- and long-term memory formation in the hippocampus which is the most studied brain structure because of its well documented role in learning and memory. However, little is known about the effects of RF-EMR exposure on NMDA receptor signaling pathway including activation of protein kinases, notably Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα). The aim of the present study was to investigate the effects of acute and chronic 900 MHz RF-EMR exposure on both passive avoidance behaviour and hippocampal levels of CaMKIIα and its phosphorylated form (pCaMKIIα). Rats were divided into the following groups: Sham rats, and rats exposed to 900 MHz RF-EMR for 2 h/day for 1 week (acute group) or 10 weeks (chronic group), respectively. Passive avoidance task was used as a behavioural method. The hippocampal levels of selected kinases were measured using Western Blotting technique. The results of passive avoidance task showed that both acute and chronic exposure to 900 MHz RF-EMR can impair passive avoidance behaviour with minor effects on chronic group of rats. The analysis of western blot data of selected protein kinases demonstrated that hippocampal levels of CaMKIIα and pCaMKIIα were significantly higher in chronic group of rats as compared to acute groups. Taken together, these findings demonstrated that different duration times (1 week vs 10 weeks) of 900 MHz RF-EMR exposure have different effects on both passive avoidance behaviour of rats and hippocampal levels of selected protein kinases.
Keywords: Hippocampus, protein kinase, rat, RF-EMR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86813 Potential Effects of Human Bone Marrow Non- Mesenchymal Mononuclear Cells on Neuronal Differentiation
Authors: Chareerut Phruksaniyom, Khwanthana Grataitong, Permphan Dharmasaroja, Surapol Issaragrisil
Abstract:
Bone marrow-derived stem cells have been widely studied as an alternative source of stem cells. Mesenchymal stem cells (MSCs) were mostly investigated and studies showed MSCs can promote neurogenesis. Little is known about the non-mesenchymal mononuclear cell fraction, which contains both hematopoietic and nonhematopoietic cells, including monocytes and endothelial progenitor cells. This study focused on unfractionated bone marrow mononuclear cells (BMMCs), which remained 72 h after MSCs were adhered to the culture plates. We showed that BMMC-conditioned medium promoted morphological changes of human SH-SY5Y neuroblastoma cells from an epithelial-like phenotype towards a neuron-like phenotype as indicated by an increase in neurite outgrowth, like those observed in retinoic acid (RA)-treated cells. The result could be explained by the effects of trophic factors released from BMMCs, as shown in the RT-PCR results that BMMCs expressed nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF). Similar results on the cell proliferation rate were also observed between RA-treated cells and cells cultured in BMMC-conditioned medium, suggesting that cells creased proliferating and differentiated into a neuronal phenotype. Using real-time RT-PCR, a significantly increased expression of tyrosine hydroxylase (TH) mRNA in SHSY5Y cells indicated that BMMC-conditioned medium induced catecholaminergic identities in differentiated SH-SY5Y cells.Keywords: bone marrow, neuronal differentiation, neurite outgrowth, trophic factor, tyrosine hydroxylase
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157012 A Neuroscience-Based Learning Technique: Framework and Application to STEM
Authors: Dante J. Dorantes-González, Aldrin Balsa-Yepes
Abstract:
Existing learning techniques such as problem-based learning, project-based learning, or case study learning are learning techniques that focus mainly on technical details, but give no specific guidelines on learner’s experience and emotional learning aspects such as arousal salience and valence, being emotional states important factors affecting engagement and retention. Some approaches involving emotion in educational settings, such as social and emotional learning, lack neuroscientific rigorousness and use of specific neurobiological mechanisms. On the other hand, neurobiology approaches lack educational applicability. And educational approaches mainly focus on cognitive aspects and disregard conditioning learning. First, authors start explaining the reasons why it is hard to learn thoughtfully, then they use the method of neurobiological mapping to track the main limbic system functions, such as the reward circuit, and its relations with perception, memories, motivations, sympathetic and parasympathetic reactions, and sensations, as well as the brain cortex. The authors conclude explaining the major finding: The mechanisms of nonconscious learning and the triggers that guarantee long-term memory potentiation. Afterward, the educational framework for practical application and the instructors’ guidelines are established. An implementation example in engineering education is given, namely, the study of tuned-mass dampers for earthquake oscillations attenuation in skyscrapers. This work represents an original learning technique based on nonconscious learning mechanisms to enhance long-term memories that complement existing cognitive learning methods.
Keywords: Emotion, emotion-enhanced memory, learning technique, STEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101311 Effect of Treadmill Exercise on Fluid Intelligence in Early Adults: Electroencephalogram Study
Authors: Ladda Leungratanamart, Seree Chadcham
Abstract:
Fluid intelligence declines along with age, but it can be developed. For this reason, increasing fluid intelligence in young adults can be possible. This study examined the effects of a two-month treadmill exercise program on fluid intelligence. The researcher designed a treadmill exercise program to promote cardiorespiratory fitness. Thirty-eight healthy voluntary students from the Boromarajonani College of Nursing, Chon Buri were assigned randomly to an exercise group (n=18) and a control group (n=20). The experiment consisted of three sessions: The baseline session consisted of measuring the VO2max, electroencephalogram and behavioral response during performed the Raven Progressive Matrices (RPM) test, a measure of fluid intelligence. For the exercise session, an experimental group exercises using treadmill training at 60 % to 80 % maximum heart rate for 30 mins, three times per week, whereas the control group did not exercise. For the following two sessions, each participant was measured the same as baseline testing. The data were analyzed using the t-test to examine whether there is significant difference between the means of the two groups. The results showed that the mean VO2 max in the experimental group were significantly more than the control group (p<.05), suggesting a two-month treadmill exercise program can improve fluid intelligence. When comparing the behavioral data, it was found that experimental group performed RPM test more accurately and faster than the control group. Neuroelectric data indicated a significant increase in percentages of alpha band ERD (%ERD) at P3 and Pz compared to the pre-exercise condition and the control group. These data suggest that a two-month treadmill exercise program can contribute to the development of cardiorespiratory fitness which influences an increase fluid intelligence. Exercise involved in cortical activation in difference brain areas.
Keywords: Treadmill exercise, fluid intelligence, raven progressive matrices test, %ERD of upper Alpha band.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443