
Abstract—EEG signal is one of the oldest measures of brain 

activity that has been used vastly for clinical diagnoses and 

biomedical researches. However, EEG signals are highly 

contaminated with various artifacts, both from the subject and from 

equipment interferences. Among these various kinds of artifacts, 

ocular noise is the most important one. Since many applications such 

as BCI require online and real-time processing of EEG signal, it is 

ideal if the removal of artifacts is performed in an online fashion. 

Recently, some methods for online ocular artifact removing have 

been proposed. One of these methods is ARMAX modeling of EEG 

signal. This method assumes that the recorded EEG signal is a 

combination of EOG artifacts and the background EEG. Then the 

background EEG is estimated via estimation of ARMAX parameters. 

The other recently proposed method is based on adaptive filtering. 

This method uses EOG signal as the reference input and subtracts 

EOG artifacts from recorded EEG signals. In this paper we 

investigate the efficiency of each method for removing of EOG 

artifacts. A comparison is made between these two methods. Our 

undertaken conclusion from this comparison is that adaptive filtering 

method has better results compared with the results achieved by 

ARMAX modeling. 

Keywords— Ocular Artifacts, EEG, Adaptive Filtering, 

ARMAX

I. INTRODUCTION

HE surface electroencephalogram (EEG) is the electrical 

activity of the brain obtained by scalp electrodes. When 

eyes move, the electrical field around them changes and 

produces an electrical signal known as EOG. As this signal 

propagates over the scalp, it appears on the recorded EEG as 

noise or artifacts that should be removed in order to cancel its   
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interpretation with background EEG. Because the magnitude 

of the EOG artifact is usually about the order of the amplitude 

of EEG signal, removing this artifact is one of the most 

important problems in studying the brain activities. 

Several regression-based techniques have been proposed to 

remove ocular artifacts (OAR) from EEG Signals. These 

methods include simple time-domain regression [8], multiple-

leg time-domain [9] and regression in the frequency domain 

[10]. In regression methods EEG and EOG must be 

uncorrelated, which is not the case in practice. On the other 

hand, in all these regression-based methods, calibration trials 

should be conducted at first to determine the transfer functions 

between each EOG and EEG channel.  

Independent Component Analysis (ICA) is the more recently 

proposed method which assumes that the potential on the 

scalp is a weighted sum of potentials in the source, so EOG 

and EEG signals can be separated by finding the independent 

sources of them in the brain [7]. However, this method cannot 

be applied online and it requires storing the data and off-line 

processing. 

Haas et al [2] suggested a general subtraction method, 

ARMAX, which is based on the assumption that the measured 

EEG is described as a linear combination of a background 

EEG and corrupting ocular artifacts that background EEG can 

be estimated by ARMAX method. 

He et al [1] suggested real-time removal of Ocular Artifacts 

using adaptive filtering. In this method, the primary input is 

the measured EEG and the reference input is the EOG signal. 

In this paper, we compare two newly proposed methods for 

ocular artifact removing, ARMAX modeling and adaptive 

filtering method. In next section we explain theoretical aspects 

of these two methods. Our experimental results are presented 

in section III and compared in section IV. Our finding is that 
adaptive filtering method has better results compared with those 

achieved by ARMAX.

II. METHODS

A. ARMAX Modeling Method 

Linear subtraction methods are based on the assumption that 

the measured EEG is described as a linear combination of 

underlying cortical activities and corrupting ocular artifacts. 

Equation (1) shows a typical variation of these kinds of 

models that relates the measured EEG, background EEG and 

ocular artifacts together:             
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Where )(ny  is the measured EEG, )(nui
denotes the (n – i)th

sample of the recorded EOG and )(nw  is the true background 

EEG. This model assumes that the background EEG is an 

uncorrelated white noise with zero mean and all frequencies 

of EOG channels have the same propagation characteristics. 

So, in order to relax these assumptions which are not 

completely true in general, the measured EEG is modeled as 

an ARMAX process described as: 
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Where ),,( rqp  is the model order. The Recursive Extended 

Least Squares estimator can be used to determine the 

coefficients of this model. Then the background EEG is 

estimated by using the previous and the present values of y

and u . Since the background EEG is assumed as a zero mean 

white noise, the criterion which is used to select the model 

order ),,( rqp  is to minimize the variance of the estimated 

background EEG, )(ˆ nw .

)3(||)(ˆ||),,(
0

n

nk
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However in order to prevent choosing unnecessary high 

orders, we add a cost function term to the above equation and 

try to minimize combined information criterion (CIC) [6]: 

)4()log()(),,(),,( 0nnrqprqprqpCIC n

where 
0n is a delay or starting time and is a scaling factor. 

B. Adaptive Filtering Method 

Figure1 illustrates the typical block diagram of an EOG 

noise canceller using adaptive filtering. The primary input to 

the system )(ns is modeled as a combination of background 

EEG )(nx  and the effect of EOG artifacts )(nz  on the EEG 

signal. Reference input to the system )(nr is the EOG signal 

picked up by an electrode. 

Fig. 1 EOG noise canceller system using adaptive filtering 

Reference input and the noise component of primary input 

are correlated in some unknown way. )(mh  represents a finite 

impulse response (FIR) filter of length M. Adjusting the 

coefficients of the filter, the noise canceller produces an 

output signal )(ne  which is an estimation of background EEG 

)(nx .     
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Here, we used Recursive Least-squared (RLS) algorithm to 

compute filter coefficients. It is mainly because of the stability 

and fast convergence of this method. In this approach, we 

have to minimize the following target function )(n :

)7()()1()()( 222 Menenen Mn

where 10  is the forgetting factor. 

Using equations (5)-(7) and setting zero the partial 

differentiation of )(n , results can be represented as the 

following matrix form: 
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From equations (9)-(11) we can show that: 
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Using the matrix inversion lemma [5], the following recursive 

formula can be obtained: 
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This formula is used to update filter coefficients. 

III. EXPERIMENTS

A. Applying ARMAX Modeling 

   All of our EEG and EOG data were obtained from online 

database provided in http://www.cs.colostate.edu/~anderson. 

EEG was recorded from six different sites on scalp: C3, C4, 

P3, P4, O1, and O2. Recording was performed with a bank of 

Grass 7P511 amplifiers whose band-pass analog filters were 

set at 0.1 to 100 Hz. EEG and EOG signals are recorded in a 

period of 10 seconds with a sampling frequency of 250 Hz.  

The ARMAX model was applied to each of these EEG 

channels. Figure 2 shows the results of applying ARMAX 

with order (1, 1, 1) and (10, 10, 10) to channel P4.  

)()()( nznxns

)(nr )(ˆ nr

)(ne
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Fig. 2 (A) Measured EOG. (B) Measured EEG at siteP4. (C) 

Background EEG obtained by using ARMAXwith order (1, 1, 1). (D) 

Background EEG obtained by using ARMAX with order (10,10,10). 

Fig. 3 The effect of model order on the noise variance. (A) Effect of 

p, r for q = 10. (B) Effect of p, q for r = 10. (C) Effect of q, r for  p = 

10. 

As it is depicted, the ARMAX with higher order has better 

results but increasing the model order does not enhance the 

performance after a certain model order. In lower order 

ARMAX method, we can see a negative spike on the 

background EEG just at the moment of EOG spike, but this 

spike is nearly disappeared when increasing the model order.  

In order to investigate on the effects that an ARMAX model 

order has on the performance of noise cancellation, we have 

plotted CIC value versus different p, q and r parameters in 

figure 3. In each plot, one parameter of model order is 

assumed to be constant, and the CIC value versus two other 

parameters is depicted. 

Lower noise correlation and variance are two signs of better 

system modeling, which are corresponded to lower CIC. As it 

is depicted in figure 3, increasing the model order will cause a 

rapid reduction in CIC information at lower model orders. 

However, after a certain model order, CIC information will be 

increased when the model order increases. This is due to the 

second term in equation (4) which is responsible for 

preventing the criteria from selecting unnecessary higher 

orders. 

It should be noted that regardless the parameter order, 

ARMAX method can not detect and correct the effects of 

early artifacts (under 350 samples or about 1.5 s). 

B. Applying Adaptive Filtering 

We have applied the same data as previous section to an 

adaptive filtering system. The results are shown in figure 4. 

The values of parameters  and M are chosen 1 and 6 

respectively.  

Fig. 4 (A) Measured EOG. (B) Measured EEG at site P4. (C) 

Background EEG obtained by using adaptive filtering with M = 6. 

As depicted in figure 4, adaptive filtering system can detect 

the artifacts happened in the early samples of the recorded 

signal (below 350 samples) and it can correct them. This is 

due to the fast convergence and adaptation of RLS algorithm 

used in this method. 

On the other hand, the implementation of adaptive filtering 

is simple and fast, and the results can be obtained without 

requiring complex calculations. However, the drawback of 

adaptive filtering method is that a negative spike is appeared 

in the background EEG just at the moment of EOG spike. 

IV. COMPARISION BETWEEN METHODS

The recorded EEG is a mixture of the background EEG and 

the EOG artifact, in a complicated unknown way, so there is 

no standard method which defines the exactly true background 

EEG and evaluates the performance of different ocular artifact 
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removal methods. The OAR evaluation methods which 

artificially mix a true noiseless EEG with a proportion of EOG 

signals and then try to remove the effect of noise from the 

mixed signal do not seem to be logical, because the real 

combination of EEG and ocular artifacts is unknown. 

However, performance evaluation of the OAR methods with 

visual inspection is often accepted.  

The two methods presented in this paper can be applied to 

remove EOG artifacts on-line, without requiring off-line 

analysis and data storing. It is ideal for real-time processing of 

EEG signals. However, the ARMAX modeling requires a 

priori knowledge about the recorded EEG signal to apply an 

appropriate model order. Estimation of the model order of 

ARMAX method using CIC information criterion requires a 

complicated optimization algorithm which needs extra time 

and calculations. Adaptive filtering method does not require 

any calibration trials [1], and its complexity is much less 

compared with ARMAX method. On the other hand, the 

convergence of adaptive filter is much faster than ARMAX 

method. This property is very important when ocular artifacts 

occur at early samples of the recorded signal. Fast response of 

adaptive filtering method provides an opportunity to remove 

early appeared artifacts but with ARMAX modeling it is not 

possible to do it. Figure 5 illustrates the effect of these two 

methods on removing early ocular artifacts. 

Fig. 5 Effect of noise canceller systems on early ocular artifacts. (A) 

ARMAX model (10, 10, 10). (B) Adaptive Filter with M = 6. 

As mentioned before, a small negative spike appears just at 

the time of blinking in the output of both adaptive filtering 

system and ARMAX model with low orders. Although this 

spike disappears with increasing in model order of ARMAX, 

higher orders of this method complicate the applied 

calculations, so for simple implementations of the systems, 

adaptive filtering method is preferred. 

Consequently, the important drawback of ARMAX model as 

against adaptive filtering method is its higher complexity, and 

the slower convergence, so for practical on-line experiments, 

adaptive filtering method has better results for removing 

ocular artifact . 

V. CONCLUSION

In this paper, we have applied two methods, adaptive 

filtering and ARMAX modeling, to remove ocular artifacts 

from EEG signals. Then we have compared the efficiency of 

these two methods. The results can be summarized as 

following: 

1. Both ARMAX and Adaptive Filtering methods can be 

applied on real-time data. 

2. In both methods, a negative spike appears just at the 

blinking time. Although this spike disappears in higher orders 

of ARMAX, it needs more complicated calculations.    

3. To have an appropriate performance for ARMAX, model 

order estimation is necessary that complicates the procedure, 

but adaptive filtering method does not need any calibration 

trial and parameter estimation. 

4.  Adaptive filtering method removes the effect of early 

ocular artifacts much better than ARMAX because of its fast 

convergence. 
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