Search results for: ARMAX
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: ARMAX

3 Removing Ocular Artifacts from EEG Signals using Adaptive Filtering and ARMAX Modeling

Authors: Parisa Shooshtari, Gelareh Mohamadi, Behnam Molaee Ardekani, Mohammad Bagher Shamsollahi

Abstract:

EEG signal is one of the oldest measures of brain activity that has been used vastly for clinical diagnoses and biomedical researches. However, EEG signals are highly contaminated with various artifacts, both from the subject and from equipment interferences. Among these various kinds of artifacts, ocular noise is the most important one. Since many applications such as BCI require online and real-time processing of EEG signal, it is ideal if the removal of artifacts is performed in an online fashion. Recently, some methods for online ocular artifact removing have been proposed. One of these methods is ARMAX modeling of EEG signal. This method assumes that the recorded EEG signal is a combination of EOG artifacts and the background EEG. Then the background EEG is estimated via estimation of ARMAX parameters. The other recently proposed method is based on adaptive filtering. This method uses EOG signal as the reference input and subtracts EOG artifacts from recorded EEG signals. In this paper we investigate the efficiency of each method for removing of EOG artifacts. A comparison is made between these two methods. Our undertaken conclusion from this comparison is that adaptive filtering method has better results compared with the results achieved by ARMAX modeling.

Keywords: Ocular Artifacts, EEG, Adaptive Filtering, ARMAX

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
2 Rail Degradation Modelling Using ARMAX: A Case Study Applied to Melbourne Tram System

Authors: M. Karimpour, N. Elkhoury, L. Hitihamillage, S. Moridpour, R. Hesami

Abstract:

There is a necessity among rail transportation authorities for a superior understanding of the rail track degradation overtime and the factors influencing rail degradation. They need an accurate technique to identify the time when rail tracks fail or need maintenance. In turn, this will help to increase the level of safety and comfort of the passengers and the vehicles as well as improve the cost effectiveness of maintenance activities. An accurate model can play a key role in prediction of the long-term behaviour of railroad tracks. An accurate model can decrease the cost of maintenance. In this research, the rail track degradation is predicted using an autoregressive moving average with exogenous input (ARMAX). An ARMAX has been implemented on Melbourne tram data to estimate the values for the tram track degradation. Gauge values and rail usage in Million Gross Tone (MGT) are the main parameters used in the model. The developed model can accurately predict the future status of the tram tracks.

Keywords: ARMAX, Dynamic systems, MGT, Prediction, Rail degradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1013
1 Linear Prediction System in Measuring Glucose Level in Blood

Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali

Abstract:

Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.

Keywords: Diabetes, glucose level, linear, near-infrared (NIR), non-invasive, prediction system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815