Search results for: Kanji
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Kanji

2 An Investigation into Kanji Character Discrimination Process from EEG Signals

Authors: Hiroshi Abe, Minoru Nakayama

Abstract:

The frontal area in the brain is known to be involved in behavioral judgement. Because a Kanji character can be discriminated visually and linguistically from other characters, in Kanji character discrimination, we hypothesized that frontal event-related potential (ERP) waveforms reflect two discrimination processes in separate time periods: one based on visual analysis and the other based on lexcical access. To examine this hypothesis, we recorded ERPs while performing a Kanji lexical decision task. In this task, either a known Kanji character, an unknown Kanji character or a symbol was presented and the subject had to report if the presented character was a known Kanji character for the subject or not. The same response was required for unknown Kanji trials and symbol trials. As a preprocessing of signals, we examined the performance of a method using independent component analysis for artifact rejection and found it was effective. Therefore we used it. In the ERP results, there were two time periods in which the frontal ERP wavefoms were significantly different betweeen the unknown Kanji trials and the symbol trials: around 170ms and around 300ms after stimulus onset. This result supported our hypothesis. In addition, the result suggests that Kanji character lexical access may be fully completed by around 260ms after stimulus onset.

Keywords: Character discrimination, Event-related Potential, IndependentComponent Analysis, Kanji, Lexical access.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
1 Verification and Proposal of Information Processing Model Using EEG-Based Brain Activity Monitoring

Authors: Toshitaka Higashino, Naoki Wakamiya

Abstract:

Human beings perform a task by perceiving information from outside, recognizing them, and responding them. There have been various attempts to analyze and understand internal processes behind the reaction to a given stimulus by conducting psychological experiments and analysis from multiple perspectives. Among these, we focused on Model Human Processor (MHP). However, it was built based on psychological experiments and thus the relation with brain activity was unclear so far. To verify the validity of the MHP and propose our model from a viewpoint of neuroscience, EEG (Electroencephalography) measurements are performed during experiments in this study. More specifically, first, experiments were conducted where Latin alphabet characters were used as visual stimuli. In addition to response time, ERPs (event-related potentials) such as N100 and P300 were measured by using EEG. By comparing cycle time predicted by the MHP and latency of ERPs, it was found that N100, related to perception of stimuli, appeared at the end of the perceptual processor. Furthermore, by conducting an additional experiment, it was revealed that P300, related to decision making, appeared during the response decision process, not at the end. Second, by experiments using Japanese Hiragana characters, i.e. Japan's own phonetic symbols, those findings were confirmed. Finally, Japanese Kanji characters were used as more complicated visual stimuli. A Kanji character usually has several readings and several meanings. Despite the difference, a reading-related task and a meaning-related task exhibited similar results, meaning that they involved similar information processing processes of the brain. Based on those results, our model was proposed which reflects response time and ERP latency. It consists of three processors: the perception processor from an input of a stimulus to appearance of N100, the cognitive processor from N100 to P300, and the decision-action processor from P300 to response. Using our model, an application system which reflects brain activity can be established.

Keywords: Brain activity, EEG, information processing model, model human processor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691