Search results for: electrical network frequency stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6035

Search results for: electrical network frequency stability

3395 A Pilot Study for the Optimization of Routes for Waste Collection Vehicles for the Göçmenköy District of Lefkoşa

Authors: Nergiz Fırıncı, Aysun Çelik, Ertan Akün, Md. Atif Khan

Abstract:

A pilot project was carried out in 2007 by the senior students of Cyprus International University, aiming to minimize the total cost of waste collection in Northern Cyprus. Many developed and developing countries have cut their transportation costs – which lies between 30-40% – down at a rate of 40% percent, by implementing network models for their route assignments. Accordingly, a network model was implemented at Göçmenköy district, to optimize and standardize waste collection works. The work environment of the employees were also redesigned to provide maximum ergonomy and to increase productivity, efficiency and safety. Following the collection of the required data including waste densities, lengths of roads and population, a model was constructed to allocate the optimal route assignment for the waste collection trucks at Göçmenköy district.

Keywords: Minimization, waste collection, operations cost, transportation, ergonomy, productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
3394 Omni: Data Science Platform for Evaluate Performance of a LoRaWAN Network

Authors: Emanuele A. Solagna, Ricardo S, Tozetto, Roberto dos S. Rabello

Abstract:

Nowadays, physical processes are becoming digitized by the evolution of communication, sensing and storage technologies which promote the development of smart cities. The evolution of this technology has generated multiple challenges related to the generation of big data and the active participation of electronic devices in society. Thus, devices can send information that is captured and processed over large areas, but there is no guarantee that all the obtained data amount will be effectively stored and correctly persisted. Because, depending on the technology which is used, there are parameters that has huge influence on the full delivery of information. This article aims to characterize the project, currently under development, of a platform that based on data science will perform a performance and effectiveness evaluation of an industrial network that implements LoRaWAN technology considering its main parameters configuration relating these parameters to the information loss.

Keywords: Internet of Things, LoRa, LoRaWAN, smart cities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718
3393 Packet Forwarding with Multiprotocol Label Switching

Authors: R.N.Pise, S.A.Kulkarni, R.V.Pawar

Abstract:

MultiProtocol Label Switching (MPLS) is an emerging technology that aims to address many of the existing issues associated with packet forwarding in today-s Internetworking environment. It provides a method of forwarding packets at a high rate of speed by combining the speed and performance of Layer 2 with the scalability and IP intelligence of Layer 3. In a traditional IP (Internet Protocol) routing network, a router analyzes the destination IP address contained in the packet header. The router independently determines the next hop for the packet using the destination IP address and the interior gateway protocol. This process is repeated at each hop to deliver the packet to its final destination. In contrast, in the MPLS forwarding paradigm routers on the edge of the network (label edge routers) attach labels to packets based on the forwarding Equivalence class (FEC). Packets are then forwarded through the MPLS domain, based on their associated FECs , through swapping the labels by routers in the core of the network called label switch routers. The act of simply swapping the label instead of referencing the IP header of the packet in the routing table at each hop provides a more efficient manner of forwarding packets, which in turn allows the opportunity for traffic to be forwarded at tremendous speeds and to have granular control over the path taken by a packet. This paper deals with the process of MPLS forwarding mechanism, implementation of MPLS datapath , and test results showing the performance comparison of MPLS and IP routing. The discussion will focus primarily on MPLS IP packet networks – by far the most common application of MPLS today.

Keywords: Forwarding equivalence class, incoming label map, label, next hop label forwarding entry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697
3392 Learning Flexible Neural Networks for Pattern Recognition

Authors: A. Mirzaaghazadeh, H. Motameni, M. Karshenas, H. Nematzadeh

Abstract:

Learning the gradient of neuron's activity function like the weight of links causes a new specification which is flexibility. In flexible neural networks because of supervising and controlling the operation of neurons, all the burden of the learning is not dedicated to the weight of links, therefore in each period of learning of each neuron, in fact the gradient of their activity function, cooperate in order to achieve the goal of learning thus the number of learning will be decreased considerably. Furthermore, learning neurons parameters immunes them against changing in their inputs and factors which cause such changing. Likewise initial selecting of weights, type of activity function, selecting the initial gradient of activity function and selecting a fixed amount which is multiplied by gradient of error to calculate the weight changes and gradient of activity function, has a direct affect in convergence of network for learning.

Keywords: Back propagation, Flexible, Gradient, Learning, Neural network, Pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
3391 Improving Similarity Search Using Clustered Data

Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong

Abstract:

This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.

Keywords: Visual search, deep learning, convolutional neural network, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 834
3390 Designing Early Warning System: Prediction Accuracy of Currency Crisis by Using k-Nearest Neighbour Method

Authors: Nor Azuana Ramli, Mohd Tahir Ismail, Hooy Chee Wooi

Abstract:

Developing a stable early warning system (EWS) model that is capable to give an accurate prediction is a challenging task. This paper introduces k-nearest neighbour (k-NN) method which never been applied in predicting currency crisis before with the aim of increasing the prediction accuracy. The proposed k-NN performance depends on the choice of a distance that is used where in our analysis; we take the Euclidean distance and the Manhattan as a consideration. For the comparison, we employ three other methods which are logistic regression analysis (logit), back-propagation neural network (NN) and sequential minimal optimization (SMO). The analysis using datasets from 8 countries and 13 macro-economic indicators for each country shows that the proposed k-NN method with k = 4 and Manhattan distance performs better than the other methods.

Keywords: Currency crisis, k-nearest neighbour method, logit, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
3389 A Diffusion Least-Mean Square Algorithm for Distributed Estimation over Sensor Networks

Authors: Amir Rastegarnia, Mohammad Ali Tinati, Azam Khalili

Abstract:

In this paper we consider the issue of distributed adaptive estimation over sensor networks. To deal with more realistic scenario, different variance for observation noise is assumed for sensors in the network. To solve the problem of different variance of observation noise, the proposed method is divided into two phases: I) Estimating each sensor-s observation noise variance and II) using the estimated variances to obtain the desired parameter. Our proposed algorithm is based on a diffusion least mean square (LMS) implementation with linear combiner model. In the proposed algorithm, the step-size parameter the coefficients of linear combiner are adjusted according to estimated observation noise variances. As the simulation results show, the proposed algorithm considerably improves the diffusion LMS algorithm given in literature.

Keywords: Adaptive filter, distributed estimation, sensor network, diffusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868
3388 Piezoelectric Polarization Effect on Debye Frequency and Temperature in Nitride Wurtzites

Authors: Bijay Kumar Sahoo, Ashok Kumar Srivastav

Abstract:

We have investigated the effect of piezoelectric (PZ) polarization property in binary as well as in ternary wurtzite nitrides. It is found that with the presence of PZ polarization property, the phonon group velocity is modified. The change in phonon group velocity due to PZ polarization effect directly depends on piezoelectric tensor value. Using different piezoelectric tensor values recommended by different workers in the literature, percent change in group velocities of phonons has been estimated. The Debye temperatures and frequencies of binary nitrides GaN, AlN and InN are also calculated using the modified group velocities. For ternary nitrides AlxGa(1-x)N, InxGa(1-x)N and InxAl(1-x)N, the phonon group velocities have been calculated as a functions of composition. A small positive bowing is observed in phonon group velocities of ternary alloys. Percent variations in phonon group velocities are also calculated for a straightforward comparison among ternary nitrides. The results are expected to show a change in phonon relaxation rates and thermal conductivity of III-nitrides when piezoelectric polarization property is taken into consideration.

Keywords: Wirtzite nitrides, piezoelectric polarization, Phonon group velocity, Debye frequency and Debye temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
3387 Natural Frequency Analysis of a Porous Functionally Graded Shaft System

Authors: Natural Frequency Analysis of a Porous Functionally Graded Shaft System

Abstract:

The vibration characteristics of a functionally graded (FG) rotor model having porosities and micro-voids is investigated using three-dimensional finite element analysis. The FG shaft is mounted with a steel disc located at the midspan. The shaft ends are supported on isotropic bearings. The FG material is composed of a metallic (stainless-steel) and ceramic phase (zirconium oxide) as its constituent phases. The layer wise material property variation is governed by power law. Material property equations are developed for the porosity modelling. Python code is developed to assign the material properties to each layer including the effect of porosities. ANSYS commercial software is used to extract the natural frequencies and whirl frequencies for the FG shaft system. The obtained results show the influence of porosity volume fraction and power-law index, on the vibration characteristics of the ceramic-based FG shaft system.

Keywords: Finite element method, functionally graded material, porosity volume fraction, power law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 798
3386 A Multipurpose Audio Watermarking Algorithm Based on Vector Quantization in DCT Domain

Authors: Jixin Liu, Zheming Lu

Abstract:

In this paper, a novel multipurpose audio watermarking algorithm is proposed based on Vector Quantization (VQ) in Discrete Cosine Transform (DCT) domain using the codeword labeling and index-bit constrained method. By using this algorithm, it can fulfill the requirements of both the copyright protection and content integrity authentication at the same time for the multimedia artworks. The robust watermark is embedded in the middle frequency coefficients of the DCT transform during the labeled codeword vector quantization procedure. The fragile watermark is embedded into the indices of the high frequency coefficients of the DCT transform by using the constrained index vector quantization method for the purpose of integrity authentication of the original audio signals. Both the robust and the fragile watermarks can be extracted without the original audio signals, and the simulation results show that our algorithm is effective with regard to the transparency, robustness and the authentication requirements

Keywords: Copyright Protection, Discrete Cosine Transform, Integrity Authentication, Multipurpose Audio Watermarking, Vector Quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1995
3385 An Intelligent WSN-Based Parking Guidance System

Authors: Sheng-Shih Wang, Wei-Ting Wang

Abstract:

This paper designs an intelligent guidance system, based on wireless sensor networks, for efficient parking in parking lots. The proposed system consists of a parking space allocation subsystem, a parking space monitoring subsystem, a driving guidance subsystem, and a vehicle detection subsystem. In the system, we propose a novel and effective virtual coordinate system for sensing and displaying devices to determine the proper vacant parking space and provide the precise guidance to the driver. This study constructs a ZigBee-based wireless sensor network on Arduino platform and implements the prototype of the proposed system using Arduino-based complements. Experimental results confirm that the proposed prototype can not only work well, but also provide drivers the correct parking information.

Keywords: Arduino, Parking guidance, Wireless sensor network, ZigBee.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
3384 Automatic Generation Control Design Based on Full State Vector Feedback for a Multi-Area Energy System Connected via Parallel AC/DC Lines

Authors: Gulshan Sharma

Abstract:

This article presents the design of optimal automatic generation control (AGC) based on full state feedback control for a multi-area interconnected power system. An extra high voltage AC transmission line in parallel with a high voltage DC link is considered as an area interconnection between the areas. The optimal AGC are designed and implemented in the wake of 1% load perturbation in one of the areas and the system dynamic response plots for various system states are obtained to investigate the system dynamic performance. The pattern of closed-loop eigenvalues are also determined to analyze the system stability. From the investigations carried out in the work, it is revealed that the dynamic performance of the system under consideration has an appreciable improvement when a high voltage DC line is paralleled with an extra high voltage AC line as an interconnection between the areas. The investigation of closed-loop eigenvalues reveals that the system stability is ensured in all case studies carried out with the designed optimal AGC.

Keywords: Automatic generation control, area control error, DC link, optimal AGC regulator, closed-loop eigenvalues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828
3383 Using Combination of Optimized Recurrent Neural Network with Design of Experiments and Regression for Control Chart Forecasting

Authors: R. Behmanesh, I. Rahimi

Abstract:

recurrent neural network (RNN) is an efficient tool for modeling production control process as well as modeling services. In this paper one RNN was combined with regression model and were employed in order to be checked whether the obtained data by the model in comparison with actual data, are valid for variable process control chart. Therefore, one maintenance process in workshop of Esfahan Oil Refining Co. (EORC) was taken for illustration of models. First, the regression was made for predicting the response time of process based upon determined factors, and then the error between actual and predicted response time as output and also the same factors as input were used in RNN. Finally, according to predicted data from combined model, it is scrutinized for test values in statistical process control whether forecasting efficiency is acceptable. Meanwhile, in training process of RNN, design of experiments was set so as to optimize the RNN.

Keywords: RNN, DOE, regression, control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
3382 Prioritization of Mutation Test Generation with Centrality Measure

Authors: Supachai Supmak, Yachai Limpiyakorn

Abstract:

Mutation testing can be applied for the quality assessment of test cases. Prioritization of mutation test generation has been a critical element of the industry practice that would contribute to the evaluation of test cases. The industry generally delivers the product under the condition of time to the market and thus, inevitably sacrifices software testing tasks, even though many test cases are required for software verification. This paper presents an approach of applying a social network centrality measure, PageRank, to prioritize mutation test generation. The source code with the highest values of PageRank, will be focused first when developing their test cases as these modules are vulnerable for defects or anomalies which may cause the consequent defects in many other associated modules. Moreover, the approach would help identify the reducible test cases in the test suite, still maintaining the same criteria as the original number of test cases.

Keywords: Software testing, mutation test, network centrality measure, test case prioritization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 555
3381 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability

Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader

Abstract:

The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.

Keywords: Condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2973
3380 Sidelobe Reduction in Cognitive Radio Systems Using Hybrid Technique

Authors: Atif Elahi, Ijaz Mansoor Qureshi, Mehreen Atif, Noor Gul

Abstract:

Orthogonal frequency division multiplexing (OFDM) is one of the best candidates for dynamic spectrum access due to its flexibility of spectrum shaping. However, the high sidelobes of the OFDM signal that result in high out-of-band radiation, introduce significant interference to the users operating in its vicinity. This problem becomes more critical in cognitive radio (CR) system that enables the secondary users (SUs) users to access the spectrum holes not used by the primary users (PUs) at that time. In this paper, we present a generalized OFDM framework that has a capability of describing any sidelobe suppression techniques, despite of whether one or a number of techniques are used. Based on that framework, we propose cancellation carrier (CC) technique in conjunction with the generalized sidelobe canceller (GSC) to reduce the out-of-band radiation in the region where the licensed users are operating. Simulation results show that the proposed technique can reduce the out-of-band radiation better when compared with the existing techniques found in the literature.

Keywords: Cognitive radio, cancellation carriers, generalized sidelobe canceller, out-of-band radiation, orthogonal frequency division multiplexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201
3379 Modification of Anodized Mg Alloy Surface By Pulse Condition for Biodegradable Material

Authors: Y.K. Kim, Y.S. Jang, H.H. Park, J.H. Ji, I.S. Park, T.S. Bae, M.H. Lee

Abstract:

Magnesium is used implant material potentially for non-toxicity to the human body. Due to the excellent bio-compatibility, Mg alloys is applied to implants avoiding removal second surgery. However, it is found commercial magnesium alloys including aluminum has low corrosion resistance, resulting subcutaneous gas bubbles and consequently the approach as permanent bio-materials. Generally, Aluminum is known to pollution substance, and it raises toxicity to nervous system. Therefore especially Mg-35Zn-3Ca alloy is prepared for new biodegradable materials in this study. And the pulsed power is used in constant-current mode of DC power kinds of anodization. Based on the aforementioned study, it examines corrosion resistance and biocompatibility by effect of current and frequency variation. The surface properties and thickness were compared using scanning electronic microscopy. Corrosion resistance was assessed via potentiodynamic polarization and the effect of oxide layer on the body was assessed cell viability. Anodized Mg-35Zn-3Ca alloy has good biocompatibility in vitro by current and frequency variation.

Keywords: Biodegradable material, Mg, anodization, osteoblast cell, pulse power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
3378 Ohmic Quality Factor and Efficiency Estimation for a Gyrotron Cavity

Authors: R. K. Singh, P.K.Jain

Abstract:

Operating a device at high power and high frequency is a major problem because wall losses greatly reduce the efficiency of the device. In the present communication, authors analytically analyzed the dependence of ohmic/RF efficiency, the fraction of output power with respect to the total power generated, of gyrotron cavity structure on the conductivity of copper for the second harmonic TE0,6 mode. This study shows a rapid fall in the RF efficiency as the quality (conductivity) of copper degrades. Starting with an RF efficiency near 40% at the conductivity of ideal copper (5.8 x 107 S/m), the RF efficiency decreases (upto 8%) as the copper quality degrades. Assuming conductivity half that of ideal copper the RF efficiency as a function of diffractive quality factor, Qdiff, has been studied. Here the RF efficiency decreases rapidly with increasing diffractive Q. Ohmic wall losses as a function of frequency for 460 GHz gyrotron cavity excited in TE0,6 mode has also been analyzed. For 460 GHz cavity, the extracted power is reduced to 32% of the generated power due to ohmic losses in the walls of the cavity.

Keywords: Diffractive quality factor, Gyrotron, Ohmic wall losses, Open cavity resonator, RF Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
3377 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy

Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko

Abstract:

In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.

Keywords: Inverse problems, multi-component solutions, neural networks, Raman spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
3376 Adaptive Few-Shot Deep Metric Learning

Authors: Wentian Shi, Daming Shi, Maysam Orouskhani, Feng Tian

Abstract:

Currently the most prevalent deep learning methods require a large amount of data for training, whereas few-shot learning tries to learn a model from limited data without extensive retraining. In this paper, we present a loss function based on triplet loss for solving few-shot problem using metric based learning. Instead of setting the margin distance in triplet loss as a constant number empirically, we propose an adaptive margin distance strategy to obtain the appropriate margin distance automatically. We implement the strategy in the deep siamese network for deep metric embedding, by utilizing an optimization approach by penalizing the worst case and rewarding the best. Our experiments on image recognition and co-segmentation model demonstrate that using our proposed triplet loss with adaptive margin distance can significantly improve the performance.

Keywords: Few-shot learning, triplet network, adaptive margin, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 924
3375 Experimental Modal Analysis of Reinforced Concrete Square Slabs

Authors: M. S. Ahmed, F. A. Mohammad

Abstract:

The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although, experimental modal analysis (or modal testing) has grown steadily in popularity since the advent of the digital FFT spectrum analyzer in the early 1970’s, studying all types of members and materials using such method have not yet been well documented. Therefore, in this work, experimental tests were conducted on RC square slab specimens of dimensions 600mm x 600mmx 40mm. Experimental analysis was based on freely supported boundary condition. Moreover, impact testing as a fast and economical means of finding the modes of vibration of a structure was used during the experiments. In addition, Pico Scope 6 device and MATLAB software were used to acquire data, analyze and plot Frequency Response Function (FRF). The experimental natural frequencies which were extracted from measurements exhibit good agreement with analytical predictions. It is showed that EMA method can be usefully employed to investigate the dynamic behavior of RC slabs.

Keywords: Natural frequencies, Mode shapes, Modal analysis, RC slabs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2622
3374 Application of Pattern Search Method to Power System Security Constrained Economic Dispatch

Authors: A. K. Al-Othman, K. M. EL-Nagger

Abstract:

Direct search methods are evolutionary algorithms used to solve optimization problems. (DS) methods do not require any information about the gradient of the objective function at hand while searching for an optimum solution. One of such methods is Pattern Search (PS) algorithm. This paper presents a new approach based on a constrained pattern search algorithm to solve a security constrained power system economic dispatch problem (SCED). Operation of power systems demands a high degree of security to keep the system satisfactorily operating when subjected to disturbances, while and at the same time it is required to pay attention to the economic aspects. Pattern recognition technique is used first to assess dynamic security. Linear classifiers that determine the stability of electric power system are presented and added to other system stability and operational constraints. The problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Pattern search method is then applied to solve the constrained optimization formulation. In particular, the method is tested using one system. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that pattern search (PS) is very applicable for solving security constrained power system economic dispatch problem (SCED).

Keywords: Security Constrained Economic Dispatch, Direct Search method, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
3373 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots

Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov

Abstract:

This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.

Keywords: Autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024
3372 Usage of Channel Coding Techniques for Peak-to-Average Power Ratio Reduction in Visible Light Communications Systems

Authors: P.L.D.N.M. de Silva, S.G. Edirisinghe, R. Weerasuriya

Abstract:

High Peak-to-Average Power Ratio (PAPR) is a concern of Orthogonal Frequency Division Multiplexing (OFDM) based Visible Light Communication (VLC) systems. Discrete Fourier Transform spread (DFT-s) OFDM is an alternative single carrier modulation scheme which would address this concern. Employing channel coding techniques is another mechanism to reduce the PAPR. In this study, the improvement which can be harnessed by hybridizing these two techniques for VLC system is being studied. Within the study, efficient techniques such as Hamming coding and Convolutional coding have been studied. Thus, we present the impact of the hybrid of DFT-s OFDM and Channel coding (Hamming coding and Convolutional coding) on PAPR in VLC systems, using MATLAB simulations.

Keywords: Convolutional Coding, Discrete Fourier Transform spread Orthogonal Frequency Division Multiplexing (DFT-s OFDM), Hamming Coding, Peak-to-Average Power Ratio (PAPR), Visible Light Communications (VLC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 529
3371 The Influences of Marketing Mix on Customer Purchasing Behavior at Chatuchak Plaza Market

Authors: Bundit Pungnirund

Abstract:

The objective of this research was to study the influence of marketing mix on customers purchasing behavior. A total of 397 respondents were collected from customers who were the patronages of the Chatuchak Plaza market. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. Data were analyzed by using Statistical Package for the Social Sciences. The findings revealed that the majority of respondents were male with the age between 25-34 years old, hold undergraduate degree, married and stay together. The average income of respondents was between 10,001-20,000 baht. In terms of occupation, the majority worked for private companies. The research analysis disclosed that there were three variables of marketing mix which included price (X2), place (X3), and product (X1) which had an influence on the frequency of customer purchasing. These three variables can predict a purchase about 30 percent of the time by using the equation; Y1 = 6.851 + .921(X2) + .949(X3) + .591(X1). It also found that in terms of marketing mixed, there were two variables had an influence on the amount of customer purchasing which were physical characteristic (X6), and the process (X7). These two variables are 17 percent predictive of a purchasing by using the equation: Y2 = 2276.88 + 2980.97(X6) + 2188.09(X7).

Keywords: Influences, Marketing Mixed, Purchasing Behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11543
3370 Feature Extractions of EMG Signals during a Constant Workload Pedaling Exercise

Authors: Bing-Wen Chen, Alvin W. Y. Su, Yu-Lin Wang

Abstract:

Electromyography (EMG) is one of the important indicators during exercise, as it is closely related to the level of muscle activations. This work quantifies the muscle conditions of the lower limbs in a constant workload exercise. Surface EMG signals of the vastus laterals (VL), vastus medialis (VM), rectus femoris (RF), gastrocnemius medianus (GM), gastrocnemius lateral (GL) and Soleus (SOL) were recorded from fourteen healthy males. The EMG signals were segmented in two phases: activation segment (AS) and relaxation segment (RS). Period entropy (PE), peak count (PC), zero crossing (ZC), wave length (WL), mean power frequency (MPF), median frequency (MDF) and root mean square (RMS) are calculated to provide the quantitative information of the measured EMG segments. The outcomes reveal that the PE, PC, ZC and RMS have significantly changed (p<.001); WL presents moderately changed (p<.01); MPF and MDF show no changed (p>.05) during exercise. The results also suggest that the RS is also preferred for performance evaluation, while the results of the extracted features in AS are usually affected directly by the amplitudes. It is further found that the VL exhibits the most significant changes within six muscles during pedaling exercise. The proposed work could be applied to quantify the stamina analysis and to predict the instant muscle status in athletes.

Keywords: EMG, feature extraction, muscle status, pedaling exercise, relaxation segment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
3369 Optimal Preventive Maintenance of the Reserve Source in the Industrial Electric Network

Authors: M. Bouguerra, H. Meglouli, I. Habi

Abstract:

The great majority of the electric installations belong to the first and second category. In order to ensure a high level of reliability of their electric system feeder, two power supply sources are envisaged, one principal, the other of reserve, generally a cold reserve (electric diesel group). The principal source being under operation, its control can be ideal and sure, however for the reserve source being in stop, a preventive maintenance-s which proceeds on time intervals (periodicity) and for well defined lengths of time are envisaged, so that this source will always available in case of the principal source failure. The choice of the periodicity of preventive maintenance of the source of reserve influences directly the reliability of the electric feeder system. On the basis of the semi-markovians processes, the influence of the periodicity of the preventive maintenance of the source of reserve is studied and is given the optimal periodicity.

Keywords: Semi Markovians processes, reliability, optimization, electric network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
3368 A Topology for High Voltage Gain Half-Bridge Z-Source Inverter with Low Voltage Stress on Capacitors

Authors: M. Nageswara Rao

Abstract:

In this paper, a topology for high voltage gain half-bridge z-source inverter with low voltage stress on capacitors is proposed. The proposed inverter has only one impedance network. It can generate symmetric and asymmetric voltages with different magnitudes during both half-cycles. By selecting the duty cycle it can also produce conventional half-bridge inverter characteristics. It is used in special applications like, electrochemical and electro plating applications. Calculations of voltage ripple of capacitors, capacitors voltage stress inductors current ripple are presented. The proposed topology is simulated using PSCAD software and the simulated values are compared with the theoretical values.

Keywords: Half-bridge inverter, impedance network-source inverter, high voltage gain inverter, power system computer aided design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
3367 Complex-Valued Neural Networks for Blind Equalization of Time-Varying Channels

Authors: Rajoo Pandey

Abstract:

Most of the commonly used blind equalization algorithms are based on the minimization of a nonconvex and nonlinear cost function and a neural network gives smaller residual error as compared to a linear structure. The efficacy of complex valued feedforward neural networks for blind equalization of linear and nonlinear communication channels has been confirmed by many studies. In this paper we present two neural network models for blind equalization of time-varying channels, for M-ary QAM and PSK signals. The complex valued activation functions, suitable for these signal constellations in time-varying environment, are introduced and the learning algorithms based on the CMA cost function are derived. The improved performance of the proposed models is confirmed through computer simulations.

Keywords: Blind Equalization, Neural Networks, Constant Modulus Algorithm, Time-varying channels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
3366 Resource Constraint Mobile Agent Framework For Ambient Intelligence

Authors: Yung-Chuan Lee, Shahram Rahimi, Bidyut Gupta

Abstract:

In this paper, we introduce an mobile agent framework with proactive load balancing for ambient intelligence (AmI) environments. One of the main obstacles of AmI is the scalability in which the openness of AmI environment introduces dynamic resource requirements on agencies. To mediate this scalability problem, our framework proposes a load balancing module to proactively analyze the resource consumption of network bandwidth and preferred agencies to suggest the optimal communication method to its user. The framework generally formulates an AmI environment that consists of three main components: (1) mobile devices, (2) hosts or agencies, and (3) directory service center (DSC). A preliminary implementation was conducted with NetLogo and the experimental results show that the proposed approach provides enhanced system performance by minimizing the network utilization to provide users with responsive services.

Keywords: Ambient intelligence, load balancing, multiagent systems, ubiquitous computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678