Search results for: mobile game based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12870

Search results for: mobile game based learning

10260 A Survey: Bandwidth Management in an IP Based Network

Authors: M. Kassim, M. Ismail, K. Jumari, M.I Yusof

Abstract:

this paper presented a survey analysis subjected on network bandwidth management from published papers referred in IEEE Explorer database in three years from 2009 to 2011. Network Bandwidth Management is discussed in today-s issues for computer engineering applications and systems. Detailed comparison is presented between published papers to look further in the IP based network critical research area for network bandwidth management. Important information such as the network focus area, a few modeling in the IP Based Network and filtering or scheduling used in the network applications layer is presented. Many researches on bandwidth management have been done in the broad network area but fewer are done in IP Based network specifically at the applications network layer. A few researches has contributed new scheme or enhanced modeling but still the issue of bandwidth management still arise at the applications network layer. This survey is taken as a basic research towards implementations of network bandwidth management technique, new framework model and scheduling scheme or algorithm in an IP Based network which will focus in a control bandwidth mechanism in prioritizing the network traffic the applications layer.

Keywords: Bandwidth Management (BM), IP Based network, modeling, algorithm, internet traffic, network Management, Quality of Service (QoS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3339
10259 A Comparative Study of Image Segmentation using Edge-Based Approach

Authors: Rajiv Kumar, Arthanariee A. M.

Abstract:

Image segmentation is the process to segment a given image into several parts so that each of these parts present in the image can be further analyzed. There are numerous techniques of image segmentation available in literature. In this paper, authors have been analyzed the edge-based approach for image segmentation. They have been implemented the different edge operators like Prewitt, Sobel, LoG, and Canny on the basis of their threshold parameter. The results of these operators have been shown for various images.

Keywords: Edge Operator, Edge-based Segmentation, Image Segmentation, Matlab 10.4.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3612
10258 Solar Energy Generation Based Urban Development: A Case of Jodhpur City

Authors: A. Kumar, V. Devadas

Abstract:

India has the most year-round favorable sunny conditions along with the second-highest solar irradiation in the world, the country holds the potential to become the global solar hub. The solar and wind-based generation capacity has skyrocketed in India with the successful effort of the Ministry of Renewable Energy, whereas the potential of rooftop based solar power generation has yet to be explored for proposed solar cities in India. The research aims to analyze the gap in the energy scenario in Jodhpur City and proposes interventions of solar energy generation systems as a catalyst for urban development. The research is based on the system concept which deals with simulation between the city system as a whole and its interactions between different subsystems. A system-dynamics based mathematical model is developed by identifying the control parameters using regression and correlation analysis to assess the gap in energy sector. The base model validation is done using the past 10 years timeline data collected from secondary sources. Further, energy consumption and solar energy generation-based projection are made for testing different scenarios to conclude the feasibility for maintaining the city level energy independence till 2031.

Keywords: City, consumption, energy, generation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 570
10257 Analysis on Iranian Wind Catcher and Its Effect on Natural Ventilation as a Solution towards Sustainable Architecture(Case Study: Yazd)

Authors: Mahnaz Mahmoudi Zarandi (Qazvin Islamic Azad University)

Abstract:

wind catchers have been served as a cooling system, used to provide acceptable ventilation by means of renewable energy of wind. In the present study, the city of Yazd in arid climate is selected as case study. From the architecture point of view, learning about wind catchers in this study is done by means of field surveys. Research method for selection of the case is based on random form, and analytical method. Wind catcher typology and knowledge of relationship governing the wind catcher's architecture were those measures that are taken for the first time. 53 wind catchers were analyzed. The typology of the wind-catchers is done by the physical analyzing, patterns and common concepts as incorporated in them. How the architecture of wind catcher can influence their operations by analyzing thermal behavior are the archetypes of selected wind catchers. Calculating fluids dynamics science, fluent software and numerical analysis are used in this study as the most accurate analytical approach. The results obtained from these analyses show the formal specifications of wind catchers with optimum operation in Yazd. The knowledge obtained from the optimum model could be used for design and construction of wind catchers with more improved operation

Keywords: Fluent Software, Iranian architecture, wind catcher

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4500
10256 Concept Abduction in Description Logics with Cardinality Restrictions

Authors: Viet-Hoang Vu, Nhan Le-Thanh

Abstract:

Recently the usefulness of Concept Abduction, a novel non-monotonic inference service for Description Logics (DLs), has been argued in the context of ontology-based applications such as semantic matchmaking and resource retrieval. Based on tableau calculus, a method has been proposed to realize this reasoning task in ALN, a description logic that supports simple cardinality restrictions as well as other basic constructors. However, in many ontology-based systems, the representation of ontology would require expressive formalisms for capturing domain-specific constraints, this language is not sufficient. In order to increase the applicability of the abductive reasoning method in such contexts, we would like to present in the scope of this paper an extension of the tableaux-based algorithm for dealing with concepts represented inALCQ, the description logic that extends ALN with full concept negation and quantified number restrictions.

Keywords: Abductive reasoning, description logics, semantic matchmaking, non-monotonic inference, tableaux-based method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
10255 A Study of RSCMAC Enhanced GPS Dynamic Positioning

Authors: Ching-Tsan Chiang, Sheng-Jie Yang, Jing-Kai Huang

Abstract:

The purpose of this research is to develop and apply the RSCMAC to enhance the dynamic accuracy of Global Positioning System (GPS). GPS devices provide services of accurate positioning, speed detection and highly precise time standard for over 98% area on the earth. The overall operation of Global Positioning System includes 24 GPS satellites in space; signal transmission that includes 2 frequency carrier waves (Link 1 and Link 2) and 2 sets random telegraphic codes (C/A code and P code), on-earth monitoring stations or client GPS receivers. Only 4 satellites utilization, the client position and its elevation can be detected rapidly. The more receivable satellites, the more accurate position can be decoded. Currently, the standard positioning accuracy of the simplified GPS receiver is greatly increased, but due to affected by the error of satellite clock, the troposphere delay and the ionosphere delay, current measurement accuracy is in the level of 5~15m. In increasing the dynamic GPS positioning accuracy, most researchers mainly use inertial navigation system (INS) and installation of other sensors or maps for the assistance. This research utilizes the RSCMAC advantages of fast learning, learning convergence assurance, solving capability of time-related dynamic system problems with the static positioning calibration structure to improve and increase the GPS dynamic accuracy. The increasing of GPS dynamic positioning accuracy can be achieved by using RSCMAC system with GPS receivers collecting dynamic error data for the error prediction and follows by using the predicted error to correct the GPS dynamic positioning data. The ultimate purpose of this research is to improve the dynamic positioning error of cheap GPS receivers and the economic benefits will be enhanced while the accuracy is increased.

Keywords: Dynamic Error, GPS, Prediction, RSCMAC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
10254 Classifier Based Text Mining for Neural Network

Authors: M. Govindarajan, R. M. Chandrasekaran

Abstract:

Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.

Keywords: Back propagation, classification accuracy, textmining, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4220
10253 An Analytical Electron Mobility Model based on Particle Swarm Computation for Siliconbased Devices

Authors: F. Djeffal, N. Lakhdar, T. Bendib

Abstract:

The study of the transport coefficients in electronic devices is currently carried out by analytical and empirical models. This study requires several simplifying assumptions, generally necessary to lead to analytical expressions in order to study the different characteristics of the electronic silicon-based devices. Further progress in the development, design and optimization of Silicon-based devices necessarily requires new theory and modeling tools. In our study, we use the PSO (Particle Swarm Optimization) technique as a computational tool to develop analytical approaches in order to study the transport phenomenon of the electron in crystalline silicon as function of temperature and doping concentration. Good agreement between our results and measured data has been found. The optimized analytical models can also be incorporated into the circuits simulators to study Si-based devices without impact on the computational time and data storage.

Keywords: Particle Swarm, electron mobility, Si-based devices, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
10252 An Interactive Web-based Simulation Tool for Surgical Thread

Authors: A. Ruimi, S. Goyal, B. M. Nour

Abstract:

Interactive web-based computer simulations are needed by the medical community to replicate the experience of surgical procedures as closely and realistically as possible without the need to practice on corpses, animals and/or plastic models. In this paper, we offer a review on current state of the research on simulations of surgical threads, identify future needs and present our proposed plans to meet them. Our goal is to create a physics-based simulator, which will predict the behavior of surgical thread when subjected to conditions commonly encountered during surgery. To that end, we will i) develop three dimensional finite element models based on the Cosserat theory of elasticity ii) test and feedback results with the medical community and iii) develop a web-based user interface to run/command our simulator and visualize the results. The impacts of our research are that i) it will contribute to the development of a new generation of training for medical school students and ii) the simulator will be useful to expert surgeons in developing new, better and less risky procedures.

Keywords: Cosserat rod-theory, FEM simulations, Modeling, Surgical thread.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
10251 Performance Analysis of the Time-Based and Periodogram-Based Energy Detector for Spectrum Sensing

Authors: Sadaf Nawaz, Adnan Ahmed Khan, Asad Mahmood, Chaudhary Farrukh Javed

Abstract:

Classically, an energy detector is implemented in time domain (TD). However, frequency domain (FD) based energy detector has demonstrated an improved performance. This paper presents a comparison between the two approaches as to analyze their pros and cons. A detailed performance analysis of the classical TD energy-detector and the periodogram based detector is performed. Exact and approximate mathematical expressions for probability of false alarm (Pf) and probability of detection (Pd) are derived for both approaches. The derived expressions naturally lead to an analytical as well as intuitive reasoning for the improved performance of (Pf) and (Pd) in different scenarios. Our analysis suggests the dependence improvement on buffer sizes. Pf is improved in FD, whereas Pd is enhanced in TD based energy detectors. Finally, Monte Carlo simulations results demonstrate the analysis reached by the derived expressions.

Keywords: Cognitive radio, energy detector, periodogram, spectrum sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1041
10250 Packet Reserving and Clogging Control via Routing Aware Packet Reserving Framework in MANET

Authors: C. Sathiyakumar, K. Duraiswamy

Abstract:

In MANET, mobile nodes communicate with each other using the wireless channel where transmission takes place with significant interference. The wireless medium used in MANET is a shared resource used by all the nodes available in MANET. Packet reserving is one important resource management scheme which controls the allocation of bandwidth among multiple flows through node cooperation in MANET. This paper proposes packet reserving and clogging control via Routing Aware Packet Reserving (RAPR) framework in MANET. It mainly focuses the end-to-end routing condition with maximal throughput. RAPR is complimentary system where the packet reserving utilizes local routing information available in each node. Path setup in RAPR estimates the security level of the system, and symbolizes the end-to-end routing by controlling the clogging. RAPR reaches the packet to the destination with high probability ratio and minimal delay count. The standard performance measures such as network security level, communication overhead, end-to-end throughput, resource utilization efficiency and delay measure are considered in this work. The results reveals that the proposed packet reservation and clogging control via Routing Aware Packet Reserving (RAPR) framework performs well for the above said performance measures compare to the existing methods.

Keywords: Packet reserving, Clogging control, Packet reservation in MANET, RAPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
10249 Data Privacy and Safety with Large Language Models

Authors: Ashly Joseph, Jithu Paulose

Abstract:

Large language models (LLMs) have revolutionized natural language processing capabilities, enabling applications such as chatbots, dialogue agents, image, and video generators. Nevertheless, their trainings on extensive datasets comprising personal information poses notable privacy and safety hazards. This study examines methods for addressing these challenges, specifically focusing on approaches to enhance the security of LLM outputs, safeguard user privacy, and adhere to data protection rules. We explore several methods including post-processing detection algorithms, content filtering, reinforcement learning from human and AI inputs, and the difficulties in maintaining a balance between model safety and performance. The study also emphasizes the dangers of unintentional data leakage, privacy issues related to user prompts, and the possibility of data breaches. We highlight the significance of corporate data governance rules and optimal methods for engaging with chatbots. In addition, we analyze the development of data protection frameworks, evaluate the adherence of LLMs to General Data Protection Regulation (GDPR), and examine privacy legislation in academic and business policies. We demonstrate the difficulties and remedies involved in preserving data privacy and security in the age of sophisticated artificial intelligence by employing case studies and real-life instances. This article seeks to educate stakeholders on practical strategies for improving the security and privacy of LLMs, while also assuring their responsible and ethical implementation.

Keywords: Data privacy, large language models, artificial intelligence, machine learning, cybersecurity, general data protection regulation, data safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141
10248 Subjective Evaluation of Spectral and Time Domain Cascading Algorithm for Speech Enhancement for Mobile Communication

Authors: Harish Chander, Balwinder Singh, Ravinder Khanna

Abstract:

In this paper, we present the comparative subjective analysis of Improved Minima Controlled Recursive Averaging (IMCRA) Algorithm, the Kalman filter and the cascading of IMCRA and Kalman filter algorithms. Performance of speech enhancement algorithms can be predicted in two different ways. One is the objective method of evaluation in which the speech quality parameters are predicted computationally. The second is a subjective listening test in which the processed speech signal is subjected to the listeners who judge the quality of speech on certain parameters. The comparative objective evaluation of these algorithms was analyzed in terms of Global SNR, Segmental SNR and Perceptual Evaluation of Speech Quality (PESQ) by the authors and it was reported that with cascaded algorithms there is a substantial increase in objective parameters. Since subjective evaluation is the real test to judge the quality of speech enhancement algorithms, the authenticity of superiority of cascaded algorithms over individual IMCRA and Kalman algorithms is tested through subjective analysis in this paper. The results of subjective listening tests have confirmed that the cascaded algorithms perform better under all types of noise conditions.

Keywords: Speech enhancement, spectral domain, time domain, PESQ, subjective analysis, objective analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1234
10247 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis

Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel

Abstract:

Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.

Keywords: Artificial Immune System, Breast Cancer Diagnosis, Euclidean Function, Gaussian Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2125
10246 How Children Synchronize with Their Teacher: Evidence from a Real-World Elementary School Classroom

Authors: Reiko Yamamoto

Abstract:

This paper reports on how synchrony occurs between children and their teacher, and what prevents or facilitates synchrony. The aim of the experiment conducted in this study was to precisely analyze their movements and synchrony and reveal the process of synchrony in a real-world classroom. Specifically, the experiment was conducted for around 20 minutes during an English as a foreign language (EFL) lesson. The participants were 11 fourth-grade school children and their classroom teacher in a public elementary school in Japan. Previous researchers assert that synchrony causes the state of flow in a class. For checking the level of flow, Short Flow State Scale (SFSS) was adopted. The experimental procedure had four steps: 1) The teacher read aloud the first half of an English storybook to the children. Both the teacher and the children were at their own desks. 2) The children were subjected to an SFSS check. 3) The teacher read aloud the remaining half of the storybook to the children. She made the children remove their desks before reading. 4) The children were again subjected to an SFSS check. The movements of all participants were recorded with a video camera. From the movement analysis, it was found that the children synchronized better with the teacher in Step 3 than in Step 1, and that the teacher’s movement became free and outstanding without a desk. This implies that the desk acted as a barrier between the children and the teacher. Removal of this barrier resulted in the children’s reactions becoming synchronized with those of the teacher. The SFSS results proved that the children experienced more flow without a barrier than with a barrier. Apparently, synchrony is what caused flow or social emotions in the classroom. The main conclusion is that synchrony leads to cognitive outcomes such as children’s academic performance in EFL learning.

Keywords: Movement synchrony, teacher–child relationships, English as a foreign language, EFL learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
10245 Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering

Authors: Dewan Md. Farid, Nouria Harbi, Suman Ahmmed, Md. Zahidur Rahman, Chowdhury Mofizur Rahman

Abstract:

Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Naïve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through naïve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions.

Keywords: Clustering, detection rate, false positive, naïveBayesian classifier, network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5539
10244 Decision Support System Based on Data Warehouse

Authors: Yang Bao, LuJing Zhang

Abstract:

Typical Intelligent Decision Support System is 4-based, its design composes of Data Warehouse, Online Analytical Processing, Data Mining and Decision Supporting based on models, which is called Decision Support System Based on Data Warehouse (DSSBDW). This way takes ETL,OLAP and DM as its implementing means, and integrates traditional model-driving DSS and data-driving DSS into a whole. For this kind of problem, this paper analyzes the DSSBDW architecture and DW model, and discusses the following key issues: ETL designing and Realization; metadata managing technology using XML; SQL implementing, optimizing performance, data mapping in OLAP; lastly, it illustrates the designing principle and method of DW in DSSBDW.

Keywords: Decision Support System, Data Warehouse, Data Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3867
10243 Academic Influence of Social Network Sites on the Collegiate Performance of Technical College Students

Authors: Jameson McFarlane, Thorne J. McFarlane, Leon Bernard

Abstract:

Social network sites (SNS) is an emerging phenomenon that is here to stay. The popularity and the ubiquity of the SNS technology are undeniable. Because most SNS are free and easy to use people from all walks of life and from almost any age are attracted to that technology. College age students are by far the largest segment of the population using SNS. Since most SNS have been adapted for mobile devices, not only do you find students using this technology in their study, while working on labs or on projects, a substantial number of students have been found to use SNS even while listening to lectures. This study found that SNS use has a significant negative impact on the grade point average of college students particularly in the first semester. However, this negative impact is greatly diminished by the end of the third semester partly because the students have adjusted satisfactorily to the challenges of college or because they have learned how to adequately manage their time. It was established that the kinds of activities the students are engaged in during the SNS use are the leading factor affecting academic performance. Of those activities, using SNS during a lecture or while studying is the foremost contributing factor to lower academic performance. This is due to “cognitive” or “information” bottleneck, a condition in which the students find it very difficult to multitask or to switch between resources leading to inefficiency in information retention and thus, educational performance.

Keywords: Social network sites, social network analysis, regression coefficient, psychological engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
10242 Secure Low-Bandwidth Video Streaming through Reliable Multipath Propagation in MANETs

Authors: S. Mohideen Badhusha, K. Duraiswamy

Abstract:

Most of the existing video streaming protocols provide video services without considering security aspects in decentralized mobile ad-hoc networks. The security policies adapted to the currently existing non-streaming protocols, do not comply with the live video streaming protocols resulting in considerable vulnerability, high bandwidth consumption and unreliability which cause severe security threats, low bandwidth and error prone transmission respectively in video streaming applications. Therefore a synergized methodology is required to reduce vulnerability and bandwidth consumption, and enhance reliability in the video streaming applications in MANET. To ensure the security measures with reduced bandwidth consumption and improve reliability of the video streaming applications, a Secure Low-bandwidth Video Streaming through Reliable Multipath Propagation (SLVRMP) protocol architecture has been proposed by incorporating the two algorithms namely Secure Low-bandwidth Video Streaming Algorithm and Reliable Secure Multipath Propagation Algorithm using Layered Video Coding in non-overlapping zone routing network topology. The performances of the proposed system are compared to those of the other existing secure multipath protocols Sec-MR, SPREAD using NS 2.34 and the simulation results show that the performances of the proposed system get considerably improved.

Keywords: Bandwidth consumption, layered video coding, multipath propagation, reliability, security threats, video streaming applications, vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886
10241 An Ontology Based Question Answering System on Software Test Document Domain

Authors: Meltem Serhatli, Ferda N. Alpaslan

Abstract:

Processing the data by computers and performing reasoning tasks is an important aim in Computer Science. Semantic Web is one step towards it. The use of ontologies to enhance the information by semantically is the current trend. Huge amount of domain specific, unstructured on-line data needs to be expressed in machine understandable and semantically searchable format. Currently users are often forced to search manually in the results returned by the keyword-based search services. They also want to use their native languages to express what they search. In this paper, an ontology-based automated question answering system on software test documents domain is presented. The system allows users to enter a question about the domain by means of natural language and returns exact answer of the questions. Conversion of the natural language question into the ontology based query is the challenging part of the system. To be able to achieve this, a new algorithm regarding free text to ontology based search engine query conversion is proposed. The algorithm is based on investigation of suitable question type and parsing the words of the question sentence.

Keywords: Description Logics, ontology, question answering, reasoning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
10240 Functionality of Negotiation Agent on Value-based Design Decision

Authors: Arazi Idrus, Christiono Utomo

Abstract:

This paper presents functionality of negotiation agent on value-based design decision. The functionality is based on the characteristics of the system and goal specification. A Prometheus Design Tool model was used for developing the system. Group functionality will be the attribute for negotiation agents, which comprises a coordinator agent and decision- maker agent. The results of the testing of the system to a building system selection on valuebased decision environment are also presented.

Keywords: Functionality, negotiation agent, value-baseddecision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
10239 A Methodology for Automatic Diversification of Document Categories

Authors: Dasom Kim, Chen Liu, Myungsu Lim, Soo-Hyeon Jeon, Byeoung Kug Jeon, Kee-Young Kwahk, Namgyu Kim

Abstract:

Recently, numerous documents including large volumes of unstructured data and text have been created because of the rapid increase in the use of social media and the Internet. Usually, these documents are categorized for the convenience of users. Because the accuracy of manual categorization is not guaranteed, and such categorization requires a large amount of time and incurs huge costs. Many studies on automatic categorization have been conducted to help mitigate the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorize complex documents with multiple topics because they work on the assumption that individual documents can be categorized into single categories only. Therefore, to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, the learning process employed in these studies involves training using a multi-categorized document set. These methods therefore cannot be applied to the multi-categorization of most documents unless multi-categorized training sets using traditional multi-categorization algorithms are provided. To overcome this limitation, in this study, we review our novel methodology for extending the category of a single-categorized document to multiple categorizes, and then introduce a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.

Keywords: Big Data Analysis, Document Classification, Text Mining, Topic Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
10238 Optimization of New 25A-size Metal Gasket Design Based on Contact Width Considering Forming and Contact Stress Effect

Authors: Didik Nurhadiyanto , Moch Agus Choiron , Ken Kaminishi , Shigeyuki Haruyama

Abstract:

At the previous study of new metal gasket, contact width and contact stress were important design parameter for optimizing metal gasket performance. However, the range of contact stress had not been investigated thoroughly. In this study, we conducted a gasket design optimization based on an elastic and plastic contact stress analysis considering forming effect using FEM. The gasket model was simulated by using two simulation stages which is forming and tightening simulation. The optimum design based on an elastic and plastic contact stress was founded. Final evaluation was determined by helium leak quantity to check leakage performance of both type of gaskets. The helium leak test shows that a gasket based on the plastic contact stress design better than based on elastic stress design.

Keywords: Contact stress, metal gasket, plastic, elastic

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
10237 Relationships among Tourists’ Needs for Uniqueness, Perceived Authenticity and Behavioral Intentions

Authors: Deniz Karagöz Yüncü

Abstract:

This study tested a structural model which investigates the relationships among tourists’ need for uniqueness, perceived authenticity (object-based authenticity and existential authenticity) and behavioral intentions to consume cultural and heritage destinations. The sample of the study comprised of 281 participants in a cultural heritage site, in Cappadocia, Turkey. The data were provided via face to face interviews in two months (September and October) which considered the high season. Structural equation modeling was employed to test the causal relationships among the hypotheses. Findings revealed tourists’ creative choice had an influence on object-based authenticity and existential authenticity. Tourists’ avoidance had an influence on object-based authenticity. The study concluded that two dimensions, namely, the object based authenticity and existential authenticity had significant impact on behavioral intentions.

Keywords: Needs for uniqueness, object-based authenticity, existential authenticity, behavioral intentions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654
10236 The Spatial Equity Assessment of Community-Based Elderly Care Facilities in Old Neighborhood of Chongqing

Authors: Jiayue Zhao, Hongjuan Wu, Guiwen Liu

Abstract:

Old neighborhoods with a large elderly population depend on community-based elderly care facilities (community-based ECFs) for aging-in-place. Yet, due to scarce and scattered land, the facilities face inequitable distribution. This research uses spatial equity theory for measuring the spatial equity of community-based ECFs in old neighborhoods. Field surveys gather granular data and methods including coverage rate, Gini coefficient, Lorenz curve and G2SFCA. The findings showed that coverage is substantial but does not indicate supply is matching to demand, nor does it imply superior accessibility. The key contributions are that structuring spatial equity framework considering elderly residents’ travel behavior. This study dedicated to the international literature on spatial equity from the perspective of travel behavior and could provide valuable suggestions for the urban planning of old neighborhoods.

Keywords: Community-based ECFs, elderly residents’ travel behavior, old neighborhoods, spatial equity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66
10235 Bio-inspired Audio Content-Based Retrieval Framework (B-ACRF)

Authors: Noor A. Draman, Campbell Wilson, Sea Ling

Abstract:

Content-based music retrieval generally involves analyzing, searching and retrieving music based on low or high level features of a song which normally used to represent artists, songs or music genre. Identifying them would normally involve feature extraction and classification tasks. Theoretically the greater features analyzed, the better the classification accuracy can be achieved but with longer execution time. Technique to select significant features is important as it will reduce dimensions of feature used in classification and contributes to the accuracy. Artificial Immune System (AIS) approach will be investigated and applied in the classification task. Bio-inspired audio content-based retrieval framework (B-ACRF) is proposed at the end of this paper where it embraces issues that need further consideration in music retrieval performances.

Keywords: Bio-inspired audio content-based retrieval framework, features selection technique, low/high level features, artificial immune system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597
10234 A First Course in Numerical Methods with “Mathematica“

Authors: Andrei A. Kolyshkin

Abstract:

In the present paper some recommendations for the use of software package “Mathematica" in a basic numerical analysis course are presented. The methods which are covered in the course include solution of systems of linear equations, nonlinear equations and systems of nonlinear equations, numerical integration, interpolation and solution of ordinary differential equations. A set of individual assignments developed for the course covering all the topics is discussed in detail.

Keywords: Numerical methods, "Mathematica", e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3677
10233 An Automatic Gridding and Contour Based Segmentation Approach Applied to DNA Microarray Image Analysis

Authors: Alexandra Oliveros, Miguel Sotaquirá

Abstract:

DNA microarray technology is widely used by geneticists to diagnose or treat diseases through gene expression. This technology is based on the hybridization of a tissue-s DNA sequence into a substrate and the further analysis of the image formed by the thousands of genes in the DNA as green, red or yellow spots. The process of DNA microarray image analysis involves finding the location of the spots and the quantification of the expression level of these. In this paper, a tool to perform DNA microarray image analysis is presented, including a spot addressing method based on the image projections, the spot segmentation through contour based segmentation and the extraction of relevant information due to gene expression.

Keywords: Contour segmentation, DNA microarrays, edge detection, image processing, segmentation, spot addressing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
10232 A Simulated Environment Approach to Investigate the Effect of Adversarial Perturbations on Traffic Sign for Automotive Software-in-Loop Testing

Authors: Sunil Patel, Pallab Maji

Abstract:

To study the effect of adversarial attack environment must be controlled. Autonomous driving includes mainly 5 phases sense, perceive, map, plan, and drive. Autonomous vehicles sense their surrounding with the help of different sensors like cameras, radars, and lidars. Deep learning techniques are considered Blackbox and found to be vulnerable to adversarial attacks. In this research, we study the effect of the various known adversarial attacks with the help of the Unreal Engine-based, high-fidelity, real-time raytraced simulated environment. The goal of this experiment is to find out if adversarial attacks work in moving vehicles and if an unknown network may be targeted. We discovered that the existing Blackbox and Whitebox attacks have varying effects on different traffic signs. We observed that attacks that impair detection in static scenarios do not have the same effect on moving vehicles. It was found that some adversarial attacks with hardly noticeable perturbations entirely blocked the recognition of certain traffic signs. We observed that the daylight condition has a substantial impact on the model's performance by simulating the interplay of light on traffic signs. Our findings have been found to closely resemble outcomes encountered in the real world.

Keywords: Adversarial attack simulation, computer simulation, ray-traced environment, realistic simulation, unreal engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 439
10231 Comparative Evaluation of Color-Based Video Signatures in the Presence of Various Distortion Types

Authors: Aritz Sánchez de la Fuente, Patrick Ndjiki-Nya, Karsten Sühring, Tobias Hinz, Karsten Müller, Thomas Wiegand

Abstract:

The robustness of color-based signatures in the presence of a selection of representative distortions is investigated. Considered are five signatures that have been developed and evaluated within a new modular framework. Two signatures presented in this work are directly derived from histograms gathered from video frames. The other three signatures are based on temporal information by computing difference histograms between adjacent frames. In order to obtain objective and reproducible results, the evaluations are conducted based on several randomly assembled test sets. These test sets are extracted from a video repository that contains a wide range of broadcast content including documentaries, sports, news, movies, etc. Overall, the experimental results show the adequacy of color-histogram-based signatures for video fingerprinting applications and indicate which type of signature should be preferred in the presence of certain distortions.

Keywords: color histograms, robust hashing, video retrieval, video signature

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450