

Abstract—Processing the data by computers and performing

reasoning tasks is an important aim in Computer Science. Semantic

Web is one step towards it. The use of ontologies to enhance the

information by semantically is the current trend. Huge amount of

domain specific, unstructured on-line data needs to be expressed in

machine understandable and semantically searchable format.

Currently users are often forced to search manually in the results

returned by the keyword-based search services. They also want to use

their native languages to express what they search. In this paper, an

ontology-based automated question answering system on software

test documents domain is presented. The system allows users to enter

a question about the domain by means of natural language and

returns exact answer of the questions. Conversion of the natural

language question into the ontology based query is the challenging

part of the system. To be able to achieve this, a new algorithm

regarding free text to ontology based search engine query conversion

is proposed. The algorithm is based on investigation of suitable

question type and parsing the words of the question sentence.

Keywords—Description Logics, ontology, question answering,

reasoning.

I. INTRODUCTION

RRESPECTIVE of the domain, the main aim of a Question

Answering system is getting a question from the user,

comprehending it, searching the answer in an efficient way and

presenting the answers to the user. Many methods have been

devised for this purpose [1], [2], [3], [4], [5], [6], [7], [9]. In

this paper, an automated question answering system on

software test document domain is presented. This basic idea is

using an ontology for representing the knowledge and

developing the knowledge base. Although the ultimate aim of

question answering is finding the exact answer to any question

in any context, in today’s world of automated content

processing, this is inherently a hard task because without a

restriction imposed either on the question type or on the user’s

vocabulary, the question answering process gets a big hit even

at the question interpretation phase. This is why, most of the

efforts are focused on answering “factoid style” questions,

since it is much more efficient to use through text processing

M. Serhatli is with the Vodafone Telecommunication A.S., Istanbul,

34398 Turkey (phone: 212-367-0509; e-mail:

meltem.serhatli@vodafone.com). She is also with the Department of

Computer Engineering, Middle East Technical University, Ankara, 06531

Turkey (e-mail: e1305416@ceng.metu.edu.tr).

F. N. Alpaslan is with the Department of Computer Engineering, Middle

East Technical University, Ankara, 06531 Turkey (fax: 312-210-5544; e-

mail: alpaslan@ceng. metu.edu.tr).

algorithms based on pattern extraction or information retrieval

techniques.

Speaking in Description Logics terms [8], the ontology has

provided the basic classes, their properties and their relations

between themselves as TBoxes. Moreover, the individuals,

which are initializations of the classes aforementioned, are

represented as ABoxes. With this approach, the question

answering mechanism simply becomes as a set of reasoning

tasks over the ontology. The aim of this work is constructing a

question answering system using document ontology. The

ontology to be used contains both the information semantics in

the shape of TBoxes and the answers to the questions as

ABoxes. The question answering system provides an authoring

environment which facilitates content sharing by automatically

tagging content with semantic metadata and by using open

standards to store it in networked repositories supporting

symbolic and similarity-based indexing and search capabilities

for all content types.

This work will present a free text to ontology based search

engine query conversion algorithm. The idea is to control the

matching of the words in the question sentence to the classes

and attributes, if the parsing with words cannot be done then

to find classes and attributes by looking at the rules. If the

related classes and attributes cannot be found, then to look for

the synonyms of the words in WordNet.

This paper is organized as follows: After briefly giving the

motivation and related work in section II; section III describes

the implementation of the proposed algorithm; section IV

presents some results of the new algorithm on a real life case

problem from software test document domain; section V draws

the conclusions and future work.

II. MOTIVATION AND RELATED WORK

Although it is met with difficulties to find applications

similar to the proposed one, it is encountered several works

dealing with querying ontologies in NL. The most closely

related approach is Kaufmann et al. [9]. They present a natural

language interface to semantic web querying. The interface

allows formulating queries in Attempto Controlled English

(ACE), a subset of natural English. Each ACE query is

translated into a discourse representation structure – a variant

of the language of first-order logic – that is then translated into

an N3-based semantic web querying language using an

ontology-based rewriting framework. On the other hand, they

presents some limitations of their approach. First, the use of a

An Ontology Based Question Answering

System on Software Test Document Domain

Meltem Serhatli, Ferda N. Alpaslan

I

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:6, 2009

1630International Scholarly and Scientific Research & Innovation 3(6) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

6,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

57
6.

pd
f

controlled language imposes a cost on the user since the

language has to be learned. Users might be discouraged from

employing a language they have to learn, but experience with

ACE has shown that learning a controlled language to phrase

statements and queries is much easier than learning logic, and

takes only a couple of days for the basics and two weeks for

full proficiency, which is beyond what users need to write

queries. Second, their current prototype requires some manual

adaptation of the rewrite rules when using it with a new

ontology or new knowledge base. The approach differs from

ours in that usage of a controlled language requires a learning

phase whereas there in no necessity like this in our approach.

They reformulate the user queries in ACE whereas the

proposed system does not reformulate the queries to any subset

of natural english. Another project which is found similar to

the proposed one is a simple application of Description Logics

in [2]. They present a system which allows students to enter a

freely formulated question about computer history. The system

returns a very short commented list of multimedia clips where

the users find the answer to their questions. The most

important part is to find the semantically suitable clip(s). The

system uses a knowledge base with 300 multimedia clips that

cover the principal events in computer history. The user enters

a question in natural language and the system returns a list of

suitable clips as an answer. The semantic search engine gets a

NL question from the user and maps it to a general assertion.

To make it possible, it firstly looks for semantically important

words and translates them into RDF. A specific domain

dictionaryis used to retrieve the semantics for every word in

the sentence. Semantically unnecessary words like {what, did}

or too general words like {operating, system} are left out of

account. After that, this transformed question is mapped to a

general assertion. The set of general assertions is given to the

system, and generally contains only few elements. In [2], the

question is being mapped to the general assertion. Based on

that interpretation, an RDQL query is generated and started

against the knowledge base. They achieved a interpretation of

a user question in [2] in two steps: the mapping of concepts

over the TBox, and the transformation of the user question into

an ABox query. For the mapping of concepts, the authors

modified a matching algorithm in order to use it in the system.

Firstly, they improved the reasoning mechanism in order to

perform a query over a non-empty ABox. Secondly, because

of dealing with multimedia clips where a textual content is not

available, they considered metadata rather than the documents

content. On the other hand, one of the principal problems of

the solution presented in [2] is the matching algorithm which

was created for being used with WordNet as knowledge

source. The authors thought that a large-scale dictionary like

WordNet was not the best potential solution for a domain

ontology about computer history. Therefore, their information

retrieval system required setting the different interpretations in

a context to find the best match. In addition, large-scale

dictionaries often lack specific domain expressions. Because

of these reasons, they proposed either to use an existing

domain specific dictionary or to create a dictionary of its own.

Proposed approach differs in such a way that it created its own

document ontology as a domain specific dictionary and its

matching algorithm differs from theirs.

 The other project which is found relevant to the proposed

one is named Aqualog [1]. They introduces a portable question

answering system with the techniques for making sense of NL

queries and mapping them to semantic markup in [1]. These

techniques are listed as follows:

• It makes use of the GATE NLP platform in linguistic

component,

• String metrics algorithms ,

• WordNet,

• Novel ontology-based similarity services for relations

and classes to make sense of user queries with respect

to the target knowledge base.

They defined their system as a waterfall model. In this model,

first of all a natural language query gets translated into a set of

intermediate, triple-based representations, after that query

triples and finally these are translated into ontology-

compatible triples. Because of the two basic reasons, they

preferred to use a triple-based data model. First reason is the

possibility of representing most queries as triples. The other

one is RDF-based knowledge representation formalisms for

the semantic web, such as RDF itself or OWL also subscribe

to this binary relational model and express statements as

<subject, predicate, object>. In contrast to our approach,

AquaLog combines a learning component, which ensures that the

performance of the system improves over time.

III. THE PROPOSED APPROACH

A. System Design

For supporting concurrent users, increasing accessibility and

scalability, the system is designed in a web based fashion.

Model-View-Controller design pattern is applied in this work.

The interface of the system is completely separated from the

business logic part as a web application. The most difficult

part of an automated question answering application can be

identified as comprehending the question to be asked. To get

both what has been asked and where to be searched, a common

ground must be set for representing the semantic layer of the

document domain. Description Logics has been used for that

purposes. The document ontology used in this work is in

OWL-DL language. Moreover, OWL is a widely accepted

ontology language. Reasoning and querying operations are

handled by Pellet reasoner which provides complete and

efficient algorithms to answer queries. It complies with OWL

formal semantics. It, first, loads the ontology and accepts

requests from, possibly many, different interfaces. Web

applications that fulfill the DIG Interface can easily

communicate with the Pellet Server. The DIG Interface is the

common interface for Description Logics applications

designed by DL Implementation Group in XML. For our

purpose, the DIG interface is used to send the queries to the

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:6, 2009

1631International Scholarly and Scientific Research & Innovation 3(6) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

6,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

57
6.

pd
f

Pellet DIG Server and get the answers back. The main flow of

action is initiated by the user request, which is posted from the

question page. SearchServlet gets that request and the system

accesses to the Pellet reasoner and obtains the answer from

there. Thus, in this work, it is tried to find the answers of

questions about a software test document domain, which can

be constructed in a limited way. The main types of the

questions were who, what, when, which and how many. The

answer extraction was held by means of an ontology designed

for the domain under concern. In Fig. 1, it is shown an

overview of the system.

OWL

Search.jsp Search

Servlet
Ontology

Class

DIG
Client

Pellet
Reasoner

Fig. 1 Overview of the system

B. Implementation

In the system, the action is initiated by entering the question

and pushing the “Search” button. In Fig. 2, a screenshot shows

an example of a question and the returned answers. After

loading and reading the ontology for preparing the model, the

process of parsing the sentence is started. As a first step of this

process, the query sentence is formed by an object derived

from Sentence(question, true) class. By using this object, the

type of the sentence is investigated and the suitable question

type is tried to found for the question sentence. As a second

step, the words of the sentence are kept for parsing (except

"the", "a", "an", "of", "is", "was", "has", "who", "what",

"when", "which", "how", "many ", "much", "why"). While

parsing the sentence, the strategies given below are taken into

consideration :

• Matching of the words to the classes and attributes

being controlled

• If the parsing with words cannot be done, it is tried

to find classes and attributes by looking at the

rules.

• If the related classes and attributes cannot be

found, it looks for the synonyms of the words in

WordNet.

 Fig. 2 Image of the screen where the users enter the question and

get the answers

After finishing the parsing, the query is built. While forming

the query, question sentence types and auxiliary verbs are

taken into consideration. Although individual names are not

entered, they are taken into consideration with the closest

individual names. For example, "Telecomm_Journal" released

is an example of question sentence with missing words. To be

able to find the closest individual name, fuzzy string matching

method is used Lastly, the query is sent to the reasoner by

means of DIG interface. After getting and processing the query

by the reasoner, it is sent to the web page over the

SearchServlet. Finally, the answer is displayed to the users.

SQWRL is used for the querying of OWL ontologies. It is a

SWRL-based query language. SQWRL queries are not

independent of SWRL rules in an ontology. They can function

in conjunction with those rules. SQWRL queries can thus be

used to retrieve knowledge inferred by SWRL rules. In Fig. 3,

a screenshot shows the defined rules to be used in our Q&A

System.

Fig. 3 The figure shows the rules defined in Protégé editor

Here is an example of SQWRL query which finds “all the

other tests belong to Voucher Charging Tests document”. As

test is included in the Document ontology-model as the

hasDocument property, it can be translated natural language

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:6, 2009

1632International Scholarly and Scientific Research & Innovation 3(6) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

6,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

57
6.

pd
f

query into the SQWRL query as shown in below example

query : test<Voucher_Charging_Tests> ?

hasDocument<Voucher_Charging_Tests,?a> ?

 test<?b> ? hasDocument<?b,?a> ? sqwrl:select<?b>

It is asked members of the software test team of a company

to enter the queries, which search for test documents that

would be of interest to them. Fig. 4 shows a selection of these

queries.

Fig. 4 A selection of real-world NL queries from which are

generated correct SQWRL queries

As it is mentioned before, fuzzy string matching method is

used as a part of the proposed approach. It helps to find the

closest individual names which are missing in the queries

entered by the user. Fig. 5 shows a selection of these queries.

 Fig. 5 A selection of real-world NL queries with missing words in

the question sentence

IV. RESULTS OF THE PROPOSED ALGORITHM

In order to validate the proposed approach, the approach has

been tested with a real-life project in software test document

domain. As the first step of the experimentation phase, a

comparison is made between the expected answer of the

questions and the found answer of the questions for each

dataset used in the testing session. For getting the success rate,

a set of formulas is used as follows:

Therefore, number of true positives, true negatives, false

positives and false negatives are counted for each data set used

in testing session .

 According to the counted numbers and the above formulas;

accuracy of this approach becomes 91%, precision becomes

35% and recall becomes 84% for this approach. By using the

last two formulas, false positive rate becomes 9% and false

negative rate becomes 7%.

V. CONCLUSION AND FUTURE WORK

This paper described a Q&A system, based on an ontology

on software test document domain. It explained how the

ontology is constructed and a query in natural language is

received and transformed into an expression that can be

asserted to a Description Logics reasoner. The aim for

implementing this system was to provide exact answers to the

questions asked by the newly coming members of a software

test team. To summarize, although the results obtained are

accurate, the work presented in this paper can be extended in

several directions: The type of the asked questions can be

increased while tailoring the document domain in a way that it

includes many more different classes and properties in

different documents. In this process, the known document

taxonomies have to be better exploited in order to capture real

world semantics. Performance issues can be enhanced. For

each new question, the reasoner is loading the ontology into

the memory. This must be avoided at all costs. There might be

some improvements to the term expansion and query

relaxation strategies for getting more precise answers.

Moreover, much trickier questions that require complex

automated reasoning processes can also be handled by the

system.

ACKNOWLEDGMENT

This work was fully supported by the Department of

Computer Enginering in Middle East Technical University and

partially supported by the Vodafone Telecommunication A.S

in Turkey. M. Serhatli and F.N. Alpaslan would like to thank

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:6, 2009

1633International Scholarly and Scientific Research & Innovation 3(6) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

6,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

57
6.

pd
f

those members of the software test team who took part in the

phase of entering the queries to the system.

REFERENCES

[1] V. Lopez, M. Pasin, E. Motta, AquaLog: An Ontology-portable

Question Answering System for the Semantic Web. In Proceedings

European Semantic Web Conference, Crete (2005)

[2] S. Linckels, C. Meinel, In Proceedings of the IADIS International

Conference of Applied Computing (IADIS AC2005), Vol. II, pp. 306-

311, Lisbon, Portugal (2005)

[3] Z. Li, K. Ramani, Ontology-based design information extraction and

retrieval. Journal of Artificial Intelligence for Engineering Design,

Analysis and Manufacturing, 21(2), pp. 137–154, 2007.

[4] L. Cinque, A. Malizia, R. Navigli, "OntoDoc: An Ontology-Based

Query System for Digital Libraries," icpr,pp.671-674, 17th International

Conference on Pattern Recognition (ICPR'04) - Volume 2, 2004

[5] J. Guan, X. Zhang, J. Deng, Y. Qu, "An Ontology-Driven Information

Retrieval Mechanism for Semantic Information Portals," skg,pp.63,

First International Conference on Semantics, Knowledge and Grid

(SKG'05), 2005

[6] U. Hermjakob, Parsing and Question Classification for Question

Answering. In Proceedings of the ACL Workshop on Open-Domain

Question Answering (2001)

[7] S. Narayanan, S. Harabagiu, "Question Answering based on Semantic

Structures". The 20th International Conference on Computational

Linguistics (COLING 2004), Geneva (August 2004)

[8] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Schneider, P,

The Description Logic Handbook. Cambridge University Press, 2003

[9] A. Bernstein, E. Kaufmann, A. Göhring, C. Kiefer, “Querying

Ontologies:

A Controlled English Interface for End-users”, The Semantic Web –

ISWC 2005, Volume 3729/2005, pp. 112-126, 2005

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:3, No:6, 2009

1634International Scholarly and Scientific Research & Innovation 3(6) 2009 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:3

, N
o:

6,
 2

00
9

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/9

57
6.

pd
f

