Search results for: Computational modeling
487 Numerical Investigation of Hot Oil Velocity Effect on Force Heat Convection and Impact of Wind Velocity on Convection Heat Transfer in Receiver Tube of Parabolic Trough Collector System
Authors: O. Afshar
Abstract:
A solar receiver is designed for operation under extremely uneven heat flux distribution, cyclic weather, and cloud transient cycle conditions, which can include large thermal stress and even receiver failure. In this study, the effect of different oil velocity on convection coefficient factor and impact of wind velocity on local Nusselt number by Finite Volume Method will be analyzed. This study is organized to give an overview of the numerical modeling using a MATLAB software, as an accurate, time efficient and economical way of analyzing the heat transfer trends over stationary receiver tube for different Reynolds number. The results reveal when oil velocity is below 0.33m/s, the value of convection coefficient is negligible at low temperature. The numerical graphs indicate that when oil velocity increases up to 1.2 m/s, heat convection coefficient increases significantly. In fact, a reduction in oil velocity causes a reduction in heat conduction through the glass envelope. In addition, the different local Nusselt number is reduced when the wind blows toward the concave side of the collector and it has a significant effect on heat losses reduction through the glass envelope.
Keywords: Receiver tube, heat convection, heat conduction, Nusselt number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896486 Rivers Drain Impact on the Black Sea Coastal Line Biocenosis within the Greater Sochi Area Assessed by Bioassay Method
Authors: Tatiana L. Gorbunova
Abstract:
The research is dedicated to the study of the polluted river inflow impact on the Black Sea coastal marine environment within the watercourse’s plumes in the Greater Sochi area applying bioassay methods with using freshwater and marine microalgae. River waters were analyzed using microalgae Chlorella vulgaris Beijer and sea waters were tested with marine diatoms Phaeodactylum tricornutum Bohlin. Experiments included algae cells abundancy growth assessments in acute (24 hours), sub-acute (72 hours) and chronic (168 hours/7 days) tests. The increase in algal cell growth rates compared to the control in the summer period was detected as a consequence of the recreational activities intensification during the tourism seasonal peak. Most of the analyzed samples demonstrated a significant effect of algae cells growth stimulation compared to the control. It is established that under the impact of contaminants carried by river’s drain to the sea, the capacity of the coastal marine ecosystem is partially capable to compensate its effect on the coastal biocenosis, but the general trends of the impact processes remain constant.
Keywords: Algae abundance growth, bioassay, microalgae, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81485 Forecasting 24-Hour Ahead Electricity Load Using Time Series Models
Authors: Ramin Vafadary, Maryam Khanbaghi
Abstract:
Forecasting electricity load is important for various purposes like planning, operation and control. Forecasts can save operating and maintenance costs, increase the reliability of power supply and delivery systems, and correct decisions for future development. This paper compares various time series methods to forecast 24 hours ahead of electricity load. The methods considered are the Holt-Winters smoothing, SARIMA Modeling, LSTM Network, Fbprophet and Tensorflow probability. The performance of each method is evaluated by using the forecasting accuracy criteria namely, the Mean Absolute Error and Root Mean Square Error. The National Renewable Energy Laboratory (NREL) residential energy consumption data are used to train the models. The results of this study show that SARIMA model is superior to the others for 24 hours ahead forecasts. Furthermore, a Bagging technique is used to make the predictions more robust. The obtained results show that by Bagging multiple time-series forecasts we can improve the robustness of the models for 24 hour ahead electricity load forecasting.
Keywords: Bagging, Fbprophet, Holt-Winters, LSTM, Load Forecast, SARIMA, tensorflow probability, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 483484 Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method
Authors: M. M. Shokrieh, A. Karamnejad
Abstract:
This paper deals with a numerical analysis of the transient response of composite beams with strain rate dependent mechanical properties by use of a finite difference method. The equations of motion based on Timoshenko beam theory are derived. The geometric nonlinearity effects are taken into account with von Kármán large deflection theory. The finite difference method in conjunction with Newmark average acceleration method is applied to solve the differential equations. A modified progressive damage model which accounts for strain rate effects is developed based on the material property degradation rules and modified Hashin-type failure criteria and added to the finite difference model. The components of the model are implemented into a computer code in Mathematica 6. Glass/epoxy laminated composite beams with constant and strain rate dependent mechanical properties under dynamic load are analyzed. Effects of strain rate on dynamic response of the beam for various stacking sequences, load and boundary conditions are investigated.Keywords: Composite beam, Finite difference method, Progressive damage modeling, Strain rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990483 Effect of Size of the Step in the Response Surface Methodology using Nonlinear Test Functions
Authors: Jesús Everardo Olguín Tiznado, Rafael García Martínez, Claudia Camargo Wilson, Juan Andrés López Barreras, Everardo Inzunza González, Javier Ordorica Villalvazo
Abstract:
The response surface methodology (RSM) is a collection of mathematical and statistical techniques useful in the modeling and analysis of problems in which the dependent variable receives the influence of several independent variables, in order to determine which are the conditions under which should operate these variables to optimize a production process. The RSM estimated a regression model of first order, and sets the search direction using the method of maximum / minimum slope up / down MMS U/D. However, this method selects the step size intuitively, which can affect the efficiency of the RSM. This paper assesses how the step size affects the efficiency of this methodology. The numerical examples are carried out through Monte Carlo experiments, evaluating three response variables: efficiency gain function, the optimum distance and the number of iterations. The results in the simulation experiments showed that in response variables efficiency and gain function at the optimum distance were not affected by the step size, while the number of iterations is found that the efficiency if it is affected by the size of the step and function type of test used.Keywords: RSM, dependent variable, independent variables, efficiency, simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989482 An Agent Based Dynamic Resource Scheduling Model with FCFS-Job Grouping Strategy in Grid Computing
Authors: Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, Prachet Bhuyan, Utpal Chandra Dey
Abstract:
Grid computing is a group of clusters connected over high-speed networks that involves coordinating and sharing computational power, data storage and network resources operating across dynamic and geographically dispersed locations. Resource management and job scheduling are critical tasks in grid computing. Resource selection becomes challenging due to heterogeneity and dynamic availability of resources. Job scheduling is a NP-complete problem and different heuristics may be used to reach an optimal or near optimal solution. This paper proposes a model for resource and job scheduling in dynamic grid environment. The main focus is to maximize the resource utilization and minimize processing time of jobs. Grid resource selection strategy is based on Max Heap Tree (MHT) that best suits for large scale application and root node of MHT is selected for job submission. Job grouping concept is used to maximize resource utilization for scheduling of jobs in grid computing. Proposed resource selection model and job grouping concept are used to enhance scalability, robustness, efficiency and load balancing ability of the grid.Keywords: Agent, Grid Computing, Job Grouping, Max Heap Tree (MHT), Resource Scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2090481 A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS
Authors: Jian Shi, Baoguo Yu, Haonan Jia, Meng Liu, Ping Huang
Abstract:
Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation.
Keywords: Air alignment, fine alignment, inertial navigation system, integrated navigation system, UKF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 541480 Automated Optic Disc Detection in Retinal Images of Patients with Diabetic Retinopathy and Risk of Macular Edema
Authors: Arturo Aquino, Manuel Emilio Gegundez, Diego Marin
Abstract:
In this paper, a new automated methodology to detect the optic disc (OD) automatically in retinal images from patients with risk of being affected by Diabetic Retinopathy (DR) and Macular Edema (ME) is presented. The detection procedure comprises two independent methodologies. On one hand, a location methodology obtains a pixel that belongs to the OD using image contrast analysis and structure filtering techniques and, on the other hand, a boundary segmentation methodology estimates a circular approximation of the OD boundary by applying mathematical morphology, edge detection techniques and the Circular Hough Transform. The methodologies were tested on a set of 1200 images composed of 229 retinographies from patients affected by DR with risk of ME, 431 with DR and no risk of ME and 540 images of healthy retinas. The location methodology obtained 98.83% success rate, whereas the OD boundary segmentation methodology obtained good circular OD boundary approximation in 94.58% of cases. The average computational time measured over the total set was 1.67 seconds for OD location and 5.78 seconds for OD boundary segmentation.
Keywords: Diabetic retinopathy, macular edema, optic disc, automated detection, automated segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2790479 CFD Simulation and Validation of Flow Pattern Transition Boundaries during Moderately Viscous Oil-Water Two-Phase Flow through Horizontal Pipeline
Authors: Anand B. Desamala, Anjali Dasari, Vinayak Vijayan, Bharath K. Goshika, Ashok K. Dasmahapatra, Tapas K. Mandal
Abstract:
In the present study, computational fluid dynamics (CFD) simulation has been executed to investigate the transition boundaries of different flow patterns for moderately viscous oil-water (viscosity ratio 107, density ratio 0.89 and interfacial tension of 0.032 N/m.) two-phase flow through a horizontal pipeline with internal diameter and length of 0.025 m and 7.16 m respectively. Volume of Fluid (VOF) approach including effect of surface tension has been employed to predict the flow pattern. Geometry and meshing of the present problem has been drawn using GAMBIT and ANSYS FLUENT has been used for simulation. A total of 47037 quadrilateral elements are chosen for the geometry of horizontal pipeline. The computation has been performed by assuming unsteady flow, immiscible liquid pair, constant liquid properties, co-axial flow and a T-junction as entry section. The simulation correctly predicts the transition boundaries of wavy stratified to stratified mixed flow. Other transition boundaries are yet to be simulated. Simulated data has been validated with our own experimental results.Keywords: CFD simulation, flow pattern transition, moderately viscous oil-water flow, prediction of flow transition boundary, VOF technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4249478 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks
Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar
Abstract:
DNA Barcode provides good sources of needed information to classify living species. The classification problem has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use the similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. However, all the used methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. In fact, our method permits to avoid the complex problem of form and structure in different classes of organisms. The empirical data and their classification performances are compared with other methods. Evenly, in this study, we present our system which is consisted of three phases. The first one, is called transformation, is composed of three sub steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. Moreover, the second phase step is an approximation; it is empowered by the use of Multi Library Wavelet Neural Networks (MLWNN). Finally, the third one, is called the classification of DNA Barcodes, is realized by applying the algorithm of hierarchical classification.Keywords: DNA Barcode, Electron-Ion Interaction Pseudopotential, Multi Library Wavelet Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967477 Software Maintenance Severity Prediction for Object Oriented Systems
Authors: Parvinder S. Sandhu, Roma Jaswal, Sandeep Khimta, Shailendra Singh
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.Keywords: Neural Network, Software faults, Software Metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575476 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics
Authors: M. Bodner, M. Scampicchio
Abstract:
Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.
Keywords: Adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781475 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling
Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar
Abstract:
Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.Keywords: Toolpath, part program, optimization, pocket.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019474 Interplay of Power Management at Core and Server Level
Authors: Jörg Lenhardt, Wolfram Schiffmann, Jörg Keller
Abstract:
While the feature sizes of recent Complementary Metal Oxid Semiconductor (CMOS) devices decrease the influence of static power prevails their energy consumption. Thus, power savings that benefit from Dynamic Frequency and Voltage Scaling (DVFS) are diminishing and temporal shutdown of cores or other microchip components become more worthwhile. A consequence of powering off unused parts of a chip is that the relative difference between idle and fully loaded power consumption is increased. That means, future chips and whole server systems gain more power saving potential through power-aware load balancing, whereas in former times this power saving approach had only limited effect, and thus, was not widely adopted. While powering off complete servers was used to save energy, it will be superfluous in many cases when cores can be powered down. An important advantage that comes with that is a largely reduced time to respond to increased computational demand. We include the above developments in a server power model and quantify the advantage. Our conclusion is that strategies from datacenters when to power off server systems might be used in the future on core level, while load balancing mechanisms previously used at core level might be used in the future at server level.Keywords: Power efficiency, static power consumption, dynamic power consumption, CMOS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694473 Construction of Recombinant E.coli Expressing Fusion Protein to Produce 1,3-Propanediol
Authors: Rosarin Rujananon, Poonsuk Prasertsan, Amornrat Phongdara, Tanate Panrat, Jibin Sun, Sugima Rappert, An-Ping Zeng
Abstract:
In this study, a synthetic pathway was created by assembling genes from Clostridium butyricum and Escherichia coli in different combinations. Among the genes were dhaB1 and dhaB2 from C. butyricum VPI1718 coding for glycerol dehydratase (GDHt) and its activator (GDHtAc), respectively, involved in the conversion of glycerol to 3-hydroxypropionaldehyde (3-HPA). The yqhD gene from E.coli BL21 was also included which codes for an NADPHdependent 1,3-propanediol oxidoreductase isoenzyme (PDORI) reducing 3-HPA to 1,3-propanediol (1,3-PD). Molecular modeling analysis indicated that the conformation of fusion protein of YQHD and DHAB1 was favorable for direct molecular channeling of the intermediate 3-HPA. According to the simulation results, the yqhD and dhaB1 gene were assembled in the upstream of dhaB2 to express a fusion protein, yielding the recombinant strain E. coliBL21 (DE3)//pET22b+::yqhD-dhaB1_dhaB2 (strain BP41Y3). Strain BP41Y3 gave 10-fold higher 1,3-PD concentration than E. coliBL21 (DE3)//pET22b+::yqhD-dhaB1_dhaB2 (strain BP31Y2) expressing the recombinant enzymes simultaneously but in a non-fusion mode. This is the first report using a gene fusion approach to enhance the biological conversion of glycerol to the value added compound 1,3- PD.Keywords: Recombinant E.coli, 1, 3-propanediol, glycerol, fusion protein.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014472 Modeling Directional Thermal Radiance Anisotropy for Urban Canopy
Authors: Limin Zhao, Xingfa Gu, C. Tao Yu
Abstract:
one of the significant factors for improving the accuracy of Land Surface Temperature (LST) retrieval is the correct understanding of the directional anisotropy for thermal radiance. In this paper, the multiple scattering effect between heterogeneous non-isothermal surfaces is described rigorously according to the concept of configuration factor, based on which a directional thermal radiance model is built, and the directional radiant character for urban canopy is analyzed. The model is applied to a simple urban canopy with row structure to simulate the change of Directional Brightness Temperature (DBT). The results show that the DBT is aggrandized because of the multiple scattering effects, whereas the change range of DBT is smoothed. The temperature difference, spatial distribution, emissivity of the components can all lead to the change of DBT. The “hot spot" phenomenon occurs when the proportion of high temperature component in the vision field came to a head. On the other hand, the “cool spot" phenomena occur when low temperature proportion came to the head. The “spot" effect disappears only when the proportion of every component keeps invariability. The model built in this paper can be used for the study of directional effect on emissivity, the LST retrieval over urban areas and the adjacency effect of thermal remote sensing pixels.Keywords: Directional thermal radiance, multiple scattering, configuration factor, urban canopy, hot spot effect
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605471 Supervisor Controller-Based Colored Petri Nets for Deadlock Control and Machine Failures in Automated Manufacturing Systems
Authors: Husam Kaid, Abdulrahman Al-Ahmari, Zhiwu Li
Abstract:
This paper develops a robust deadlock control technique for shared and unreliable resources in automated manufacturing systems (AMSs) based on structural analysis and colored Petri nets, which consists of three steps. The first step involves using strict minimal siphon control to create a live (deadlock-free) system that does not consider resource failure. The second step uses an approach based on colored Petri net, in which all monitors designed in the first step are merged into a single monitor. The third step addresses the deadlock control problems caused by resource failures. For all resource failures in the Petri net model a common recovery subnet based on colored petri net is proposed. The common recovery subnet is added to the obtained system at the second step to make the system reliable. The proposed approach is evaluated using an AMS from the literature. The results show that the proposed approach can be applied to an unreliable complex Petri net model, has a simpler structure and less computational complexity, and can obtain one common recovery subnet to model all resource failures.
Keywords: Automated manufacturing system, colored Petri net, deadlock, siphon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474470 Design and Characteristics of New Test Facility for Flat Plate Boundary Layer Research
Authors: N. Patten, T. M. Young, P. Griffin
Abstract:
Preliminary results for a new flat plate test facility are presented here in the form of Computational Fluid Dynamics (CFD), flow visualisation, pressure measurements and thermal anemometry. The results from the CFD and flow visualisation show the effectiveness of the plate design, with the trailing edge flap anchoring the stagnation point on the working surface and reducing the extent of the leading edge separation. The flow visualization technique demonstrates the two-dimensionality of the flow in the location where the thermal anemometry measurements are obtained. Measurements of the boundary layer mean velocity profiles compare favourably with the Blasius solution, thereby allowing for comparison of future measurements with the wealth of data available on zero pressure gradient Blasius flows. Results for the skin friction, boundary layer thickness, frictional velocity and wall shear stress are shown to agree well with the Blasius theory, with a maximum experimental deviation from theory of 5%. Two turbulence generating grids have been designed and characterized and it is shown that the turbulence decay downstream of both grids agrees with established correlations. It is also demonstrated that there is little dependence of turbulence on the freestream velocity.Keywords: CFD, Flow Visualisation, Thermal Anemometry, Turbulence Grids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773469 Modeling the Country Selection Decision in Retail Internationalization
Authors: A. Hortacsu, A. Tektas
Abstract:
This paper aims to develop a model that assists the international retailer in selecting the country that maximizes the degree of fit between the retailer-s goals and the country characteristics in his initial internationalization move. A two-stage multi criteria decision model is designed integrating the Analytic Hierarchy Process (AHP) and Goal Programming. Ethical, cultural, geographic and economic proximity are identified as the relevant constructs of the internationalization decision. The constructs are further structured into sub-factors within analytic hierarchy. The model helps the retailer to integrate, rank and weigh a number of hard and soft factors and prioritize the countries accordingly. The model has been implemented on a Turkish luxury goods retailer who was planning to internationalize. Actual entry of the specific retailer in the selected country is a support for the model. Implementation on a single retailer limits the generalizability of the results; however, the emphasis of the paper is on construct identification and model development. The paper enriches the existing literature by proposing a hybrid multi objective decision model which introduces new soft dimensions i.e. perceived distance, ethical proximity, humane orientation to the decision process and facilitates effective decision making.Keywords: Analytic hierarchy process, culture, ethics, goal programming, retail foreign market selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2341468 Representing Shared Join Points with State Charts: A High Level Design Approach
Authors: Muhammad Naveed, Muhammad Khalid Abdullah, Khalid Rashid, Hafiz Farooq Ahmad
Abstract:
Aspect Oriented Programming promises many advantages at programming level by incorporating the cross cutting concerns into separate units, called aspects. Join Points are distinguishing features of Aspect Oriented Programming as they define the points where core requirements and crosscutting concerns are (inter)connected. Currently, there is a problem of multiple aspects- composition at the same join point, which introduces the issues like ordering and controlling of these superimposed aspects. Dynamic strategies are required to handle these issues as early as possible. State chart is an effective modeling tool to capture dynamic behavior at high level design. This paper provides methodology to formulate the strategies for multiple aspect composition at high level, which helps to better implement these strategies at coding level. It also highlights the need of designing shared join point at high level, by providing the solutions of these issues using state chart diagrams in UML 2.0. High level design representation of shared join points also helps to implement the designed strategy in systematic way.Keywords: Aspect Oriented Software Development, Shared Join Points.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717467 Simulation of Snow Covers Area by a Physical based Model
Authors: Hossein Zeinivand, Florimond De Smedt
Abstract:
Snow cover is an important phenomenon in hydrology, hence modeling the snow accumulation and melting is an important issue in places where snowmelt significantly contributes to runoff and has significant effect on water balance. The physics-based models are invariably distributed, with the basin disaggregated into zones or grid cells. Satellites images provide valuable data to verify the accuracy of spatially distributed model outputs. In this study a spatially distributed physically based model (WetSpa) was applied to predict snow cover and melting in the Latyan dam watershed in Iran. Snowmelt is simulated based on an energy balance approach. The model is applied and calibrated with one year of observed daily precipitation, air temperature, windspeed, and daily potential evaporation. The predicted snow-covered area is compared with remotely sensed images (MODIS). The results show that simulated snow cover area SCA has a good agreement with satellite image snow cover area SCA from MODIS images. The model performance is also tested by statistical and graphical comparison of simulated and measured discharges entering the Latyan dam reservoir.Keywords: Physical based model, Satellite image, Snow covers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865466 Effects of Livestream Affordances on Consumer Purchase Willingness: Explicit IT Affordances Perspective
Authors: Isaac O. Asante, Yushi Jiang, Hailin Tao
Abstract:
Livestreaming marketing, the new electronic commerce element, has become an optional marketing channel following the COVID-19 pandemic, and many sellers are leveraging the features presented by livestreaming to increase sales. This study was conducted to measure real-time observable interactions between consumers and sellers. Based on the affordance theory, this study conceptualized constructs representing the interactive features and examined how they drive consumers’ purchase willingness during livestreaming sessions using 1238 datasets from Amazon Live, following the manual observation of transaction records. Using structural equation modeling, the ordinary least square regression suggests that live viewers, new followers, live chats, and likes positively affect purchase willingness. The Sobel and Monte Carlo tests show that new followers, live chats, and likes significantly mediate the relationship between live viewers and purchase willingness. The study presents a way of measuring interactions in livestreaming commerce and proposes a way to manually gather data on consumer behaviors in livestreaming platforms when the application programming interface (API) of such platforms does not support data mining algorithms.
Keywords: Livestreaming marketing, live chats, live viewers, likes, new followers, purchase willingness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148465 MITOS-RCNN: Mitotic Figure Detection in Breast Cancer Histopathology Images Using Region Based Convolutional Neural Networks
Authors: Siddhant Rao
Abstract:
Studies estimate that there will be 266,120 new cases of invasive breast cancer and 40,920 breast cancer induced deaths in the year of 2018 alone. Despite the pervasiveness of this affliction, the current process to obtain an accurate breast cancer prognosis is tedious and time consuming. It usually requires a trained pathologist to manually examine histopathological images and identify the features that characterize various cancer severity levels. We propose MITOS-RCNN: a region based convolutional neural network (RCNN) geared for small object detection to accurately grade one of the three factors that characterize tumor belligerence described by the Nottingham Grading System: mitotic count. Other computational approaches to mitotic figure counting and detection do not demonstrate ample recall or precision to be clinically viable. Our models outperformed all previous participants in the ICPR 2012 challenge, the AMIDA 2013 challenge and the MITOS-ATYPIA-14 challenge along with recently published works. Our model achieved an F- measure score of 0.955, a 6.11% improvement in accuracy from the most accurate of the previously proposed models.Keywords: Object detection, histopathology, breast cancer, mitotic count, deep learning, computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414464 Aircraft Automatic Collision Avoidance Using Spiral Geometric Approach
Authors: M. Orefice, V. Di Vito
Abstract:
This paper provides a description of a Collision Avoidance algorithm that has been developed starting from the mathematical modeling of the flight of insects, in terms of spirals and conchospirals geometric paths. It is able to calculate a proper avoidance manoeuver aimed to prevent the infringement of a predefined distance threshold between ownship and the considered intruder, while minimizing the ownship trajectory deviation from the original path and in compliance with the aircraft performance limitations and dynamic constraints. The algorithm is designed in order to be suitable for real-time applications, so that it can be considered for the implementation in the most recent airborne automatic collision avoidance systems using the traffic data received through an ADS-B IN device. The presented approach is able to take into account the rules-of-the-air, due to the possibility to select, through specifically designed decision making logic based on the consideration of the encounter geometry, the direction of the calculated collision avoidance manoeuver that allows complying with the rules-of-the-air, as for instance the fundamental right of way rule. In the paper, the proposed collision avoidance algorithm is presented and its preliminary design and software implementation is described. The applicability of this method has been proved through preliminary simulation tests performed in a 2D environment considering single intruder encounter geometries, as reported and discussed in the paper.
Keywords: collision avoidance, RPAS, spiral geometry, ADS-B based application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666463 Thailand National Biodiversity Database System with webMathematica and Google Earth
Authors: W. Katsarapong, W. Srisang, K. Jaroensutasinee, M. Jaroensutasinee
Abstract:
National Biodiversity Database System (NBIDS) has been developed for collecting Thai biodiversity data. The goal of this project is to provide advanced tools for querying, analyzing, modeling, and visualizing patterns of species distribution for researchers and scientists. NBIDS data record two types of datasets: biodiversity data and environmental data. Biodiversity data are specie presence data and species status. The attributes of biodiversity data can be further classified into two groups: universal and projectspecific attributes. Universal attributes are attributes that are common to all of the records, e.g. X/Y coordinates, year, and collector name. Project-specific attributes are attributes that are unique to one or a few projects, e.g., flowering stage. Environmental data include atmospheric data, hydrology data, soil data, and land cover data collecting by using GLOBE protocols. We have developed webbased tools for data entry. Google Earth KML and ArcGIS were used as tools for map visualization. webMathematica was used for simple data visualization and also for advanced data analysis and visualization, e.g., spatial interpolation, and statistical analysis. NBIDS will be used by park rangers at Khao Nan National Park, and researchers.Keywords: GLOBE protocol, Biodiversity, Database System, ArcGIS, Google Earth and webMathematica.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984462 QSAR Studies of Certain Novel Heterocycles Derived from Bis-1, 2, 4 Triazoles as Anti-Tumor Agents
Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi
Abstract:
In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.
Keywords: 3D QSAR, CoMSIA, Triazoles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480461 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds
Authors: Samit Ari, Goutam Saha
Abstract:
Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2071460 Formal Analysis of a Public-Key Algorithm
Authors: Markus Kaiser, Johannes Buchmann
Abstract:
In this article, a formal specification and verification of the Rabin public-key scheme in a formal proof system is presented. The idea is to use the two views of cryptographic verification: the computational approach relying on the vocabulary of probability theory and complexity theory and the formal approach based on ideas and techniques from logic and programming languages. A major objective of this article is the presentation of the first computer-proved implementation of the Rabin public-key scheme in Isabelle/HOL. Moreover, we explicate a (computer-proven) formalization of correctness as well as a computer verification of security properties using a straight-forward computation model in Isabelle/HOL. The analysis uses a given database to prove formal properties of our implemented functions with computer support. The main task in designing a practical formalization of correctness as well as efficient computer proofs of security properties is to cope with the complexity of cryptographic proving. We reduce this complexity by exploring a light-weight formalization that enables both appropriate formal definitions as well as efficient formal proofs. Consequently, we get reliable proofs with a minimal error rate augmenting the used database, what provides a formal basis for more computer proof constructions in this area.
Keywords: public-key encryption, Rabin public-key scheme, formalproof system, higher-order logic, formal verification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536459 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System
Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar
Abstract:
Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.Keywords: Common rail, hydrogen engine, port injection, wave propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590458 An Ontology for Spatial Relevant Objects in a Location-aware System: Case Study: A Tourist Guide System
Authors: N. Neysani Samany, M.R. Delavar, N. Chrisman, M.R. Malek
Abstract:
Location-aware computing is a type of pervasive computing that utilizes user-s location as a dominant factor for providing urban services and application-related usages. One of the important urban services is navigation instruction for wayfinders in a city especially when the user is a tourist. The services which are presented to the tourists should provide adapted location aware instructions. In order to achieve this goal, the main challenge is to find spatial relevant objects and location-dependent information. The aim of this paper is the development of a reusable location-aware model to handle spatial relevancy parameters in urban location-aware systems. In this way we utilized ontology as an approach which could manage spatial relevancy by defining a generic model. Our contribution is the introduction of an ontological model based on the directed interval algebra principles. Indeed, it is assumed that the basic elements of our ontology are the spatial intervals for the user and his/her related contexts. The relationships between them would model the spatial relevancy parameters. The implementation language for the model is OWLs, a web ontology language. The achieved results show that our proposed location-aware model and the application adaptation strategies provide appropriate services for the user.Keywords: Spatial relevancy, Context-aware, Ontology, Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645