
 

 

  
Abstract—Numerical calculations of flow around a square 

cylinder are presented using the multi-relaxation-time lattice 
Boltzmann method at Reynolds number 150. The effects of upstream 
locations, downstream locations and blockage are investigated 
systematically. A detail analysis are given in terms of time-trace 
analysis of drag and lift coefficients, power spectra analysis of lift 
coefficient, vorticity contours visualizations and phase diagrams. A 
number of physical quantities mean drag coefficient, drag coefficient, 
Strouhal number and root-mean-square values of drag and lift 
coefficients are calculated and compared with the well resolved 
experimental data and numerical results available in open literature. 
The results had shown that the upstream, downstream and height of 
the computational domain are at least 7.5, 37.5 and 12 diameters of 
the cylinder, respectively.  
 

Keywords—Grid independence, Multi-relaxation-time lattice 
Boltzmann method, Physical quantities, Square cylinder, Vorticity 
contours visualizations. 

I. INTRODUCTION 
REDICTING the flow field around a square cylinder is the 
main issue of recent research due to development of new 

numerical methods and advancement of hardwares. Many 
similar investigations recently have been made, but the 
numerical results always show some small discrepancies even 
the global trends are similar. One of the main reasons for such 
discrepancies is the difference of the grid points during the 
construction. In this paper, we carry out a two-dimensional 
numerical study of flow around a square cylinder at low 
Reynolds number at different combinations of computational 
domain. The main reason for chosen square cylinder is that 
this geometry is relatively easy to simulate on a cartesian grid 
using the modest computing resources. In this study we will 
use the multi-relaxation-time lattice Boltzmann method.  

The flow around a square cylinder has been studied 
experimentally [1], [2] and numerically [3]-[6] amongst 
others. These studies document the dependence of the drag 
coefficient and Strouhal number on the blockage ratio and 
Reynolds number. Suzuki et al. [7] numerically examined the 
weak dependence of Strouhal number on the incoming 
velocity profile. Sohankar et al. [3] numerically examined the 
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influence of the upstream, downstream and side wall locations 
using the incompressible SIMPLEC finite volume code at low 
Reynolds numbers ranging from 45 to 250. They observed that 
the effect of the computational domain almost becomes 
negligible when the upstream location is about 11.1d (where d 
is the size of the cylinder), downstream location is about 30d 
and distance between the walls (blockage) is about 5d. 
Sohankar et al. [8] numerically examined the effect of 
blockage and outlet boundary conditions on flow past a square 
cylinder using an incompressible SIMPLEC code with a non-
staggered grid arrangement. They also compared the 
sommerfield boundary condition with the Neumann boundary 
condition and observed that if downstream location is 
approximately larger than 25d, then the influence of the 
Neumann boundary condition is effectively damped out. They 
also investigated that when the blockage decrease from 5% to 
2.5%, the Strouhal number, mean drag coefficient and root-
mean-square value of the lift coefficient decreasing 1.5%. Ali 
et al. [9] numerically studied the grid convergence for flow 
past a square cylinder at a low Reynolds number using the 
Direct Numerical Simulation (DNS) method. They 
investigated different grid refinements using different 
boundary conditions and observed the influence of grid points 
on the flow past a square cylinder. Ying et al. [10] numerically 
studied the three-dimensional flow around rectangular 
cylinders at Reynolds number of 21400 using the ANSYS 
FLUENT for different blockages. Doolan [11] examined the 
three different grid resolutions using the DNS method around 
a square cylinder and found that when the blockage is 0.0167 
the solution converged. An important goal of this study is to 
provide a comprehensive analysis of computational domain 
with all possible informations for flow around a square 
cylinder in terms of physical quantities, vorticity contour. 

The rest of the paper is organized as follows: A brief 
overview of the multi-relaxation-time lattice Boltzmann 
method is given in Section II, initial and boundary conditions 
and important physical parameters are presented in Sections 
III and IV. The problem description is presented in Section V. 
The effects of the computational domain on the physical 
quantities, vortex shedding frequencies and the flow structures 
are discussed in Section VI compared with experimental data 
and numerical results. Finally important findings are 
summarized in Section VII.  
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II. MULTI-RELAXATION-TIME LATTICE BOLTZMANN METHOD 
The lattice Boltzmann equation (LBE) is a new numerical 

scheme originated from the lattice gas model (LGM) in order 
to overcome the main difficulties in LGM [12]. In LBE, a 
group of microscopic particles discretized the fluid field. The 
density distribution function of these particles performs two 
different kinds of motions: collision and streaming. In this 
paper, we use the D2Q9 model (where D is the space 
dimensions and Q is the number of particles at a 
computational node) on a square lattice with lattice spacing δx 
= δy (Fig. 1). Each computational node comprises three 
different kinds of particles, rest particles, particles that move 
along the coordinate directions, and moving particles along 
diagonal directions.  

The lattice Bhatnagar-Gross-Krook (BGK) equation is the 
simplest LBE, based on single-relaxation-time (SRT) 
approximation [13]. Nowadays the most popular lattice 
Boltzmann model is the lattice BGK equation due to its 
simplicity. However, the numerical instability [14] and 
inaccuracy in boundary conditions during implementation [15] 
are some issues of this model. The multi-relaxation-time 
(MRT) model introduced by d’Hmmieres [16] overcomes 
these deficiencies in the BGK models. The MRT collision 
operators have advantages over BGK [13] and [14]. For 
example, fixed Prandtl number (Pr = 1) and fixed ratio 
between the kinematic and bulk viscosities overcomes these 
defects of BGK model. In case of MRT-LBM, the different 
relaxation times can be adjusted individually to achieve 
‘optimal’ stability [14].  

In MRT-LBM with nine velocities, fi (rj, tn), iє{0, …, 8}, is 
a set of velocity distribution functions, is defined on each 
lattice node rj and for time tn. The evolution equation for the 
MRT-LBM is given below 

 

( ) ( ) ( ) ( )( )1, , , ,eq
j i n j n j n j nf e t t t f t S t tδ δ −+ + = − −r r M m r m r     (1)  

 
where f(rj, tn), m(rj, tn), and meq(rj, tn) are nine-dimensional 
distribution functions vectors, the moments, and the equilibria 
of moments, respectively, such as f = (f0, f1, …, f8)T, T is the 
transpose operator, and m = (m0, m1, … , m8)T. S is the 
relaxation matrix in the moment space and M is the 
transformation matrix such that m = Mf and f = M-1m. ei (e0 = 
(0, 0) for i = 0, ei = (±1, 0) for i = 1, 3 and ei = (0, ±1) for i = 2, 
4 and ei = (±1, ±1) for i = 5, 6, 7, 8) is a set of nine discrete 
velocity in D2Q9 model and δt is the time step. In this paper 
the lattice grid spacing and time step is equal to one. 

The matrices M and S of the incompressible lattice 
Boltzmann method are given below: 

 

1 1 1 1 1 1 1 1 1
4 1 1 1 1 2 2 2 2

4 2 2 2 2 1 1 1 1
0 1 0 1 0 1 1 1 1
0 2 0 2 0 1 1 1 1
0 0 1 0 1 1 1 1 1
0 0 2 0 2 1 1 1 1
0 1 1 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1

− − − − −
− − − −

− − −
− − −

− − −
− − −
− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

              (2) 

 
and 

( )1 2 3 6 7 8diag 0, , ,0, ,0, , ,s S S S S S S=                 (3) 
 
The moment vector m in MRT-LBM are arranged in the 

following order: m0 = ρ, m1 = e, m2 = ε, m3,5 = jx,y, J = (jx, jy), 
m4,6 = qx,y, and m7,8 = pxx,xy are the fluid density, energy, energy 
square, components of the momentum, components of the 
energy, components of the symmetric and traceless strain rate 
tensor, respectively. These nine moments are generally 
divided into two main groups: (ρ, m3, m5) and (m1, m2, m4, m6, 
m7, m8) are the conserved moments and locally conserved in 
the collision process and the non-conserved moments. The 
later one, are calculated from the following relaxation 
equations: 

 

( )* ** **eq
j j j j jm m s m m= + −                                  (4) 

 
where mj

*, mj
**, sj, and mj

eq are the moment after collision, the 
moment before collision, the relaxation rates that are the 
diagonal elements of the matrix S and the corresponding 
equilibrium moments, respectively. It is important to mention 
here that s0, s3, and s5 are not relevant collision rates and only 
related to the conserved moments. The relaxation rates s7 and 
s8 for consistent dynamics viscosity must be equal (s7 = s8). 
The other relaxation rates in the range 0 < si < 2 can be freely 
chosen. The relaxation rates s7 and s8 are related to the 
kinematic viscosity ν by (5): 
 

7 8

2 21 1
0.5 0.5s sc t c t

s s
ν δ δ= − = −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                           (5) 

 
where cs = 0.5773 is the lattice speed of sound in case of unit 
lattice spacing and time step.  

The non-conserved moments meq are chosen to be: 
 

( )
( )

( )

0

0

0

2 2

2 2

2 2

2 3

3

     

eq
x y

eq
x y

eq jx x
eq jy y

eq
xx x y

eq j jyy x y

e j j

j j

q

q

p j j

p

ρ

ε ρ ρ

ρ

ρ

−

= − + +

= − +

= −

= −

=

=

                           (6) 
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The constant mean density ρ0 usually set to be unity in 
numerical simulations.  

From the moments of the distribution functions the 
macroscopic fluid variables, density ρ, velocity u, and 
pressure P, are calculated as follows: 

 
8

0 ii
fρ = ∑

=
                                             (7) 

( ) 8
,

1 i ix yJ j j
i

f eρ= = ∑
=

u                                   (8) 

2
sP cρ=                                           (9) 

 
where u = (u, v) is the velocity vector.  

 

 
Fig. 1 D2Q9 lattice structure 

 
One can easily find the application of lattice Boltzmann 

method using the single-relaxation-time and multi-relaxation-
time lattice Boltzmann methods for bluff body flows [17]-
[24]. 

III. INITIAL AND BOUNDARY CONDITIONS 
The initial and boundary conditions are discussed in this 

section. Uniform flow with velocity Umax is incorporated using 
the equilibrium particle distribution function at the inlet 
boundary where  

 

max  and  0u U v= =                             (10) 
 
In case of parabolic velocity profile we will use the 

following equation: 
 

( ) ( )max 1 2 1 2u U y H y H= − +                        (11) 
 
where y is the transverse direction and H is the height of the 
computational domain. 

The computational domain behind the cylinders is selected 
to be large enough so that the flow at the outflow boundary 
can be considered to be fully developed. Therefore a fixed 
pressure in terms of the equilibrium distribution function is 
imposed at the outlet. For such implementation, the velocity 
components are extrapolated downstream[18]. A no-slip (u = v 
= 0) wall boundary condition is applied to the surfaces of 
cylinder 25] and at both bottom and top boundaries of the 

computational domain. The total fluid force on the square 
cylinders is calculated using the momentum exchange method 
[26]. In this study we set s0 = s3 = s5 = 0, s1 = 1.1, s2 = 1.0 and 
s4 = s6 = 1.2. 

IV. IMPORTANT PHYSICAL PARAMETERS 
The Reynolds number (Re) is defined by: 
 

maxRe U d ν=                                        (12) 
 
where d is the size of the cylinder and ν is the kinematic 
viscosity.  

Other important parameters are the Strouhal number (St), 
the drag coefficient (Cd), the lift coefficient (Cl) and the 
blockage ratio B.  

 

maxsSt f d U=                                    (13) 

2
max0.5dCd U dF ρ=                                (14) 

2
max0.5lCl U dF ρ=                                 (15) 

B H d=                                            (16) 
 
where fs is the vortex shedding frequency, Fd and Fl are the 
force components in the in-line and transverse directions, 
respectively. All the computations are carried out on a 
Dawning Parallel Computer TC4000. The root-mean-square 
value of drag and lift coefficients are calculated using the 
following two equations: 
 

( )[ ]2
( )

1

n
Cdrms nCd t mean Cd

t
∑= −
=

                        (17) 

( )[ ]2
( )

1

n
Clrms nCl t mean Cl

t
∑= −
=

                        (18) 

 
where n is the total number of time steps.  

V. PROBLEM DESCRIPTION 
The schematic configuration of flow around a square 

cylinder in a uniform flow is shown in Fig. 1. In Fig. 2,   is the 
size of the cylinder, Umax is the maximum uniform inflow 
velocity at the inlet and H is the height of the computational 
domain. Furthermore, Lu is the upstream distance, Ld is the 
downstream distance and L is the length of the channel. The 
flow is two-dimensional in the longitudinal (x) and transverse 
(y) directions. The flow velocity components u and v are in the 
longitudinal and transverse directions, respectively. The 
selected cases for computation are given in Table I. 
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Fig. 2 Schematic configuration of flow past a square cylinder 

 
TABLE I 

SELECTED CASES FOR SIMULATION 
Cases   L (= Lu +Ld+ d) × H 

Lu = 2.5d; Ld = 37.5d; H = 13d        821 × 261 
Lu = 4d; Ld  = 37.5d; H = 13d          851 × 261 
Lu = 5d; Ld  = 37.5d; H = 13d          871 × 261 

Lu = 6.5d; Ld  = 37.5d; H = 13d        901 × 261 
Lu = 7.5d; Ld  = 37.5d; H = 13d        921 × 261  
Lu = 9d; Ld  = 37.5d; H = 13d          951 × 261    

Lu = 10d; Ld  = 37.5d; H  = 13d        971 × 261 
Lu = 11.5d; Ld  = 37.5d; H  = 13d       1001 × 261 

Lu = 7.5d; Ld  = 15d; H = 13d          471 × 261 
Lu = 7.5d; Ld  = 25d; H = 13d          671 × 261 
Lu = 7.5d; Ld  = 30d; H = 13d          771 × 261 

Lu = 7.5d; Ld  = 33.5d; H = 13d        841 × 261 
Lu = 7.5d; Ld  = 37.5d; H = 13d        921 × 261 
Lu = 7.5d; Ld  = 40d; H = 13d          971 × 261 
Lu = 7.5d; Ld  = 45d; H = 13d          1071 × 261 
Lu = 7.5d; Ld  = 50d; H = 13d          1171 × 261 
Lu = 7.5d; Ld  = 37.5d; B = 5          921 × 101 
Lu = 7.5d; Ld  = 37.5d; B = 8           921 × 161 

Lu = 7.5d; Ld  = 37.5d; B = 10          921 × 201 
Lu = 7.5d; Ld  = 37.5d; B = 11          921 × 221 
Lu = 7.5d; Ld  = 37.5d; B = 12          921 × 241 
Lu = 7.5d; Ld  = 37.5d; B = 13          921 × 261 
Lu = 7.5d; Ld  = 37.5d; B = 14          921 × 281 
Lu = 7.5d; Ld  = 37.5d; B = 15          921 × 301 

VI. RESULTS AND DISCUSSIONS 
Numerical calculations were carried out for flow around a 

square cylinder for upstream locations, downstream locations 
and blockages. The present calculations yield time series for 
the force coefficients, power spectra analysis of lift 
coefficient, and vorticity contours visualization and phase 
diagram for different combinations. Calculations of the mean 
drag coefficient, drag coefficient, Strouhal number, and root-
mean-square values of drag and lift coefficients in terms of 
physical parameters for square cylinder are also given. It is 
important to mention here that we calculate the Strouhal 
number using the fast Fourier transform technique. In vorticity 
graphs the solid lines represent the positive vortices generated 
from the lower corner of the cylinder and dashed line presents 
the negative vortices generated from the upper corner. 
Moreover in drag coefficient, lift coefficient, Strouhal and 
phase graphs solid lines are used. In Tables exp. and num. 
means experimental and numerical, respectively. It is also 

important to mention here that in case of blockage we use the 
parabolic velocity profile at inlet instead of uniform inflow 
velocity. Furthermore, in this study we calculate the drag 
coefficient value by choosing the maximum value of the drag 
coefficient amplitudes. Those cases that they have similar 
characteristics are not shown in this paper and some 
representative cases will be discussed.   

 

 

 

 

 

 

Fig. 3 Vorticity contour plot for Re = 150 at different upstream 
locations 

A. Effect of Upstream Locations  
To analyze the effect of upstream locations on vortex 

shedding, the vorticity contours are presented in Figs. 3 (a)-
(e). From these figures, it can be easily observed that there is a 
significant change in the vortex shedding size and width 
behind the cylinder due to change in upstream location. The 
results show that the alternating vortices are shed from the 
upper and lower side of the cylinder for all chosen cases. 

At Lu = 2.5d and 4d, a negative vortex on the upper side of 
the cylinder is roll up and at the same time on the lower side 
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of the cylinder a positive vortex appears. The vortex shedding 
process is almost similar to that shown for the case of Lu = 
7.5d. Figs. 3 (d), (e) show that at Lu = 9d and 11.5d, a positive 
vortex on the lower side of the cylinder in the development 
process, while a negative vortex on the upper side of the 
cylinder is about to detach. The complete formation of 
positive and negative vortices observed for all cases with 
different width and size. The dynamics of the flow behind the 
cylinders and the observed changes in the vortex shedding 
pattern can also be easily observed with time change, power 
spectra analysis of lift coefficient and phase diagram from 
Figs. 4 (a)-(d), 5 (a)-(h), 6 (a)-(d), and 7 (a)-(d). 

The time histories of drag and lift coefficients experienced 
by the cylinder are plotted in Figs. 4 (a)-(d) and 5 (a)-(h). 
When Lu = 2.5d, the drag (Fig. 4 (a)) and lift (Fig. 5 (a)) 
coefficients exhibit a regular behavior. This is actually related 
to the alternate vortex shedding observed behind the square 
cylinder. As Lu increase up to 11.5d the drag and lift 
coefficients magnitude decreases (Figs. 4 (b)-(d) and 5 (b)-
(h)). As Lu increases, the amplitude of the lift coefficient 
decreases and as a result the width and size of the alternate 
shed vortices becomes stronger. At Lu = 2.5d and 4d, the 
shedding starts quickly as compared to other cases (Fig. 5 (a), 
(b)). 

 

 
Fig. 4 Time-trace analysis of drag coefficient for Re = 150 at various 

upstream locations 
 
The phase diagram and power spectra analysis of lift 

coefficient for different upstream locations are shown in Figs. 
6 (a)-(d) and 7 (a)-(d), respectively. The eight type graphs 
observed for all chosen cases. This means that fully alternate 
vortex shedding generated behind the square cylinder. The 
drag and lift coefficients in phase diagram plots intersect each 
other at the mean position, which is the clear indication of 
symmetric vortices behind the square cylinder (Figs. 6 (a)-
(d)).  

The power spectrum analysis shows only one dominant 
peak for all chosen cases which is related to the vortex 
shedding behind the square cylinder.   

 

 
Fig. 5 Time-trace analysis of lift coefficient for Re = 150 at various 

upstream locations 
 

 
Fig. 6 Phase diagrams for various upstream locations at Re = 150 

 

 
Fig. 7 Power spectra of lift coefficients at different upstream 

locations at Re = 150 
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TABLE II  
COMPARISON OF PHYSICAL PARAMETERS FOR DIFFERENT UPSTREAM LOCATIONS  

Cases Cdmean Cd  St Cdrms  Clrms 
Okajima [1] exp.                                  1.49     0.141   
Norberg [2] exp.                                    0.150   

Sohankar et al. [3] num.                   1.408               0.161     0.0061      0.177 
Saha et al. [4] num.                                1.54      0.163   
Gera et al. [5] num.                          1.411               0.141               0.252 

Lu = 2.5d; Ld  = 37.5d; H = 13d        1.722       1.75 0.164 0.0188 0.3050 
Lu = 4d; Ld  = 37.5d; H = 13d           1.524       1.55 0.1607 0.0196 0.2896 
Lu = 5d; Ld  = 37.5d; H = 13d           1.474       1.51 0.1580 0.0190 0.2742 

Lu = 6.5d; Ld  = 37.5d; H = 13d        1.437 1.46 0.1575 0.0184 0.2832 
Lu = 7.5d; Ld  = 37.5d; H = 13d        1.423 1.45 0.1547 0.0180 0.2805 
Lu = 9d; Ld  = 37.5d; H = 13d           1.413 1.44 0.1542 0.0176 0.2754 

Lu = 10d; Ld  = 37.5d; H  = 13d        1.409 1.44 0.1547 0.0174 0.2725 
Lu = 11.5d; Ld  = 37.5d; H= 13d     1.405 1.44 0.1547 0.0174 0.2674 

 
It is observed that the size of the computational domain 

have a great influence on the results for flow past bluff-body. 
It was found that the Cdmean, Cd, St, Cdrms and Clrms value 
decreased almost 17.3%, 17.2%, 6%, 4.3% and 8.1%, 
respectively, when increasing the upstream locations from Lu 
= 2.5d to 7.5d. Furthermore, it was found that by increasing 
the upstream location from Lu = 7.5d to 11.5d, the Cdmean, 
Cd, St, Cdrms and Clrms value decreased almost 1.3%, 0.7%, 
0%, 3.3% and 4.7%, respectively. Sohankar et al. [3] observed 
10% decreasing for upstream locations from smaller to the 
larger domain. On the basis of above analysis it was observed 
that the upstream location must be greater than or equal to 
7.5d. One can also choose Lu = 6.5d, because the influence of 
upstream location from 6.5d to 7.5d is almost negligible. In 
addition, we compare the result of Lu = 7.5d; Ld = 37.5d; H = 
13d with existing experimental data and numerical results. The 
results of Cdmean, Cd, St, Cdrms and Clrms are presented 
together with the experimental data of Okajima [1] and 
Norberg [2] in Table II. Some numerical results of Sohankar et 
al. [3], Saha et al. [4] and Gera et al. [5] are also presented in 
Table II for comparison. From the Table II, it can be clearly 
seen that the present numerical simulation results agree well 
with those in the literature. Moreover, it can also be found that 
the mean drag coefficient of present numerical result is closer 
to that of experimental data of Okajima [1] and numerical data 
of Gera et al. [5]. The Strouhal numbers obtained in the 
present work shows a good agreement with the experimental 
data of Norberg [2] and numerical data of Gera et al. [5]. In 
addition, also a good agreement observed for Cdrms and 
Clrms values.  

 
 
 
 
 
 
 
 

 

 

 

 

 

 
Fig. 8 Instantaneous vorticity contours visualization plot for Re = 150 

at different downstream locations 
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B. Effect of Downstream Locations 
The influence of the downstream location was studied 

separately for Lu = 7.5d and H = 13d. The effects of 
downstream locations on the flow structure behind the square 
cylinder are described in Figs. 8 (a)-(f). The results show that 
the alternating vortices are shed from the upper and lower side 
of the cylinder for all chosen cases. At Ld = 15d, a negative 
vortex on the upper side of the cylinder is roll up and at the 
same time on the lower side of the cylinder a positive vortex 
appears. The vortex shedding process is almost similar to that 
shown for the case of Ld = 25d. Figs. 8 (c), (d) show that at Ld 
= 30d and 33.5d, a positive vortex on the lower side of the 
cylinder is in the development process, while a negative 
vortex on the upper side of the cylinder is about to detach. The 
complete formation of positive and negative vortices observed 
for all cases with different width and size. At Ld = 37.5d, there 
are twelve vortices, six positive vortices and six negative 
vortices in the computational domain behind the square 
cylinder and the development process cut by the downstream 
location. In addition, the number of shed vortices increases for 
Ld = 50d (see Fig. 8 (f)).  

 
The time histories of drag and lift coefficients experienced 

by the cylinder are plotted in Figs. 9 (a)-(d) and Figs. 10 (a)-
(h). When Ld = 15d, the drag (Fig. 9 (a)) and lift (Fig. 10 (a)) 
coefficients exhibit a regular behavior. This is actually related 
the alternate vortex shedding observed behind the square 
cylinder. As Ld increases, the drag and lift coefficients 
magnitude almost becomes same.  

 

 
Fig. 9 Time-history analysis of drag coefficient for Re = 150 for 

various downstream locations 
 
The time history analysis of drag and lift coefficient shows 

two crests and troughs, which ensures from the top and bottom 
surfaces the periodic vortex shedding. In addition, the 
formation of shedding occurs due to lift force fluctuation and 
therefore, its value of equal magnitude varies between a 
positive and negative maximum. One more interesting thing is 
observed that the computational time not affected too much by 
changing the downstream locations which is clearly observed 
from the lift coefficient plots (see Fig. 10 (a)-(h). 

 
Fig. 10 Time-history analysis of lift coefficient for Re = 150 for 

various downstream locations 
 

The phase diagram and power spectra analysis of lift 
coefficient are shown in Figs. 11-12 (a)-(d). It is clear from the 
graph that the alternate vortices generated behind the square 
cylinders for all chosen cases and the width and size of the 
vortices changes which clearly seen in phase diagram.  

 

 
Fig. 11 Phase diagrams for different downstream locations at Re = 

150 
 

The poser spectrum analysis of lift coefficient reveals that 
the shed vortices travel downstream without any merging and 
distortion and as a result one can clearly see the single 
dominant peak in the spectrum analysis (Figs. 12 (a)-(d)). 
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Similar characteristics observed for Ld = 30d, 33.5d, 40d and 
45d (not shown).  

The results show that increasing the downstream location Ld 
= 15d to Ld = 37.5d the physical parameters such as mean drag 
coefficient, drag coefficient, Strouhal number, root-mean-
square values of drag and lift coefficients decreased by 0.01%, 
0.0%, 1.8%, 5.6%, and 6.5%, respectively (Table III). A 
further increase up to Ld = 50d gave almost negligible changes 

and almost less than 2%. Thus it is observed that Ld = 37.5d is 
an appropriate downstream location for flow past a single 
square cylinder. It is also suggested that dealing with complex 
flow past multiple bluff bodies one can choose Ld = 40d to 50d 
to provide more enough space for shed vortices behind the 
cylinders. Sohankar et al. [3] observed that Ld = 30d is 
appropriate downstream location and in some cases must be 
larger than this value. 

 
TABLE III 

COMPARISON OF PHYSICAL PARAMETERS FOR DIFFERENT DOWNSTREAM LOCATIONS  
Cases Cdmean Cd St Cdrms Clrms 

Okajima [1] exp.                                 1.492 0.141   
Norberg [2] exp.                                   0.150   

Sohankar et al. [3] num.              1.408  0.161 0.0061 0.177 
Saha et al. [4] num.                               1.54 0.163   
Gera et al. [5] num.                     1.411  0.141  0.252 

Lu = 7.5d; Ld = 15d; H =13d     1.424 1.450 0.152 0.0170 0.262 
Lu = 7.5d; Ld  = 25d; H = 13d     1.424 1.450 0.1569 0.0170 0.262 
Lu = 7.5d; Ld  = 30d; H =13d     1.424 1.450 0.1578 0.01780 0.280 
Lu =7.5d; Ld  =33.5d; H=13d  1.4241 1.4502 0.1569 0.0181 0.279 
Lu =7.5d; Ld  =37.5d; H=13d  1.4239 1.450 0.1547 0.0180 0.280 
Lu = 7.5d; Ld  = 40d; H =13d   1.4241 1.4502 0.1578 0.0181 0.2809 
Lu = 7.5d; Ld  = 45d; H =13d     1.3909 1.450 0.1578 0.0301 0.2984 
Lu = 7.5d; Ld  = 50d; H =13d     1.3819 1.450 0.1578 0.0251 0.2495 

 

 
Fig. 12 Spectrum analysis of lift coefficients for different 

downstream locations at Re = 150 

C. Blockage Effect 
In this subsection we will discussed the channel height in 

other words the blockage effect for flow past a square 
cylinder. The vorticity contours visualization for different 
blockages are presented in Figs. 13 (a)-(h). At B = 5, the 
vortices shed behind the square cylinder and showing some 
distortion due to small spacing between the upper and lower 
walls of the channel (Fig. 13 (a)). As the value of B increases 
the effect of the blockage vanishes and the initial disturbance 
due to parabolic velocity profile are also vanish. The results 
show that B ≥ 12, the wall effect almost negligible without 
affecting the shed vortices behind the square cylinder.   
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Fig. 13 Vorticity visualization plot for different blockages at Re = 

150 
 

The time-trace analysis of drag coefficient for some 
selected blockages is shown in Figs. 14 (a)-(d). It is observed 
that the magnitude of the drag coefficient increases when 
blockage increase. Moreover, the periodic variation observed 
for all chosen cases and some cases are not shown here.  
 

 
Fig. 14 Drag coefficient time-trace analysis at Re = 150 for various 

blockages 
 

The time history analysis of lift coefficient for different 
blockages is shown in Figs. 15 (a)-(h). It is observed that the 
vortices shed almost at the same time for all chosen cases. The 
variation in amplitude is observed when the value of B 
increases.  

 

 
Fig. 15 Lift coefficient time-trace analysis at Re = 150 for various 

blockages 
 

The phase diagram in Figs. 16 (a)-(d) shown that the 
alternate vortices generated behind the cylinder. Furthermore, 
the eight shape change because of different amplitude 
observed for different blockages.  

 

 
Fig. 16 Phase diagrams of drag and lift coefficients for different 

blockages at Re = 150 
 
The power spectrum analysis of lift coefficient for some 

selected cases is shown in Figs. 17 (a)-(d). The amplitude of 
the spectrum increases with increasing blockage value, which 
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ensures the strength of the vortices behind the square cylinder. 
The single peak shows that there is no distortion of shed 
vortices behind the cylinder throughout the computational 
domain.   

The physical parameters for different blockage values are 
shown in Table IV together with experimental data and 
numerical results for comparison. The decreasing behaviour 
observed for mean drag coefficient and drag coefficient from 
B = 5 to 8 and then show the increasing behaviour when the 
value of B increases. The similar trend was observed in the 
root-mean-square values of drag and lift coefficients. The 
blockage effect almost vanishes for B ≥ 12.   
 

 
Fig. 17 Power spectra of lift coefficients for different blockages at Re 

= 150 
 

TABLE IV 
COMPARISON OF PHYSICAL PARAMETERS FOR DIFFERENT BLOCKAGES 

Cases Cdmean Cd St Cdrms Clrms 
 

Okajima [1] exp.  1.492 0.141   
Norberg [2] exp.   0.150   

Sohankar et al. [3] num. 1.408  0.161 0.0061 0.177 
Saha et al. [4] num.  1.54 0.163   
Gera et al. [5] num. 1.411  0.141  0.252 

Lu =7.5d; Ld = 37.5d; B =5 1.190 1.215 0.131 0.0081 0.1241 
Lu =7.5d; Ld = 37.5d; B =8 1.177 1.912 0.133 0.0155 0.2640 
Lu=7.5d; Ld =37.5d; B =10 1.206 1.228 0.135 0.0142 0.2412 
Lu=7.5d; Ld =37.5d; B =11 1.221 1.242 0.138 0.0151 0.2507 
Lu=7.5d; Ld =37.5d; B =12 1.236 1.258 0.135 0.0151 0.2507 
Lu=7.5d; Ld = 37.5d; B =13 1.250 1.272 0.141 0.0154 0.2544 
Lu=7.5d; Ld =37.5d; B =14 1.263 1.282 0.143 0.0187 0.3070 
Lu=7.5d; Ld =37.5d; B =15 1.275 1.295 0.141 0.0190 0.3110 

 
VII. CONCLUSIONS 

A numerical investigation of a uniform flow around a 
square cylinders with Reynolds number (Re = 150) for various 
upstream locations, downstream locations and blockages using 
the multi-relaxation-time lattice Boltzmann method has been 
studied. The effects in terms of time-trace analysis of drag and 
lift coefficients, power spectra of lift coefficient, phase 
diagram and the force statistics are examined in detail. From 
these results, distinctive flow differences and sensitivity on the 
physical parameters are summarized as follows:   
(i) It is found that the upstream location have a great 

influence on the results for flow past bluff-body. It is 
observed that the Cdmean, Cd, St, Cdrms and Clrms value 
decreased almost 17.3%, 17.2%, 6%, 4.3% and 8.1%, 
respectively, by increasing the upstream locations from Lu 
= 2.5d to 7.5d. Furthermore, by increasing the upstream 
location from Lu = 7.5d to 11.5d, the Cdmean, Cd, St, 
Cdrms and Clrms value decreased almost 1.3%, 0.7%, 
0%, 3.3% and 4.7%, respectively. The size and width of 
the shed vortices also affected for different upstream 
locations.  

(ii) The results show that by increasing the downstream 
location Ld = 15d to Ld = 37.5d the physical parameters 
such as mean drag coefficient, drag coefficient, Strouhal 
number, root-mean-square values of drag and lift 
coefficients decreased by 0.01%, 0.0%, 1.8%, 5.6%, and 
6.5%, respectively. A further increase up to Ld = 50d gave 
almost negligible changes and almost less than 2%. Thus 
it is observed that Ld = 37.5d is an appropriate 
downstream location for flow past a single square 
cylinder. 

(iii) It is found that the height of the computational domain 
must be H = 12d for good results. At this value the shed 
vortices and physical parameters are not affected too 
much.  
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