Targeting the Life Cycle Stages of the Diamond Back Moth (Plutella xylostella) with Three Different Parasitoid Wasps
Authors: F. O. Faithpraise, J. Idung, C. R. Chatwin, R. C. D. Young, P. Birch
Abstract:
A continuous time model of the interaction between crop insect pests and naturally beneficial pest enemies is created using a set of simultaneous, non-linear, ordinary differential equations incorporating natural death rates based on the Weibull distribution. The crop pest is present in all its life-cycle stages of: egg, larva, pupa and adult. The beneficial insects, parasitoid wasps, may be present in either or all parasitized: eggs, larva and pupa. Population modelling is used to estimate the quantity of the natural pest enemies that should be introduced into the pest infested environment to suppress the pest population density to an economically acceptable level within a prescribed number of days. The results obtained illustrate the effect of different combinations of parasitoid wasps, using the Pascal distribution to estimate their success in parasitizing different pest developmental stages, to deliver pest control to a sustainable level. Effective control, within a prescribed number of days, is established by the deployment of two or all three species of wasps, which partially destroy pest: egg, larvae and pupae stages. The selected scenarios demonstrate effective sustainable control of the pest in less than thirty days.
Keywords: Biological control, Diamondback moth, Parasitoid wasps, Population modeling.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1094491
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3061References:
[1] K. L. Bassil, C. Vakil, M. D. Sanborn, D. C. Cole, J. S. Kaur, K. J. Kerr (2007). Cancer health effects of pesticides: a systematic review. Can Fam Physician2007;53:1704-11.
[2] B. R. W. Mnif, A. I. H.Hassine, A.Bouaziz, A. Bartegi, O. Thomas (2011) Effect of Endocrine Disruptor Pesticides: A Review Int J Environ Res Public Health. 8(6): 2265–2303. doi: 10.3390/ijerph8062265
[3] D. W. Kolpin, E. M. Thurman, S. M. Linhart (2000). Finding minimal herbicide concentrations in ground water? Try looking for their degradates. Sci. Total Environ. 248:115–122.
[4] S. Iñigo-Nuñez, M. A. Herreros, T. Encinas, A. Gonzalez-Bulnes (2010). Estimated daily intake of pesticides and xenoestrogenic exposure by fruit consumption in the female population from a Mediterranean country (Spain) Food Control. 21:471–477
[5] K. A. Osman, A. I. Al-Humaid, S. M. Al-Rehiayani, K. N. Al- Redhaiman (2010). Estimated daily intake of pesticide residues exposure by vegetables grown in greenhouses in al-qassim region; Saudi Arabia. Food Control. doi: 10.1016/j.foodcont.2010.11.031.
[6] C. L. Curl, R. A. Fenske, J. C. Kissel, J. H. Shirai, T. F. Moate, W. Griffith, G. Coronado, B. Thompson (2002). Evaluation of take-home organophosphorus pesticide exposure among agricultural workers and their children. Environ. Health Perspect. 2002;110:A787–A792.
[7] T. Berman, D. Hochner-Celnikier, B. D Boyd, L. L. Needham, Y. Amitai, U. Wormser, E. Richter (2011). Pesticide exposure among pregnant women in Jerusalem, Israel: Results of a pilot study. Environ. Int. 37:198–203.
[8] R. M. Whyatt, D. Camann, F. P. Perera, V. A. Rauh, D. Tang, P. L. Kinney, R. Garfinkel, H. Andrews, L. Hoepner, D. B. Barr (2005). Biomarkers in assessing residential insecticide exposures during pregnancy and effects on fetal growth. Toxicol. Appl. Pharmacol. 2005;206:246–254.
[9] D. Payne-Sturges, J. Cohen, R. Castorina, D. A. Axelrad, T. J.Woodruff (2009). Evaluating cumulative organophosphorus pesticide body burden of children, a national case study. Environ. Sci. Technol. 2009;43:7924– 7930.
[10] P. Reynolds, J. B. Von, R. B. Gunier, D. E. Goldberg, A. Hertz, M. E. Harnly (2002) . Childhood cancer and agricultural pesticide use, an ecologic study in California. Environ. Health Perspect.;110:319–324
[11] J.T.Efrid, E.A.Holly, S.Preston-Martin, B. A. Mueller, F. Lubin, G. Filippini, R. Peris-Bonet, M. McCredie, S. Cordier, A. Arslan, P. M. Bracci (2003). Farm – related exposures and childhood brain tumours in seven countries: results from the SEARCH International Brain Tumour Study, Paediatric and perinatal Epidemiology, 17(2): 201-11
[12] J. M. Pogoda, S.Preston –Martins (1997). Household pesticides and risk of pediatric brain tumours, Environmental Health Perspectives, 1997; 105: 1214-1220
[13] W. E. Van, P. A. Stewart, A.F. Olshan, D. A. Savitz, G. R. Bunin (2003) Parental occupational exposure to pesticides and childhood brain cancer. American Journal of Epidemiology. 2003; 157(11): 989-97
[14] J.F. Viel, B. Challier, A. Pitard, D. Pobel (1998). Brain cancer mortality among French farmers: the vineyard pesticide hypothesis. Archives of Environmental Health. 1998; 53: 65-70
[15] Y.Fujii, K.Haraguchi, K.H.Harada, T.Hitomi, K.Inoue, Y.Itoh, T. Watanabe, K. Takenaka, S. Uehara, H. R.Yang (2011). Detection of dicofol and related pesticides in human breast milk from China; Korea and Japan. Chemosphere. 82:25–31.
[16] M. K.Kettles, S.R.Browning, T.SPrince, S.W.Horstman (1997). Triazine herbicides exposure and breast cancer incidence: an ecological study of Kentucky countries. Environmental Health Perspectives; 1997; 105: 1222-27
[17] B. A.Cohn (2011). Developmental and environmental origins of breast cancer: DDT as a case study. Reprod. Toxicol. 31:302–311.
[18] M.H. Abdalla, M.L. Gutierrez-Mohamed, I.O. Farah(2003). Association of pesticides exposure and risk of breast cancer mortality in Mississippi. Biomedical Science Instrumentation. 39: 397-01
[19] G. Giacomelli, P. Ling, R. Morden (1996). An Automated Plant Monitoring System Using Machine Vision. ActaHorticulturae (ISHS) 440, 377–382.
[20] R. Pydipati, T. F. Burks, W. S. Lee (2006). Identification of citrus disease using colour texture features and discriminant analysis, Journal of Computers and electronics in Agriculture.
[21] G. K. Dae, T. F. Burks, Q. Jianwei, D. M. Bulanon (2009). Classification of grapefruit peel diseases using color texture feature analysis Int J Agric&BiolEng Vol. 2 No.3
[22] C.Bauch, T.Rath (2005). Prototype of a Vision Based System for Measurements of White Fly Infestation. In: Acta Horticulturae (ISHS) 691. pp. 773–780
[23] B.Skaloudova, V. Krivan, R. Zemek (September, 2006). Computerassisted Estimation of Leaf Damage caused by Spider Mites. Computers and Electronics in Agriculture 53 (2), 81–91
[24] P. Boissard, M. Vincent, & S. Moisan (2010). A Cognitive Vision Approach to Early Pest Detection in Greenhouse Crops. Computers and Electronics in Agriculture 62(2): 81-93 &inria 00499603, pp.1-24
[25] L.O. Solis-Sanchez, R. Castaneda-Miranda, C.L. , Castaneda-Miranda, J. J. Alaniz-Lumbreras, I. Torres-Pacheco, R.G. Guevara-Gonzalez, P.D. Alaniz-Lumbreras (2001). scale invariant feature approach for insect monitoring. Comput.Electron.Agric. 75,92-99
[26] J. A. Jiang, C.L. , Tseng, F. M. Lu, E. C.Yang, Z.S. Wu,C.P.Chen, S.H.Lin,K.C.Lin, C. S.Liao (2008). A GSM based remote wireless automatic monitoring system for field information: a case study for ecological monitoring of oriental fruit fly, Bactroceradorsalis(Hendel). Computer Electronics Agric. 62, 243-259
[27] H. Ruizhen, H. Yong, F. Liu (2012). Feasibility Study on a Portable Field Pest Classification system design based on DSP and 3G wireless communication technology, Sensor 12, 3118-3130
[28] B.Datt, A. Apan and R. Kelly (2006). Early detection of Exotic Pests and Diseases in Asian vegetable by imaging Spectroscopy, Rural Industrial Research and Development corporation (RIRDC) Publication No 05/170
[29] R.K.Samanta,and G. Indrajit (2012). Tea Insect Pests Classification Based on artificial Neural Networks, IJCES 2(6)
[30] S. R. Pokharkar, and V. R.Thool (2012). Early pest Identification in green house crops using image processing technigues IJCSN 1(3)
[31] L.S.Jamal-Aldin, R. C. D. Young, C.R.Chatwin (1997). Application of nonlinearity to wavelet-transformed images to improve correlation filter performance. Applied optics 36 (35), 9212-9224
[32] F. O. Faithpraise, P.M. Birch, R. C. D. Young,J. Obu, B. Faithpriase, C. R. Chatwin (2013a). Automatic Plant pest Detection & Recognition using k-means clustering algorithm & correspondence filtersInternational Journal of Advanced Biotechnology and Research ISSN 0976-2612, Online ISSN 2278–599X,Vol 4, Issue 2, pp. 1052- 1062 http://www.bipublication.com
[33] U. S. Environmental Protection Agency (2012). Integrated Pest Management (IMP) Principles http://www.epa.gov/pesticides/ factsheets/ipm.htm (Retrieved 2/10/13)
[34] BioControl Reference CenterAcosta, EW (1995-2006). The History of Integrated Pest Management (IPM) http://www.biconet.com/reference/IPMhistory.html (Retrieved 2/10/13)
[35] A. H. Sandler (2010). Integrated Pest Management Cranberry Station Best Management Practices 1(1):12-15.
[36] I. P. M. Guidelines (2009). UMassAmherst: Integrated Pest Management, Agriculture and Landscape Program. http://www.umass.edu/umext/ipm/publications.( Retrieved 3/03/ 2012).
[37] H.J.Barclay, I.S.Otvos, and A.J.Thomson, (1970). Models of periodic inundation of parasitoids for pest control, Canad.Entomol. 117, pp. 705– 716.
[38] R.M. May, M.P. Hassell (1988). Population dynamics and biological control, Phil. Trans. R. Soc. Lond. B. 318, 129-169
[39] W.W.Murdoch (1990). The relevance of pest-enemy models to biological control. In M. Mackauer, L.E. Ehler and J. Roland (Editors), Critical Issues in Biological Control. Intercept, Andover, pp. 1-24
[40] N. J. Mills, W.M. Getz (1996). Modelling the biological control of insect pests: a review of host-parasitoid models. Ecological Modelling, 92, pp.121-143.
[41] Z. Varga, (2008). Applications of mathematical systems theory in population biology, Period. Math. Hungar. 56 (1) pp. 157–168
[42] M.Gámez, I. López, and A. Shamandy(2010). Open-and closed-loop equilibrium control of trophic chains, Ecol. Modell.221, pp. 1839–1846
[43] M. Rafikov, J.M. Balthazar, and H.F. B. Von, (2008). Mathematical modeling and control of population systems: application in biological pest control, Appl. Math. Comput. 200 pp. 557–573
[44] M.P.Hassell (2002). The Spatial and Temporal Dynamics of Host– parasitoid Interactions, Oxford University Press, Oxford
[45] K. Stankova, A. Abate, M.W K. Sabells (2013). Irreversible prey diapause as an optimal strategy of a physiologically extended Lokta- Volterra model, J. Math. Biol. 66:767–794, DOI 10.1007/s00285-012- 0599-5
[46] K. Etebari, R. W. Palfreyman, D. Schlipalius, L. K. Nielsen, R. V. Glatz, S. Asgari (2011) . Deep sequencing-based transcriptome analysis of Plutellaxylostella larvae parasitized by Diadegmasemiclausum. BMC Genomics 12: 446
[47] J.L.Capinera, (2012). Diamondback moth, Featured creatures – Entomology & Nematology, University of Florida, EENY-119, Retrieved 23/07/13
[48] D. G.Harcourt (1957). Biology of the diamondback moth, Plutellamaculipennis (Curt.) (Lepidoptera: Plutellidae), in Eastern Ontario. II. Life-history, behaviour, and host relationships. Canadian Entomologist 89: 554-564.
[49] A. Knutson (2005). The Trichogramma Manual: A guide to the use of Trichogramma for Biological Control with Special Reference to Augmentative Releases for Control of bollworm and Budworm in Cotton. (Texas Agricultural Extension Service). 1-42
[50] A. Knutson (1998). The Trichogrammamanual: a guide to the use of Trichogrammafor biological control with species reference to augmentative releases for control of bollworm and budworm in cotton. Publ. No. B–6071. Texas Agric. Ext. Serv., Texas A&M Univ.Res. and Ext. Center, Dallas, TX. A. Knutson (1998). The Trichogramma manual: a guide to the use of Trichogrammafor biological control with species reference to augmentative releases for control of bollworm and budworm in cotton. Publ. No. B–6071. Texas Agric. Ext. Serv., Texas A&M Univ.Res. and Ext. Center, Dallas, TX.
[51] D. Khatri, Q. Wang, & X.Z. He (2008). Developnment and reproduction of Diadegmasemiclausum (Hymenotera: Ichneumonidae) on Diamondback moth (Plutellidae). New Zealand Plant protection. 61; 322-327 and Reproduction of Diadegmasemiclausum, thesis 2011, Massey University, Palmerston North, New Zealand.
[52] S. Liu, X. Wang, Z. Shi, Z. H. Gebremeskel (2001). The biology of Diadromus collaris (Hymenoptera: Ichneumonidae), a pupal parasitoid of Plutella xylostella (Lepidoptera: Plutellidae), and its interactions with Oomyzus sokolowskii (Hymenoptera: Eulophidae). Bulletin of Entomological Research. 91(6):461-69. http://www.ncbi.nlm.nih.gov/ pubmed/11818041retrieved 15/07/13
[53] H. E. Z. Tonnang, L.V.Nedorezov, J.O. Owino, H.Ochanda, B. Lo (2010). Host–parasitoid population density prediction using artificial neural networks: diamondback moth and its natural enemies, Agricultural and Forest Entomology. 12, 233-242.
[54] A.M. Sheltonand J. T. Andaloro (1982). Effect of lepidopterous larval populations on processed cabbage grades. J. Econ. Entomol. 75: 141- 143.
[55] D. Khatri (2011) . Reproduction of Diadegmasemiclausum, MSc thesis 2011, Massey University, Palmerston North, New Zealand
[56] D. C.Lloyd (1940). Host Selection by Hymenopterous Parasites of the Moth Plutellamaculipennis Curtis. Proc. Roy. Soc. Lond., Ser. B, no. 853, vol. cxxviii, pp. 451–484.
[57] C. Chatfield, statistics for technology: a course in applied statistics, third edition (Revised) (1992) Chapman & Hall, London, ISBN 0-412-25340- 2: pp. 327-330
[58] B. Ostle, K. V. Turner, Jr., C.R. Hicks, & G. W. McElrath, Engineering Statiatics, the Industrial Experience, Duxbury Press, United State of America, (1996). ISBN 0-534-26538-3: pg. 161-165.
[59] W. A. Hoffmann, H. Poorter (2002). Avoiding Bias in Calculations of Relative Growth Rate. Annals of Botany 90 (1): 37. DOI:10.1093/aob/mcf140
[60] E. K. Fehlberg, (1969). Runge-Kutta-Formeln fünfter and siebenter Ordnung mit Schrittweiten-Kontrolle, Computing (Arch. Elektron. Rechnen) 4 1969 93-106.
[61] J. R. Dormand, and P. J. Prince, (1981). High order embedded Runge- Kutta formulae, J. Comput. Appl. Math. 7 (1981), no.1, 67-75.
[62] J. Butcher (2007). Runge-Kutta methods. Scholarpedia, 2(9):3147.
[63] R. Schreiber (2007). MATLAB. Scholarpedia, 2(7):2929.
[64] F. O. Faithpraise, J. Idung, C. R. Chatwin, R. C. D. Young, P.M. Birch (2014b)."Biological Control of Taro Scarab Beetle (Papuanauninodis, Coleoptera: Scarabaeidae) Instars via scoliid and Voria tachinidae”. International Journal of Applied Biology and Pharmaceutical Technology, Volume 5, Issue 3, in press, 27th April 2014. July –Sept 2014, ISSN: 0976-4550.
[65] F. O. Faithpraise, C. R. Chatwin, J. Obu, B. OlawaleR. C. D. Young, P.M. Birch (2014b). Sustainable Control of Anopheles Mosquito Population. Environment, Ecology & Management, Vol 3(1). 1-19
[66] F. O. Faithpraise, C. R. Chatwin, R. C. D. Young, P.M. Birch (2013b). Timely Control of Aphis craccivora Using an Automatic Robotic Drone management system (ARDMS) Technical Report, TR/SU/FF/130617, 17 June 2013, Page 1-19