Search results for: Protein Structure Data.
7458 Identification of Wideband Sources Using Higher Order Statistics in Noisy Environment
Authors: S. Bourennane, A. Bendjama
Abstract:
This paper deals with the localization of the wideband sources. We develop a new approach for estimating the wide band sources parameters. This method is based on the high order statistics of the recorded data in order to eliminate the Gaussian components from the signals received on the various hydrophones.In fact the noise of sea bottom is regarded as being Gaussian. Thanks to the coherent signal subspace algorithm based on the cumulant matrix of the received data instead of the cross-spectral matrix the wideband correlated sources are perfectly located in the very noisy environment. We demonstrate the performance of the proposed algorithm on the real data recorded during an underwater acoustics experiments.
Keywords: Higher-order statistics, high resolution array processing techniques, localization of acoustics sources, wide band sources.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15997457 An AK-Chart for the Non-Normal Data
Authors: Chia-Hau Liu, Tai-Yue Wang
Abstract:
Traditional multivariate control charts assume that measurement from manufacturing processes follows a multivariate normal distribution. However, this assumption may not hold or may be difficult to verify because not all the measurement from manufacturing processes are normal distributed in practice. This study develops a new multivariate control chart for monitoring the processes with non-normal data. We propose a mechanism based on integrating the one-class classification method and the adaptive technique. The adaptive technique is used to improve the sensitivity to small shift on one-class classification in statistical process control. In addition, this design provides an easy way to allocate the value of type I error so it is easier to be implemented. Finally, the simulation study and the real data from industry are used to demonstrate the effectiveness of the propose control charts.
Keywords: Multivariate control chart, statistical process control, one-class classification method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22707456 Steady State of Passive and Active Suspensions in the Physical Domain
Authors: Gilberto Gonzalez-A, Jorge Madrigal
Abstract:
The steady state response of bond graphs representing passive and active suspension is presented. A bond graph with preferred derivative causality assignment to get the steady state is proposed. A general junction structure of this bond graph is proposed. The proposed methodology to passive and active suspensions is applied.Keywords: Bond graph, steady state, active suspension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17227455 Estimation Model of Dry Docking Duration Using Data Mining
Authors: Isti Surjandari, Riara Novita
Abstract:
Maintenance is one of the most important activities in the shipyard industry. However, sometimes it is not supported by adequate services from the shipyard, where inaccuracy in estimating the duration of the ship maintenance is still common. This makes estimation of ship maintenance duration is crucial. This study uses Data Mining approach, i.e., CART (Classification and Regression Tree) to estimate the duration of ship maintenance that is limited to dock works or which is known as dry docking. By using the volume of dock works as an input to estimate the maintenance duration, 4 classes of dry docking duration were obtained with different linear model and job criteria for each class. These linear models can then be used to estimate the duration of dry docking based on job criteria.
Keywords: Classification and regression tree (CART), data mining, dry docking, maintenance duration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24337454 Extended Low Power Bus Binding Combined with Data Sequence Reordering
Authors: Jihyung Kim, Taejin Kim, Sungho Park, Jun-Dong Cho
Abstract:
In this paper, we address the problem of reducing the switching activity (SA) in on-chip buses through the use of a bus binding technique in high-level synthesis. While many binding techniques to reduce the SA exist, we present yet another technique for further reducing the switching activity. Our proposed method combines bus binding and data sequence reordering to explore a wider solution space. The problem is formulated as a multiple traveling salesman problem and solved using simulated annealing technique. The experimental results revealed that a binding solution obtained with the proposed method reduces 5.6-27.2% (18.0% on average) and 2.6-12.7% (6.8% on average) of the switching activity when compared with conventional binding-only and hybrid binding-encoding methods, respectively.Keywords: low power, bus binding, switching activity, multiple traveling salesman problem, data sequence reordering
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13337453 Manufacturers-Retailers: The New Actor in the U.S. Furniture Industry. Characteristics and Implications for the Chinese Industry
Authors: Lidia Martínez Murillo
Abstract:
Since the 1990s the American furniture industry faces a transition period. Manufacturers, one of its most important actors made its entrance into the retail industry. This shift has had deep consequences not only for the American furniture industry as a whole, but also for other international furniture industries, especially the Chinese. The present work aims to analyze this actor based on the distinction provided by the Global Commodity Chain Theory. It stresses its characteristics, structure, operational way and importance for both the U.S. and the Chinese furniture industries.Keywords: M&RC, blended strategy, U.S. furniture industry, Chinese furniture industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19707452 Evaluation of Hancornia speciosa Gomes Lyophilization at Different Stages of Maturation
Authors: D. C. Soares, J. T. S. Santos, D. G. Costa, A. K. S. Abud, T. P. Nunes, A. V. D. Figueiredo, A. M. de Oliveira Junior
Abstract:
Mangabeira (Hancornia speciosa Gomes), a native plant in Brazil, is found growing spontaneously in various regions of the country. The high perishability of tropical fruits such as mangaba, causes it to be necessary to use technologies that promote conservation, aiming to increase the shelf life of this fruit and add value. The objective of this study was to compare the mangabas lyophilization curves behaviors with different sizes and maturation stages. The fruits were freeze-dried for a period of approximately 45 hours at lyophilizer Liotop brand, model L -108. It has been considered large the fruits between 38 and 58 mm diameter and small, between 23 and 28 mm diameter and the two states of maturation, intermediate and mature. Large size mangabas drying curves in both states of maturation were linear behavior at all process, while the kinetic drying curves related to small fruits, independent of maturation state, had a typical behavior of drying, with all the well-defined steps. With these results it was noted that the time of lyophilization was suitable for small mangabas, a fact that did not happen with the larger one. This may indicate that the large mangabas require a longer time to freeze until reaches the equilibrium level, as it happens with the small fruits, going to have constant moisture at the end of the process. For both types of fruit were analyzed water activity, acidity, protein, lipid, and vitamin C before and after the process.
Keywords: Freeze dryer, mangaba, conservation, chemical characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21287451 Educational Data Mining: The Case of Department of Mathematics and Computing in the Period 2009-2018
Authors: M. Sitoe, O. Zacarias
Abstract:
University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.
Keywords: Evasion and retention, cross validation, bagging, stacking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217450 Compression and Filtering of Random Signals under Constraint of Variable Memory
Authors: Anatoli Torokhti, Stan Miklavcic
Abstract:
We study a new technique for optimal data compression subject to conditions of causality and different types of memory. The technique is based on the assumption that some information about compressed data can be obtained from a solution of the associated problem without constraints of causality and memory. This allows us to consider two separate problem related to compression and decompression subject to those constraints. Their solutions are given and the analysis of the associated errors is provided.Keywords: stochastic signals, optimization problems in signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13317449 A CTL Specification of Serializability for Transactions Accessing Uniform Data
Authors: Rafat Alshorman, Walter Hussak
Abstract:
Existing work in temporal logic on representing the execution of infinitely many transactions, uses linear-time temporal logic (LTL) and only models two-step transactions. In this paper, we use the comparatively efficient branching-time computational tree logic CTL and extend the transaction model to a class of multistep transactions, by introducing distinguished propositional variables to represent the read and write steps of n multi-step transactions accessing m data items infinitely many times. We prove that the well known correspondence between acyclicity of conflict graphs and serializability for finite schedules, extends to infinite schedules. Furthermore, in the case of transactions accessing the same set of data items in (possibly) different orders, serializability corresponds to the absence of cycles of length two. This result is used to give an efficient encoding of the serializability condition into CTL.Keywords: computational tree logic, serializability, multi-step transactions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11777448 Fast Approximate Bayesian Contextual Cold Start Learning (FAB-COST)
Authors: Jack R. McKenzie, Peter A. Appleby, Thomas House, Neil Walton
Abstract:
Cold-start is a notoriously difficult problem which can occur in recommendation systems, and arises when there is insufficient information to draw inferences for users or items. To address this challenge, a contextual bandit algorithm – the Fast Approximate Bayesian Contextual Cold Start Learning algorithm (FAB-COST) – is proposed, which is designed to provide improved accuracy compared to the traditionally used Laplace approximation in the logistic contextual bandit, while controlling both algorithmic complexity and computational cost. To this end, FAB-COST uses a combination of two moment projection variational methods: Expectation Propagation (EP), which performs well at the cold start, but becomes slow as the amount of data increases; and Assumed Density Filtering (ADF), which has slower growth of computational cost with data size but requires more data to obtain an acceptable level of accuracy. By switching from EP to ADF when the dataset becomes large, it is able to exploit their complementary strengths. The empirical justification for FAB-COST is presented, and systematically compared to other approaches on simulated data. In a benchmark against the Laplace approximation on real data consisting of over 670, 000 impressions from autotrader.co.uk, FAB-COST demonstrates at one point increase of over 16% in user clicks. On the basis of these results, it is argued that FAB-COST is likely to be an attractive approach to cold-start recommendation systems in a variety of contexts.Keywords: Cold-start, expectation propagation, multi-armed bandits, Thompson sampling, variational inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5527447 Evaluating the Baseline Characteristics of Static Balance in Young Adults
Authors: K. Abuzayan, H. Alabed, K. Zarug
Abstract:
The objectives of this study (baseline study, n = 20) were to implement Matlab procedures for quantifying selected static balance variables, establish baseline data of selected variables which characterize static balance activities in a population of healthy young adult males, and to examine any trial effects on these variables. The results indicated that the implementation of Matlab procedures for quantifying selected static balance variables was practical and enabled baseline data to be established for selected variables. There was no significant trial effect. Recommendations were made for suitable tests to be used in later studies. Specifically it was found that one foot-tiptoes tests either in static balance is too challenging for most participants in normal circumstances. A one foot-flat eyes open test was considered to be representative and challenging for static balance.
Keywords: Static Balance, Base of support, Baseline Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18147446 Clustering Multivariate Empiric Characteristic Functions for Multi-Class SVM Classification
Authors: María-Dolores Cubiles-de-la-Vega, Rafael Pino-Mejías, Esther-Lydia Silva-Ramírez
Abstract:
A dissimilarity measure between the empiric characteristic functions of the subsamples associated to the different classes in a multivariate data set is proposed. This measure can be efficiently computed, and it depends on all the cases of each class. It may be used to find groups of similar classes, which could be joined for further analysis, or it could be employed to perform an agglomerative hierarchical cluster analysis of the set of classes. The final tree can serve to build a family of binary classification models, offering an alternative approach to the multi-class SVM problem. We have tested this dendrogram based SVM approach with the oneagainst- one SVM approach over four publicly available data sets, three of them being microarray data. Both performances have been found equivalent, but the first solution requires a smaller number of binary SVM models.Keywords: Cluster Analysis, Empiric Characteristic Function, Multi-class SVM, R.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18797445 An Approach for Data Analysis, Evaluation and Correction: A Case Study from Man-Made River Project in Libya
Authors: Nasser M. Amaitik, Nabil A. Alfagi
Abstract:
The world-s largest Pre-stressed Concrete Cylinder Pipe (PCCP) water supply project had a series of pipe failures which occurred between 1999 and 2001. This has led the Man-Made River Authority (MMRA), the authority in charge of the implementation and operation of the project, to setup a rehabilitation plan for the conveyance system while maintaining the uninterrupted flow of water to consumers. At the same time, MMRA recognized the need for a long term management tool that would facilitate repair and maintenance decisions and enable taking the appropriate preventive measures through continuous monitoring and estimation of the remaining life of each pipe. This management tool is known as the Pipe Risk Management System (PRMS) and now in operation at MMRA. Both the rehabilitation plan and the PRMS require the availability of complete and accurate pipe construction and manufacturing data This paper describes a systematic approach of data collection, analysis, evaluation and correction for the construction and manufacturing data files of phase I pipes which are the platform for the PRMS database and any other related decision support system.Keywords: Asbuilt, History, IMD, MMRA, PDBMS & PRMS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20187444 Structure of Covering-based Rough Sets
Authors: Shiping Wang, Peiyong Zhu, William Zhu
Abstract:
Rough set theory is a very effective tool to deal with granularity and vagueness in information systems. Covering-based rough set theory is an extension of classical rough set theory. In this paper, firstly we present the characteristics of the reducible element and the minimal description covering-based rough sets through downsets. Then we establish lattices and topological spaces in coveringbased rough sets through down-sets and up-sets. In this way, one can investigate covering-based rough sets from algebraic and topological points of view.
Keywords: Covering, poset, down-set, lattice, topological space, topological base.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18507443 Analytical Studies on Volume Determination of Leg Ulcer using Structured Light and Laser Triangulation Data Acquisition Techniques
Authors: M. Abdul-Rani, K. K. Chong, A. F. M. Hani, Y. B. Yap, A. Jamil
Abstract:
Imaging is defined as the process of obtaining geometric images either two dimensional or three dimensional by scanning or digitizing the existing objects or products. In this research, it applied to retrieve 3D information of the human skin surface in medical application. This research focuses on analyzing and determining volume of leg ulcers using imaging devices. Volume determination is one of the important criteria in clinical assessment of leg ulcer. The volume and size of the leg ulcer wound will give the indication on responding to treatment whether healing or worsening. Different imaging techniques are expected to give different result (and accuracies) in generating data and images. Midpoint projection algorithm was used to reconstruct the cavity to solid model and compute the volume. Misinterpretation of the results can affect the treatment efficacy. The objectives of this paper is to compare the accuracy between two 3D data acquisition method, which is laser triangulation and structured light methods, It was shown that using models with known volume, that structured-light-based 3D technique produces better accuracy compared with laser triangulation data acquisition method for leg ulcer volume determination.Keywords: Imaging, Laser Triangulation, Structured Light, Volume Determination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15097442 Manufacturers-Retailers: The New Actor in the U.S. Furniture Industry. Characteristics and Implications for the Chinese Furniture Industry
Authors: Lidia Martínez Murillo
Abstract:
Since the 1990s the American furniture industry faces a transition period. Manufacturers, one of its most important actors made its entrance into the retail industry. This shift has had deep consequences not only for the American furniture industry as a whole, but also for other international furniture industries, especially the Chinese. The present work aims to analyze this actor based on the distinction provided by the Global Commodity Chain Theory. It stresses its characteristics, structure, operational way and importance for both the U.S. and the Chinese furniture industries.
Keywords: M&RC, blended strategy, U.S. furniture industry, Chinese furniture industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22577441 Integrating Low and High Level Object Recognition Steps
Authors: András Barta, István Vajk
Abstract:
In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.Keywords: Object recognition, Bayesian network, Wavelets, Document processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14857440 Oil Extraction from Microalgae Dunalliela sp. by Polar and Non-Polar Solvents
Authors: A. Zonouzi, M. Auli, M. Javanmard Dakheli, M. A. Hejazi
Abstract:
Microalgae are tiny photosynthetic plants. Nowadays, microalgae are being used as nutrient-dense foods and sources of fine chemicals. They have significant amounts of lipid, carotenoids, vitamins, protein, minerals, chlorophyll, and pigments. Oil extraction from algae is a hotly debated topic currently because introducing an efficient method could decrease the process cost. This can determine the sustainability of algae-based foods. Scientific research works show that solvent extraction using chloroform/methanol (2:1) mixture is one of the efficient methods for oil extraction from algal cells, but both methanol and chloroform are toxic solvents, and therefore, the extracted oil will not be suitable for food application. In this paper, the effect of two food grade solvents (hexane and hexane/ isopropanol) on oil extraction yield from microalgae Dunaliella sp. was investigated and the results were compared with chloroform/methanol (2:1) extraction yield. It was observed that the oil extraction yield using hexane, hexane/isopropanol (3:2) and chloroform/methanol (2:1) mixture were 5.4, 13.93, and 17.5 (% w/w, dry basis), respectively. The fatty acid profile derived from GC illustrated that the palmitic (36.62%), oleic (18.62%), and stearic acids (19.08%) form the main portion of fatty acid composition of microalgae Dunalliela sp. oil. It was concluded that, the addition of isopropanol as polar solvent could increase the extraction yield significantly. Isopropanol solves cell wall phospholipids and enhances the release of intercellular lipids, which improves accessing of hexane to fatty acids.
Keywords: Fatty acid profile, Microalgae, Oil extraction, Polar solvent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21967439 Eye Tracking: Biometric Evaluations of Instructional Materials for Improved Learning
Authors: Janet Holland
Abstract:
Eye tracking is a great way to triangulate multiple data sources for deeper, more complete knowledge of how instructional materials are really being used and emotional connections made. Using sensor based biometrics provides a detailed local analysis in real time expanding our ability to collect science based data for a more comprehensive level of understanding, not previously possible, for teaching and learning. The knowledge gained will be used to make future improvements to instructional materials, tools, and interactions. The literature has been examined and a preliminary pilot test was implemented to develop a methodology for research in Instructional Design and Technology. Eye tracking now offers the addition of objective metrics obtained from eye tracking and other biometric data collection with analysis for a fresh perspective.Keywords: Area of interest, eye tracking, biometrics, fixation, fixation count, fixation sequence, fixation time, gaze points, heat map, saccades, time to first fixation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8797438 Digestibility in Yankasa Rams Fed Brachiaria ruziziensis – Centrosema pascuorum Hay Mixtures with Concentrate
Authors: Ibrahim Sani, J. T. Amodu, M. R. Hassan, R. J. Tanko, N. Adamu
Abstract:
This study investigated the digestibility of Brachiaria ruziziensis and Centrosema pascuorum hay mixtures at varying proportions in Yankasa rams. Twelve Yankasa rams with average initial weight 10.25 ± 0.1 kg were assigned to three dietary treatments of B. ruziziensis and C. pascuorum hay at different mixtures (75BR:25CP, 50BR:50CP and 25BR:75CP, respectively) in a Completely Randomized Design (CRD) for a period of 14 days. Concentrate diet was given to the experimental animals as supplement at fixed proportion, while the forage mixture (basal diet) was fed at 3% body weight. Animals on 50BR:50CP had better nutrient digestibility (crude protein, acid and neutral detergent fibre, ether extract and nitrogen free extract) than other treatment diets, except in dry matter digestibility (87.35%) which compared with 87.54% obtained in 25BR:75CP treatment diet and also organic matter digestibility. All parameters taken on nitrogen balance with the exception of nitrogen retained were significantly higher (P < 0.05) in animals fed 25BR:75CP diet, but were statistically similar with values obtained for animals on 50BR:50CP diet. From results obtained in this study, it is concluded that mixture of 25%BR75%CP gave the best nutrient digestibility and nitrogen balance in Yankasa rams. It is therefore recommended that B. ruziziensis and C. pascuorum should be fed at 50:50 mixture ratio for enhanced animal growth and performance in Nigeria.Keywords: B. ruziziensis, C. pascuorum, digestibility, rams, Yankasa.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6917437 Ubiquitous Life People Informatics Engine (U-Life PIE): Wearable Health Promotion System
Authors: Yi-Ping Lo, Shi-Yao Wei, Chih-Chun Ma
Abstract:
Since Google launched Google Glass in 2012, numbers of commercial wearable devices were released, such as smart belt, smart band, smart shoes, smart clothes ... etc. However, most of these devices perform as sensors to show the readings of measurements and few of them provide the interactive feedback to the user. Furthermore, these devices are single task devices which are not able to communicate with each other. In this paper a new health promotion system, Ubiquitous Life People Informatics Engine (U-Life PIE), will be presented. This engine consists of People Informatics Engine (PIE) and the interactive user interface. PIE collects all the data from the compatible devices, analyzes this data comprehensively and communicates between devices via various application programming interfaces. All the data and informations are stored on the PIE unit, therefore, the user is able to view the instant and historical data on their mobile devices any time. It also provides the real-time hands-free feedback and instructions through the user interface visually, acoustically and tactilely. These feedback and instructions suggest the user to adjust their posture or habits in order to avoid the physical injuries and prevent illness.Keywords: Machine learning, user interface, user experience, Internet of things, health promotion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14327436 New Methods for E-Commerce Databases Designing in Semantic Web Systems (Modern Systems)
Authors: Karim Heidari, Serajodin Katebi, Ali Reza Mahdavi Far
Abstract:
The purpose of this paper is to study Database Models to use them efficiently in E-commerce websites. In this paper we are going to find a method which can save and retrieve information in Ecommerce websites. Thus, semantic web applications can work with, and we are also going to study different technologies of E-commerce databases and we know that one of the most important deficits in semantic web is the shortage of semantic data, since most of the information is still stored in relational databases, we present an approach to map legacy data stored in relational databases into the Semantic Web using virtually any modern RDF query language, as long as it is closed within RDF. To achieve this goal we study XML structures for relational data bases of old websites and eventually we will come up one level over XML and look for a map from relational model (RDM) to RDF. Noting that a large number of semantic webs get advantage of relational model, opening the ways which can be converted to XML and RDF in modern systems (semantic web) is important.Keywords: E-Commerce, Semantic Web, Database, XML, RDF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23127435 Information Quality Evaluation Framework: Extending ISO 25012 Data Quality Model
Authors: Irfan Rafique, Philip Lew, Maissom Qanber Abbasi, Zhang Li
Abstract:
The world wide web coupled with the ever-increasing sophistication of online technologies and software applications puts greater emphasis on the need of even more sophisticated and consistent quality requirements modeling than traditional software applications. Web sites and Web applications (WebApps) are becoming more information driven and content-oriented raising the concern about their information quality (InQ). The consistent and consolidated modeling of InQ requirements for WebApps at different stages of the life cycle still poses a challenge. This paper proposes an approach to specify InQ requirements for WebApps by reusing and extending the ISO 25012:2008(E) data quality model. We also discuss learnability aspect of information quality for the WebApps. The proposed ISO 25012 based InQ framework is a step towards a standardized approach to evaluate WebApps InQ.Keywords: Data Quality Model, Information learnability, Information Quality, Web applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57897434 The Carbon Trading Price and Trading Volume Forecast in Shanghai City by BP Neural Network
Authors: Liu Zhiyuan, Sun Zongdi
Abstract:
In this paper, the BP neural network model is established to predict the carbon trading price and carbon trading volume in Shanghai City. First of all, we find the data of carbon trading price and carbon trading volume in Shanghai City from September 30, 2015 to December 23, 2016. The carbon trading price and trading volume data were processed to get the average value of each 5, 10, 20, 30, and 60 carbon trading price and trading volume. Then, these data are used as input of BP neural network model. Finally, after the training of BP neural network, the prediction values of Shanghai carbon trading price and trading volume are obtained, and the model is tested.
Keywords: Carbon trading price, carbon trading volume, BP neural network model, Shanghai City.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14017433 Dynamic Decompression for Text Files
Authors: Ananth Kamath, Ankit Kant, Aravind Srivatsa, Harisha J.A
Abstract:
Compression algorithms reduce the redundancy in data representation to decrease the storage required for that data. Lossless compression researchers have developed highly sophisticated approaches, such as Huffman encoding, arithmetic encoding, the Lempel-Ziv (LZ) family, Dynamic Markov Compression (DMC), Prediction by Partial Matching (PPM), and Burrows-Wheeler Transform (BWT) based algorithms. Decompression is also required to retrieve the original data by lossless means. A compression scheme for text files coupled with the principle of dynamic decompression, which decompresses only the section of the compressed text file required by the user instead of decompressing the entire text file. Dynamic decompressed files offer better disk space utilization due to higher compression ratios compared to most of the currently available text file formats.Keywords: Compression, Dynamic Decompression, Text file format, Portable Document Format, Compression Ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17637432 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine
Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin
Abstract:
This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.
Keywords: CAM, multi-axis milling machining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35817431 Shunt Power Active Filter Control under NonIdeal Voltages Conditions
Authors: H. Abaali, M. T. Lamchich, M. Raoufi
Abstract:
In this paper, we propose the Modified Synchronous Detection (MSD) Method for determining the reference compensating currents of the shunt active power filter under non sinusoidal voltages conditions. For controlling the inverter switching we used the PI regulator. The numerical simulation results, using Power System Blockset Toolbox PSB of Matlab, from a complete structure, are presented and discussed.
Keywords: Distorted, harmonic, Modified Synchronous Detection Method, PI regulator, Shunt Active Power Filter, unbalanced.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17207430 Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine
Authors: Karin Kandananond
Abstract:
The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated.Keywords: Artificial neural network (ANN), Bullwhip effect, Consumer products, Demand forecasting, Supply chain, Support vector machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30097429 Reductions of Control Flow Graphs
Authors: Robert Gold
Abstract:
Control flow graphs are a well-known representation of the sequential control flow structure of programs with a multitude of applications. Not only single functions but also sets of functions or complete programs can be modeled by control flow graphs. In this case the size of the graphs can grow considerably and thus makes it difficult for software engineers to analyze the control flow. Graph reductions are helpful in this situation. In this paper we define reductions to subsets of nodes. Since executions of programs are represented by paths through the control flow graphs, paths should be preserved. Furthermore, the composition of reductions makes a stepwise analysis approach possible.
Keywords: Control flow graph, graph reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3495