Search results for: Network Discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2937

Search results for: Network Discovery

537 A New Approach for Network Reconfiguration Problem in Order to Deviation Bus Voltage Minimization with Regard to Probabilistic Load Model and DGs

Authors: Mahmood Reza Shakarami, Reza Sedaghati

Abstract:

Recently, distributed generation technologies have received much attention for the potential energy savings and reliability assurances that might be achieved as a result of their widespread adoption. The distribution feeder reconfiguration (DFR) is one of the most important control schemes in the distribution networks, which can be affected by DGs. This paper presents a new approach to DFR at the distribution networks considering wind turbines. The main objective of the DFR is to minimize the deviation of the bus voltage. Since the DFR is a nonlinear optimization problem, we apply the Adaptive Modified Firefly Optimization (AMFO) approach to solve it. As a result of the conflicting behavior of the single- objective function, a fuzzy based clustering technique is employed to reach the set of optimal solutions called Pareto solutions. The approach is tested on the IEEE 32-bus standard test system.

Keywords: Adaptive Modified Firefly Optimization (AMFO), Pareto solutions, feeder reconfiguration, wind turbines, bus voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017
536 Sensitivity Analysis for Determining Priority of Factors Controlling SOC Content in Semiarid Condition of West of Iran

Authors: Y. Parvizi, M. Gorji, M.H. Mahdian, M. Omid

Abstract:

Soil organic carbon (SOC) plays a key role in soil fertility, hydrology, contaminants control and acts as a sink or source of terrestrial carbon content that can affect the concentration of atmospheric CO2. SOC supports the sustainability and quality of ecosystems, especially in semi-arid region. This study was conducted to determine relative importance of 13 different exploratory climatic, soil and geometric factors on the SOC contents in one of the semiarid watershed zones in Iran. Two methods canonical discriminate analysis (CDA) and feed-forward back propagation neural networks were used to predict SOC. Stepwise regression and sensitivity analysis were performed to identify relative importance of exploratory variables. Results from sensitivity analysis showed that 7-2-1 neural networks and 5 inputs in CDA models output have highest predictive ability that explains %70 and %65 of SOC variability. Since neural network models outperformed CDA model, it should be preferred for estimating SOC.

Keywords: Soil organic carbon, modeling, neural networks, CDA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
535 Range-Free Localization Schemes for Wireless Sensor Networks

Authors: R. Khadim, M. Erritali, A. Maaden

Abstract:

Localization of nodes is one of the key issues of Wireless Sensor Network (WSN) that gained a wide attention in recent years. The existing localization techniques can be generally categorized into two types: range-based and range-free. Compared with rang-based schemes, the range-free schemes are more costeffective, because no additional ranging devices are needed. As a result, we focus our research on the range-free schemes. In this paper we study three types of range-free location algorithms to compare the localization error and energy consumption of each one. Centroid algorithm requires a normal node has at least three neighbor anchors, while DV-hop algorithm doesn’t have this requirement. The third studied algorithm is the amorphous algorithm similar to DV-Hop algorithm, and the idea is to calculate the hop distance between two nodes instead of the linear distance between them. The simulation results show that the localization accuracy of the amorphous algorithm is higher than that of other algorithms and the energy consumption does not increase too much.

Keywords: Wireless Sensor Networks, Node Localization, Centroid Algorithm, DV–Hop Algorithm, Amorphous Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2631
534 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence/pattern recognition/classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: Hybrid systems, Hidden Markov Models, Recurrent neural networks, Deterministic finite state automata.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2884
533 Li-Fi Technology: Data Transmission through Visible Light

Authors: Shahzad Hassan, Kamran Saeed

Abstract:

People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.

Keywords: Communication, LED, Li-Fi, Wi-Fi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
532 Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems

Authors: Eleni Aggelogiannaki, Haralambos Sarimveis

Abstract:

In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.

Keywords: Hyperbolic Distributed Parameter Systems, Radial Basis Function Neural Networks, H∞ control, Thermal systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
531 Determinants of R&D Outsourcing at Japanese Firms: Transaction Cost and Strategic Management Perspectives

Authors: Dai Miyamoto

Abstract:

This paper examines the factors, which determine R&D outsourcing behaviour at Japanese firms, from the viewpoints of transaction cost and strategic management, since the latter half of the 1990s. This study uses empirical analysis, which involves the application of large-sample data. The principal findings of this paper are listed below. Firms that belong to a wider corporate group are more active in executing R&D outsourcing activities. Diversification strategies such as the expansion of product and sales markets have a positive effect on the R&D outsourcing behaviour of firms. Moreover, while quantitative R&D resources have positive influences on R&D outsourcing, qualitative indices have no effect. These facts suggest that R&D outsourcing behaviour of Japanese firms are consistent with the two perspectives of transaction cost and strategic management. Specifically, a conventional corporate group network plays an important role in R&D outsourcing behaviour. Firms that execute R&D outsourcing leverage 'old' networks to construct 'new' networks and use both networks properly.

Keywords: Corporate Group Networks, R&D Outsourcing, Strategic Management Perspective, Transaction Cost Perspective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
530 Enabling Remote Desktop in a Virtualized Environment for Cloud Services

Authors: Shuen-Tai Wang, Yu-Ching Lin, Hsi-Ya Chang

Abstract:

Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. This paper presents our development on enabling an individual user's desktop in a virtualized environment, which is stored on a remote virtual machine rather than locally. We present the initial work on the integration of virtual desktop and application sharing with virtualization technology. Given the development of remote desktop virtualization, this proposed effort has the potential to positively provide an efficient, resilience and elastic environment for online cloud service. Users no longer need to burden the cost of software licenses and platform maintenances. Moreover, this development also helps boost user productivity by promoting a flexible model that lets users access their desktop environments from virtually anywhere.

Keywords: Cloud Computing, Virtualization, Virtual Desktop, Elastic Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
529 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.

Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 232
528 Congestion Management in a Deregulated Power System with Micro Grid

Authors: Guguloth Ramesh, T. K. Sunil Kumar

Abstract:

This paper presents congestion management in deregulated power systems. In a deregulated environment, every buyer wants to buy power from the cheapest generator available, irrespective of relative geographical location of buyer and seller. As a consequence of this, the transmission corridors evacuating the power of cheaper generators would get overloaded if all such transactions are approved. Congestion management is a mechanism to prioritize the transactions and commit to such a schedule which would not overload the network. The congestions in the transmission lines are determined by Optimal Power Flow (OPF) solution, which is carried by primal liner programming method. Congestion in the transmission lines are alleviated by connected Distributed Generation (DG) of micro grid at load bus. A method to determine the optimal location of DG unit has been suggested based on transmission line relief sensitivity based approach. The effectiveness of proposed method has been demonstrated on modified IEEE-14 and 30 bus test systems.

Keywords: Congestion management, Distribution Generation (DG), Transmission Line Relief (TLR) sensitivity index, OPF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3893
527 Digital Social Networks: Examining the Knowledge Characteristics

Authors: Nurul Aini M. Nordan, Ahmad I. Z. Abidin, Ahmad K. Mahmood, Noreen I. Arshad

Abstract:

In today-s information age, numbers of organizations are still arguing on capitalizing the values of Information Technology (IT) and Knowledge Management (KM) to which individuals can benefit from and effective communication among the individuals can be established. IT exists in enabling positive improvement for communication among knowledge workers (k-workers) with a number of social network technology domains at workplace. The acceptance of digital discourse in sharing of knowledge and facilitating the knowledge and information flows at most of the organizations indeed impose the culture of knowledge sharing in Digital Social Networks (DSN). Therefore, this study examines whether the k-workers with IT background would confer an effect on the three knowledge characteristics -- conceptual, contextual, and operational. Derived from these three knowledge characteristics, five potential factors will be examined on the effects of knowledge exchange via e-mail domain as the chosen query. It is expected, that the results could provide such a parameter in exploring how DSN contributes in supporting the k-workers- virtues, performance and qualities as well as revealing the mutual point between IT and KM.

Keywords: Digital social networks, e-mail, knowledge management, knowledge worker.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
526 A Comparative Study on Fuzzy and Neuro-Fuzzy Enabled Cluster Based Routing Protocols for Wireless Sensor Networks

Authors: Y. Harold Robinson, E. Golden Julie

Abstract:

Dynamic Routing in Wireless Sensor Networks (WSNs) has played a significant task in research for the recent years. Energy consumption and data delivery in time are the major parameters with the usage of sensor nodes that are significant criteria for these networks. The location of sensor nodes must not be prearranged. Clustering in WSN is a key methodology which is used to enlarge the life-time of a sensor network. It consists of numerous real-time applications. The features of WSNs are minimized the consumption of energy. Soft computing techniques can be included to accomplish improved performance. This paper surveys the modern trends in routing enclose fuzzy logic and Neuro-fuzzy logic based on the clustering techniques and implements a comparative study of the numerous related methodologies.

Keywords: Wireless sensor networks, clustering, fuzzy logic, neuro-fuzzy logic, energy efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 989
525 An MADM Framework toward Hierarchical Production Planning in Hybrid MTS/MTO Environments

Authors: H. Rafiei, M. Rabbani

Abstract:

This paper proposes a new decision making structure to determine the appropriate product delivery strategy for different products in a manufacturing system among make-to-stock, make-toorder, and hybrid strategy. Given product delivery strategies for all products in the manufacturing system, the position of the Order Penetrating Point (OPP) can be located regarding the delivery strategies among which location of OPP in hybrid strategy is a cumbersome task. In this regard, we employ analytic network process, because there are varieties of interrelated driving factors involved in choosing the right location. Moreover, the proposed structure is augmented with fuzzy sets theory in order to cope with the uncertainty of judgments. Finally, applicability of the proposed structure is proven in practice through a real industrial case company. The numerical results demonstrate the efficiency of the proposed decision making structure in order partitioning and OPP location.

Keywords: Hybrid make-to-stock/make-to-order, Multi-attribute decision making, Order partitioning, Order penetration point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
524 Simulation of Thin Film Relaxation by Buried Misfit Networks

Authors: A. Derardja

Abstract:

The present work is motivated by the idea that the layer deformation in anisotropic elasticity can be estimated from the theory of interfacial dislocations. In effect, this work which is an extension of a previous approach given by one of the authors determines the anisotropic displacement fields and the critical thickness due to a complex biperiodic network of MDs lying just below the free surface in view of the arrangement of dislocations. The elastic fields of such arrangements observed along interfaces play a crucial part in the improvement of the physical properties of epitaxial systems. New results are proposed in anisotropic elasticity for hexagonal networks of MDs which contain intrinsic and extrinsic stacking faults. We developed, using a previous approach based on the relative interfacial displacement and a Fourier series formulation of the displacement fields, the expressions of elastic fields when there is a possible dissociation of MDs. The numerical investigations in the case of the observed system Si/(111)Si with low twist angles show clearly the effect of the anisotropy and thickness when the misfit networks are dissociated.

Keywords: Angular misfit, dislocation networks, plane interfaces, stacking faults.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1492
523 Power-Efficient AND-EXOR-INV Based Realization of Achilles' heel Logic Functions

Authors: Padmanabhan Balasubramanian, R. Chinnadurai

Abstract:

This paper deals with a power-conscious ANDEXOR- Inverter type logic implementation for a complex class of Boolean functions, namely Achilles- heel functions. Different variants of the above function class have been considered viz. positive, negative and pure horn for analysis and simulation purposes. The proposed realization is compared with the decomposed implementation corresponding to an existing standard AND-EXOR logic minimizer; both result in Boolean networks with good testability attribute. It could be noted that an AND-OR-EXOR type logic network does not exist for the positive phase of this unique class of logic function. Experimental results report significant savings in all the power consumption components for designs based on standard cells pertaining to a 130nm UMC CMOS process The simulations have been extended to validate the savings across all three library corners (typical, best and worst case specifications).

Keywords: Achilles' heel functions, AND-EXOR-Inverter logic, CMOS technology, low power design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
522 Preparation a Study on the Use of the Resident Registration Number and Alternatives for RRN

Authors: Hyejin Pak, Changsoo Kim, Healahng Choi

Abstract:

The resident registration number was adopted for the purposes of enhanced services for resident convenience and effective performance of governmental administrative affairs. However, it has been used for identification purposes customarily and irrationally in line with the development and spread of the Internet. In response to the growing concern about the leakage of collected RRNs and possible abuses of stolen RRNs, e.g. identity theft, for crimes, the Korean Communications Commission began to take legal/regulatory actions in 2011 to minimize the online collection and use of resident registration numbers. As the use of the RRN was limited after the revision of the Act on Promotion of Information and Communications Network Utilization and Information Protection, etc., online business providers were required to have alternatives to the RRN for the purpose of identifying the user's identity and age, in compliance with the law, and settling disputes with customers. This paper presents means of verifying the personal identity by taking advantage of the commonly used infrastructure and simply replacing personal information entered and stored, without requiring users to enter their RRNs.

Keywords: Resident Registration Numbers(RRNs), Alternative identification for RRNs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
521 A New Self-Adaptive EP Approach for ANN Weights Training

Authors: Kristina Davoian, Wolfram-M. Lippe

Abstract:

Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.

Keywords: Artificial Neural Networks (ANN), Learning Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
520 Consensus of Multi-Agent Systems under the Special Consensus Protocols

Authors: Konghe Xie

Abstract:

Two consensus problems are considered in this paper. One is the consensus of linear multi-agent systems with weakly connected directed communication topology. The other is the consensus of nonlinear multi-agent systems with strongly connected directed communication topology. For the first problem, a simplified consensus protocol is designed: Each child agent can only communicate with one of its neighbors. That is, the real communication topology is a directed spanning tree of the original communication topology and without any cycles. Then, the necessary and sufficient condition is put forward to the multi-agent systems can be reached consensus. It is worth noting that the given conditions do not need any eigenvalue of the corresponding Laplacian matrix of the original directed communication network. For the second problem, the feedback gain is designed in the nonlinear consensus protocol. Then, the sufficient condition is proposed such that the systems can be achieved consensus. Besides, the consensus interval is introduced and analyzed to solve the consensus problem. Finally, two numerical simulations are included to verify the theoretical analysis.

Keywords: Consensus, multi-agent systems, directed spanning tree, the Laplacian matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914
519 The Effect of Critical Activity on Critical Path and Project Duration in Precedence Diagram Method

Authors: J. Nisar, S. Halim

Abstract:

The additional relationships i.e., start-to-start, finish-to-finish, and start-to-finish, between activity in Precedence Diagram Method (PDM) provides a more flexible schedule than traditional Critical Path Method (CPM). But, changing the duration of critical activities in the PDM network will have an anomalous effect on the critical path and the project completion date. In this study, we classified the critical activities in two groups i.e., 1. activity on single critical path and 2. activity on multi-critical paths, and six classes i.e., normal, reverse, neutral, perverse, decrease-reverse and increase-normal, based on their effects on project duration in PDM. Furthermore, we determined the maximum float of time by which the duration each type of critical activities can be changed without effecting the project duration. This study would help the project manager to clearly understand the behavior of each critical activity on critical path, and he/she would be able to change the project duration by shortening or lengthening activities based on project budget and project deadline.

Keywords: Construction project management, critical path method, project scheduling, precedence diagram method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1477
518 Artificial Neural Network Development by means of Genetic Programming with Graph Codification

Authors: Daniel Rivero, Julián Dorado, Juan R. Rabuñal, Alejandro Pazos, Javier Pereira

Abstract:

The development of Artificial Neural Networks (ANNs) is usually a slow process in which the human expert has to test several architectures until he finds the one that achieves best results to solve a certain problem. This work presents a new technique that uses Genetic Programming (GP) for automatically generating ANNs. To do this, the GP algorithm had to be changed in order to work with graph structures, so ANNs can be developed. This technique also allows the obtaining of simplified networks that solve the problem with a small group of neurons. In order to measure the performance of the system and to compare the results with other ANN development methods by means of Evolutionary Computation (EC) techniques, several tests were performed with problems based on some of the most used test databases. The results of those comparisons show that the system achieves good results comparable with the already existing techniques and, in most of the cases, they worked better than those techniques.

Keywords: Artificial Neural Networks, Evolutionary Computation, Genetic Programming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
517 Correspondence between Function and Interaction in Protein Interaction Network of Saccaromyces cerevisiae

Authors: Nurcan Tuncbag, Turkan Haliloglu, Ozlem Keskin

Abstract:

Understanding the cell's large-scale organization is an interesting task in computational biology. Thus, protein-protein interactions can reveal important organization and function of the cell. Here, we investigated the correspondence between protein interactions and function for the yeast. We obtained the correlations among the set of proteins. Then these correlations are clustered using both the hierarchical and biclustering methods. The detailed analyses of proteins in each cluster were carried out by making use of their functional annotations. As a result, we found that some functional classes appear together in almost all biclusters. On the other hand, in hierarchical clustering, the dominancy of one functional class is observed. In the light of the clustering data, we have verified some interactions which were not identified as core interactions in DIP and also, we have characterized some functionally unknown proteins according to the interaction data and functional correlation. In brief, from interaction data to function, some correlated results are noticed about the relationship between interaction and function which might give clues about the organization of the proteins, also to predict new interactions and to characterize functions of unknown proteins.

Keywords: Pair-wise protein interactions, DIP database, functional correlations, biclustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
516 A Query Optimization Strategy for Autonomous Distributed Database Systems

Authors: Dina K. Badawy, Dina M. Ibrahim, Alsayed A. Sallam

Abstract:

Distributed database is a collection of logically related databases that cooperate in a transparent manner. Query processing uses a communication network for transmitting data between sites. It refers to one of the challenges in the database world. The development of sophisticated query optimization technology is the reason for the commercial success of database systems, which complexity and cost increase with increasing number of relations in the query. Mariposa, query trading and query trading with processing task-trading strategies developed for autonomous distributed database systems, but they cause high optimization cost because of involvement of all nodes in generating an optimal plan. In this paper, we proposed a modification on the autonomous strategy K-QTPT that make the seller’s nodes with the lowest cost have gradually high priorities to reduce the optimization time. We implement our proposed strategy and present the results and analysis based on those results.

Keywords: Autonomous strategies, distributed database systems, high priority, query optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057
515 Application of Neuro-Fuzzy Dynamic Programming to Improve the Reactive Power and Voltage Profile of a Distribution Substation

Authors: M. Tarafdar Haque, S. Najafi

Abstract:

Improving the reactive power and voltage profile of a distribution substation is investigated in this paper. The purpose is to properly determination of the shunt capacitors on/off status and suitable tap changer (TC) position of a substation transformer. In addition, the limitation of secondary bus voltage, the maximum allowable number of switching operation in a day for on load tap changer and on/off status of capacitors are taken into account. To achieve these goals, an artificial neural network (ANN) is designed to provide preliminary scheduling. Input of ANN is active and reactive powers of transformer and its primary and secondary bus voltages. The output of ANN is capacitors on/off status and TC position. The preliminary schedule is further refined by fuzzy dynamic programming in order to reach the final schedule. The operation of proposed method in Q/V improving is compared with the results obtained by operator operation in a distribution substation.

Keywords: Neuro-fuzzy, Dynamic programming, Reactive power, Voltage profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
514 Detecting Defects in Textile Fabrics with Optimal Gabor Filters

Authors: K. L. Mak, P. Peng

Abstract:

This paper investigates the problem of automated defect detection for textile fabrics and proposes a new optimal filter design method to solve this problem. Gabor Wavelet Network (GWN) is chosen as the major technique to extract the texture features from textile fabrics. Based on the features extracted, an optimal Gabor filter can be designed. In view of this optimal filter, a new semi-supervised defect detection scheme is proposed, which consists of one real-valued Gabor filter and one smoothing filter. The performance of the scheme is evaluated by using an offline test database with 78 homogeneous textile images. The test results exhibit accurate defect detection with low false alarm, thus showing the effectiveness and robustness of the proposed scheme. To evaluate the detection scheme comprehensively, a prototyped detection system is developed to conduct a real time test. The experiment results obtained confirm the efficiency and effectiveness of the proposed detection scheme.

Keywords: Defect detection, Filtering, Gabor function, Gaborwavelet networks, Textile fabrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
513 The Behavior of Dam Foundation Reinforced by Stone Columns: Case Study of Kissir Dam-Jijel

Authors: Toufik Karech, Abderahmen Benseghir, Tayeb Bouzid

Abstract:

This work presents a 2D numerical simulation of an earth dam to assess the behavior of its foundation after a treatment by stone columns. This treatment aims to improve the bearing capacity, to increase the mechanical properties of the soil, to accelerate the consolidation, to reduce the settlements and to eliminate the liquefaction phenomenon in case of seismic excitation. For the evaluation of the pore pressures, the position of the phreatic line and the flow network was defined, and a seepage analysis was performed with the software MIDAS Soil Works. The consolidation calculation is performed through a simulation of the actual construction stages of the dam. These analyzes were performed using the Mohr-Coulomb soil model and the results are compared with the actual measurements of settlement gauges implanted in the dam. An analysis of the bearing capacity was conducted to show the role of stone columns in improving the bearing capacity of the foundation.

Keywords: Earth dam, dam foundation, numerical simulation, stone columns, seepage analysis, consolidation, bearing capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
512 High Efficiency Electrolyte Lithium Battery and RF Characterization

Authors: Wei Quan, Liu Chao, Mohammed N. Afsar

Abstract:

The dielectric properties and ionic conductivity of novel "ceramic state" polymer electrolytes for high capacity lithium battery are characterized by Radio frequency and Microwave methods in two broad frequency ranges from 50 Hz to 20 KHz and 4 GHz to 40 GHz. This innovative solid polymer electrolyte which is highly ionic conductive (10-3 S/cm at room temperature) from -40oC to +150oC can be used in any battery application. Such polymer exhibits properties more like a ceramic rather than polymer. The various applied measurement methods produced accurate dielectric results for comprehensive analysis of electrochemical properties and ion transportation mechanism of this newly invented polymer electrolyte. Two techniques and instruments employing air gap measurement by Capacitance Bridge and in-waveguide measurement by vector network analyzer are applied to measure the complex dielectric spectra. The complex dielectric spectra are used to determine the complex alternating current electrical conductivity and thus the ionic conductivity.

Keywords: Polymer electrolyte, dielectric permittivity, lithium battery, ionic relaxation, microwave measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
511 Estimating the Effect of Fluid in Pressing Process

Authors: A. Movaghar, R. A. Mahdavinejad

Abstract:

To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.

Keywords: Pressing, notch, matrix, flow function, vortex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
510 Gene Network Analysis of PPAR-γ: A Bioinformatics Approach Using STRING

Authors: S. Bag, S. Ramaiah, P. Anitha, K. M. Kumar, P. Lavanya, V. Sivasakhthi, A. Anbarasu

Abstract:

Gene networks present a graphical view at the level of gene activities and genetic functions and help us to understand complex interactions in a meaningful manner. In the present study, we have analyzed the gene interaction of PPAR-γ (peroxisome proliferator-activated receptor gamma) by search tool for retrieval of interacting genes. We find PPAR-γ is highly networked by genetic interactions with 10 genes: RXRA (retinoid X receptor, alpha), PPARGC1A (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha), NCOA1 (nuclear receptor coactivator 1), NR0B2 (nuclear receptor subfamily 0, group B, member 2), HDAC3 (histone deacetylase 3), MED1 (mediator complex subunit 1), INS (insulin), NCOR2 (nuclear receptor co-repressor 2), PAX8 (paired box 8), ADIPOQ (adiponectin) and it augurs well for the fact that obesity and several other metabolic disorders are inter related.

Keywords: Gene networks, NCOA1, PPARγ, PPARGC1A, RXRA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4544
509 Effective Relay Communication for Scalable Video Transmission

Authors: Jung Ah Park, Zhijie Zhao, Doug Young Suh, Joern Ostermann

Abstract:

In this paper, we propose an effective relay communication for layered video transmission as an alternative to make the most of limited resources in a wireless communication network where loss often occurs. Relaying brings stable multimedia services to end clients, compared to multiple description coding (MDC). Also, retransmission of only parity data about one or more video layer using channel coder to the end client of the relay device is paramount to the robustness of the loss situation. Using these methods in resource-constrained environments, such as real-time user created content (UCC) with layered video transmission, can provide high-quality services even in a poor communication environment. Minimal services are also possible. The mathematical analysis shows that the proposed method reduced the probability of GOP loss rate compared to MDC and raptor code without relay. The GOP loss rate is about zero, while MDC and raptor code without relay have a GOP loss rate of 36% and 70% in case of 10% frame loss rate.

Keywords: Relay communication, Multiple Description Coding, Scalable Video Coding

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
508 Coerced Delay and Multi Additive Constraints QoS Routing Schemes

Authors: P.S. Prakash, S. Selvan

Abstract:

IP networks are evolving from data communication infrastructure into many real-time applications such as video conferencing, IP telephony and require stringent Quality of Service (QoS) requirements. A rudimentary issue in QoS routing is to find a path between a source-destination pair that satisfies two or more endto- end constraints and termed to be NP hard or complete. In this context, we present an algorithm Multi Constraint Path Problem Version 3 (MCPv3), where all constraints are approximated and return a feasible path in much quicker time. We present another algorithm namely Delay Coerced Multi Constrained Routing (DCMCR) where coerce one constraint and approximate the remaining constraints. Our algorithm returns a feasible path, if exists, in polynomial time between a source-destination pair whose first weight satisfied by the first constraint and every other weight is bounded by remaining constraints by a predefined approximation factor (a). We present our experimental results with different topologies and network conditions.

Keywords: Routing, Quality-of-Service (QoS), additive constraints, shortest path, delay coercion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305