
 

 

  

Abstract—This paper investigates the problem of automated defect 

detection for textile fabrics and proposes a new optimal filter design 

method to solve this problem. Gabor Wavelet Network (GWN) is 

chosen as the major technique to extract the texture features from 

textile fabrics. Based on the features extracted, an optimal Gabor filter 

can be designed. In view of this optimal filter, a new semi-supervised 

defect detection scheme is proposed, which consists of one real-valued 

Gabor filter and one smoothing filter. The performance of the scheme 

is evaluated by using an offline test database with 78 homogeneous 

textile images. The test results exhibit accurate defect detection with 

low false alarm, thus showing the effectiveness and robustness of the 

proposed scheme. To evaluate the detection scheme comprehensively, 

a prototyped detection system is developed to conduct a real time test. 

The experiment results obtained confirm the efficiency and 

effectiveness of the proposed detection scheme. 

 

Keywords—Defect detection, Filtering, Gabor function, Gabor 

wavelet networks, Textile fabrics. 

I. INTRODUCTION 

N the textile industry, before any shipments are sent to 

customers, inspection is needed for assuring the fabric quality 

because defects in fabrics can reduce the price of a product by 

45% to 65% [1]. Currently, the quality assurance of web 

processing is mainly carried out by manual inspection. 

However, the reliability of manual inspection is limited by 

ensuing fatigue and inattentiveness. Now only about 70% of 

defects can be detected by the most highly trained inspectors 

[2]. Furthermore, textile industries are facing increasing 

pressure to be more efficient and competitive by reducing costs. 

Therefore, automated detection of defects in textile fabrics, 

which results in high-quality products and high-speed 

production is definitely needed.  

In fact the problem of automated inspection on plain fabrics 

has been investigated for over two decades.  Wang et al. [3] 

contributed the success in this area to the fact that 90% of the 

defects in a plain fabric could be detected simply by 

thresholding. Therefore, in recent years, researchers have begun 
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to investigate the automated inspection of more complicated 

fabrics, including twill and denim fabrics [4, 5, 6]. 

Numerous approaches have been proposed to address the 

problem of detecting defects in woven fabrics, including 

statistical, spectral and model based approaches, and spectral 

approaches are the most successful detection approaches for 

woven fabrics. Since a Gabor filter has an optimal localization 

both in the spatial domain and in the spatial-frequency domain, 

it is one of the most famous spectral approaches and has been 

successfully and widely used in the field of defect detection. 

Escofet et al. [4] applied a set of multi-scale and 

multi-orientation Gabor filters to inspect fabric defects. Kumar 

and Pang [5] detected fabric defects with a set of filters, which 

derived from the real parts of Gabor functions from sixteen 

different channels in four orientations. The authors also 

investigated the supervised and unsupervised detection 

algorithms based on Gabor functions by detecting some real 

fabric defects in [6]. Bodnarova et al. [7] discriminated 

defective texture pixels from non-defective texture pixels with 

the proposed optimal 2-D Gabor filters, which was designed 

based on the Fisher cost function. 

All the detection methods using Gabor functions can be 

classified into two categories. One is to use a filter bank, such as 

[4, 5] and the unsupervised method in [6], and the other one is to 

use optimal filters, such as [7] and the supervised method in [6]. 

In general, filtering with a filter bank can generate excessive 

data for processing though a set of filters may aid the 

segmentation. Correspondingly, the quality of classification and 

recognition is affected dramatically [8], and the time 

consumption is large as well. However, optimal filters can avoid 

the disadvantages [9], which are usually problem specific. In an 

optimal filter, the filter parameters are tuned to match a 

particular texture background. Therefore, fewer filters are 

needed, and the time consumed for filtering is correspondingly 

less.  

Although optimal filters have some obvious advantages over 

other methods, the choice for the parameters of optimal filters is 

crucial and difficult. This paper presents an effective filter 

selection method for detecting fabric defects, which can solve 

the problem of filter parameter selection. In the method, Gabor 

wavelet networks (GWN) is used to extract texture features, 

which can provide some priori knowledge for the design of 

optimal 2-D Gabor filters. It can be noted that according to the 

literature, this application represents one of the fastest 

implementation of Gabor filter based solutions to the problem 
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of real-time automatic defect detection for textile fabrics. The 

paper is organized as follows: Section 2 gives a brief description 

about Gabor functions. In section 3, Gabor wavelet network is 

introduced. In section 4, a Gabor filter based detection scheme 

is described in detail. Section 5 tests and evaluates the 

performance of the proposed scheme. Finally, the conclusions 

from this work are summarized in section 6. 

II. GABOR FUNCTIONS 

A 2-D Gabor function is a complex exponential modulated by 

a Gaussian function, which can form a complete but 

non-orthogonal basis set. It is parameterized by four values 

which control the radial frequency bandwidths ( , )x yσ σ , the 

orientation θ  and the central frequency xω . The impulse 

response is generally defined as 
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Fig. 1 is the schematic diagram of a typical Gabor filter in the 

spatial domain. The real part of a Gabor wavelet is even 

symmetric, which is an excellent blob detector [10], and the 

imaginary part is odd symmetric, which performs as an edge 

detector [11]. In this paper, the term, an imaginary Gabor 

wavelet, is used to represent the imaginary part of a Gabor 

function to simplify the explanations. 

 

 
(a)                                            (b) 

Fig. 1 Schematic diagram for the real (a) and imaginary (b) parts of a 

typical Gabor filter. 

III. GABOR WAVELET NETWORK 

On the basis of wavelet networks [12], Kruger and Sommer 

proposed the concept of Gabor Wavelet Networks (GWN) for 

solving the 2D problems in pattern recognition [13], in which an 

imaginary Gabor wavelet function is used as a transfer function 

in the hidden layer of the network. The mapping form of the 

network can be governed by 
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where iw  is a network weight from the hidden layer to the 

output layer and f  is introduced to eliminate the DC value of 

an objective function. The imaginary part of the Gabor function 

used in (3) is expressed as 
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where i
xt , i

yt  are the translation parameters of the Gabor 

wavelet, and the rest parameters are the corresponding 

parameters of Gabor wavelets as defined in (1). The network 

input vector [ ]x y  is the position of a pixel in a studied image 

IM , and the output is the grey level of the corresponding pixel. 

Fig. 2 depicts the architecture for a Gabor wavelet network. In 

the network, there are five parameters for each Gabor wavelet, 

which should be determined by the network learning process, 

including the translation parameters, orientation, radial 

frequency bandwidth, centre frequency, and the corresponding 

weight. The objective function of the learning process is defined 

as 

  

2

2

min i i

i

E IM w g= −∑ . (5) 

In fact, GWN is a combination of feed forward neural network 

(FFN), namely multi-layer perceptron (MLP) and the Gabor 

wavelet decomposition. Various experiments [14-17] show that 

GWN is an effective and task-specific feature extractor.  
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Fig. 2 The structure of a Gabor wavelet network. 

IV. OPTIMAL GABOR FILTER DESIGN 

This section proposes a GWN based method for designing 

optimal Gabor filters to segment fabric defects. Furthermore, a 

semi-supervised segmentation scheme is developed, which 

consists of two parts, including supervised training and 

unsupervised segmentation. The supervised part uses a 

non-defective fabric image as the template to train a GWN in 

order to determine the parameters of optimal Gabor filters, and 

by using the obtained optimal Gabor filters, the unsupervised 
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part carries out defect segmentation for fabric images with the 

same texture background as the template image, which are 

either defective or non-defective.  

Fig. 3 displays an application of a GWN. Fig. 3(a) shows an 

image captured from twill weaving fabrics, which is used to 

train a GWN, and Fig. 3(b) is the corresponding reconstruction 

result by using the trained GWN. In Fig. 3(b), the basic texture 

information of the fabric image, including yarn direction and 

width, is entirely acquired by the GWN. Fig. 3(c) shows the 

difference between the original image and the reconstruction 

result. The energy in this difference image is so low that there is 

no obvious difference that can be noticed. However, the textile 

image is reconstructed with more than one hundred imaginary 

Gabor wavelets. In fact, only one imaginary Gabor filter is 

enough to obtain the basic yarn information. Fig. 4 shows such 

an example, in which Fig. 4(b) is the image reconstruction result 

by the GWN with only one imaginary Gabor wavelet in the 

hidden layer. It is seen that such a GWN can also capture some 

local texture information in the template fabric image, including 

the yarn orientation and the yarn width.  

Although it is unrealistic to obtain an exhaustive training set 

containing all possible fabric flaws, a non-defective template 

image is always available. This is the underlying idea of the 

proposed segmentation scheme. The GWN with one imaginary 

Gabor wavelet is trained by using a non-defective textile image. 

After training, the parameters of the imaginary Gabor wavelet 

have a direct relation with the yarn information in the trained 

template image, from which an optimal filter can be constructed 

for detecting fabric defects in the same type of textile fabrics. 

The following equations show how to construct an optimal 

imaginary Gabor wavelet filter from the transfer function of a 

trained GWN. 
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In (6), { }, , ,x y xσ σ θ ω  denote the parameters of the optimal 

filter and { }, , ,GWN GWN GWN GWN
x y xσ σ θ ω  are the parameters of 

the imaginary Gabor wavelet in a GWN optimized with a 

template image. GWN
xσ  and GWN

xω  contain the width 

information of the yarn in the template, which can be used 

directly by the optimal filter. Since yσ  is the thickness of the 

filter, it can be set a value equal to xσ . As known, defect 

detection is a process in which the background area is attenuated 

and the defect area is accentuated. The orientation of an optimal 

filter is set to different values for different types of fabrics. This 

paper only considers detecting those defects that are found on 

the most commonly used fabrics, including plain, twill and 

denim fabrics. In the actual textile industry, most fabric defects 

appear in some specific orientations, either in the direction of 

motion (i.e. warp direction) or perpendicular to it (i.e. weft 

direction) [18] because of the nature of the weaving process. 

Therefore, in order to maximize the elimination for texture 

backgrounds, for the fabrics without the obvious yarn 

information like plain fabrics, the orientation of the optimal 

filter is set to / 4π , whereas for the rest of the textile images 

captured from twill and denim fabrics, the orientation of the 

optimal filter can be set perpendicular to the yarn orientation 

obtained by the GWN. 

 

   
(a)                             (b)                             (c) 

 

Fig. 3 A textile image (a), its reconstruction result with GWN (b), and 

the difference between the original image and reconstruction image 

(c). 

 

        
(a)                                    (b) 

 

Fig. 4 A textile image (a) and its reconstruction result with only one 

imagery Gabor wavelet (b). 

 

Fig. 5 shows an example of convoluting a fabric sample 

image with the 7 7×  filter mask created by an optimal 

imaginary Gabor wavelet constructed in the method described 

above. By using the optimal filter obtained, most of the texture 

background can be effectively eliminated and at the same time 

the defective pixels are left. Indeed, the contrast between the 

background and the defect area is increased. This is exactly 

what a good defect detection scheme requires. 

 

    
(a)                                   (b) 

 

Fig. 5 A sample textile image with a defect (a) and the convoluting 

result with the optimal imaginary Gabor wavelet filter (b) 

 

Based on such an optimal Gabor filter, a defect detection 

scheme is proposed in Fig. 6. In the figure, it can be found that 

World Academy of Science, Engineering and Technology
International Journal of Materials and Textile Engineering

 Vol:2, No:1, 2008 

118International Scholarly and Scientific Research & Innovation 2(1) 2008 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

er
ia

ls
 a

nd
 T

ex
til

e 
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

1,
 2

00
8 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

28
33

.p
df



 

 

after a textile image is filtered by using an optimal Gabor filter 

(Odd_GW), the produced result will be smoothed by using a 

Gaussian filtering mask to reduce noise in the output image.  

In the proposed detection scheme, a Gaussian low pass filter is 

used as the smoothing filter to reduce speckle-like noise [19] in 

the resulting output image of the designed filter, which is 

governed by 

( )
2 2

2

1
gauss , exp

2 2

x y
x y

πσ σ

 +
= −  

 
.               (7)         

According to the research results by Jain and Furrokhnia [20], 

it is the most appropriate to choose  ( )01/ 2 2 fσ = , where 0f   

is the central frequency. In the case of this study,  0f  depends 

on the width of one yarn, i.e., the number of pixels occupied by 

one yarn in an image. Therefore, 0f  can be set equal to GWN
xω  . 

Considering both the computational effort involved and the 

filtering quality, in the proposed detection scheme, the sizes of 

the masks created from the Gaussian smoothing filter and the 

optimal imaginary Gabor filter are both set to  7 7× . 

In Fig. 6, the thresholding limits can be determined by filtering 

a defect-free template image with an optimal Gabor filter and a 

smoothing filter to obtain a new image B . The thresholding 

limits can be obtained from this image B  as follows: 
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where W is a sub-window centered at the image B . The size of 

this window should be chosen to avoid the edge distortion part 

in the image. Thus, the thresholding values, maxλ  and minλ , are 

the maximum and minimum values of grey levels respectively. 

This process is carried out as a part of calibration at the 

beginning of inspection. The binarization process can be 

conducted by expressed in the following equation 
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Fig. 6 Block diagram of the defect detection scheme based on the 

optimal imaginary Gabor wavelet filter 

V. EXPERIMENTS AND RESULTS 

The performance of the proposed defect segmentation scheme 

is evaluated by a test database consisting of 78 fabric images 

with 256 256×  pixels (8 bit grey level range). In the database, 

39 images are defect-free, and the rest contains different types 

of fabric defects. Thirty two defects which commonly appear in 

the textile industry are tested. The types of fabrics included in 

the database are mainly plain, twill, denim weaving fabrics. The 

performance for the scheme is determined by visually assessing 

the binary output images. True detection (TD) is recorded when 

the white zone overlaps the defective area in a defective image 

and at the same time there is no other white areas appearing in 

the non-defective region or when no any white zone appears 

after detection for a non-defective image. False alarm (FA) is 

recorded when for a defective image the defective zone is 

overlapped and white areas also appear significantly distant 

from the defective area or when for a non-defective image white 

areas appear in the final binary result. Overall detection (OD) is 

the sum of TD and FA. Misdetection (MD) means that for a 

defective image the defective area is entirely lost. A Pentium 

III-450 MHz PC with 512M RAM is used to run the developed 

defect detection software. 

Table I summarizes the test results and Fig. 7 shows some of 

the corresponding detection results. After fabric images are 

filtered by optimal Gabor filters and the Gaussian smoothing 

filter, the results should be binarized, and the final detection 

results are presented in Fig. 7(c),(g),(j),(m),(p),(s),(v),(y). It is 

found that the proposed scheme can successfully segment the 

defects with different shapes, different positions and different 

texture backgrounds. 

The test fabric defects include both structural defects and tonal 

defects. The structural defect alters the textural property in an 

image, without which a good quality surface can be achieved, 

such as Fig. 7(h), (k) and (n), and the tonal defect changes the 

tonal property rather than the structural property, such as Fig. 

7(a) and (q). Most of the defects in the test examples are local 

defects, which are observed as sudden changes in the structural 

or tonal properties of the image intensities. 

Fig. 7(h) and (k) show fabric images with small defects which 

are visible only with difficulty. Those defects are successfully 

segmented with the scheme as shown in Fig. 7(j) and (m). Fig. 

7(n) displays such an example in which the defect only changes 

the spatial arrangement of neighboring pixels and not mean gray 

level. The change is also enhanced by the scheme, and finally 

the defect is segmented as shown in Fig. 7(p). 

 

   
(a)                            (b)                             (c) 

   
(e)                             (f)                             (g) 
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(h)                             (i)                             (j) 

   
(k)                             (l)                             (m) 

   
(n)                             (o)                             (p) 

   
(q)                            (r)                             (s) 

   
(t)                              (u)                              (v) 

   
(w)                              (x)                              (y) 

 

Fig. 7 Fabric samples with soiled end, warp float, burl, knot, harness 

breakdown, foreign fiber, big knot and gout in (a), (e), (h), (k), (n), (q), 

(t) and (w) respectively; corresponding local energy estimates with 

optimal imaginary Gabor filters in (b), (f), (i), (l), (o), (r), (u) and (x); 

the final defect segmentation results with the scheme of fig. 6 in (c), 

(g), (j), (m), (p), (s), (v) and (y) 

 

When a piece of textile fabric gets off the production line, the 

locations and sizes of fabric defects vary randomly and 

dynamically. Therefore, the supervised algorithm only with 

respect to some particular defects sometimes does not work very 

well in the real application. In this sense the unsupervised 

detection algorithms should be preferred. However, the design 

of an unsupervised algorithm is rather complicated and the 

algorithm usually needs a set of filters. The obvious 

disadvantage of using a set of filters is the huge amount of 

computations. Therefore, the optimal Gabor filters based on 

semi-supervised detection is a good choice, which can be 

designed to detect a class of textile fabrics. The design of an 

optimal filter needs to determine the values of four parameters 

{ }, , ,x y xσ σ ω θ , which have a direct relation with the 

optimization output of a GWN. It is shown that the parameters 

are optimal and specific to a particular texture background. 

Based on this underlying idea, the detection scheme for textile 

fabrics is proposed, which performs satisfactorily in most of the 

test examples. 

 
TABLE I 

PERFORMANCE OF THE PROPOSED SCHEME 

The proposed scheme Performance (Hit ratio) 

Overall Detection (OD) 77 (98.7%) 

Misdetection (MD) 1 (1.28%) 

False Alarm (FA) 6 (7.69%) 

 

A. Real Time Test 

In order to evaluate the proposed detection scheme in real 

time, a prototyped detection system has been developed in our 

laboratory. The architecture of the defect detection system 

proposed is schematically described in Fig. 8. The system 

consists of a fabric conveying module, a lighting module, an 

image acquisition module, a supporting frame and a detection 

algorithm. Sari-Sarraf and Goddard [18] indicated that the 

following problems had to be considered when designing such 

an inspection system: (1) the vibration caused; (2) the irregular 

motion of the fabric; and (3) the system cost. All these points 

have been considered in developing the proposed inspection 

system. 

 

 
Fig. 8 Architecture of the vision inspection system 

 

The image acquisition module mainly consists of a line scan 

camera with the model of L103k-2k made by Basler (Germany) 

and a frame grabber with the model of Matrox Odyssey XCL 

made by Matrox (US), and a camera link connects these two 

components. Thus, an image can be captured by the frame 

grabber interfaced to the camera by the camera link. Although in 

some detection applications area scan cameras can be used 

instead, compared to an area scan camera, a line scan camera 
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has several advantages, such as a fast image acquisition speed, 

low signal noise and high resolution. In addition, a disc encoder 

is installed to ensure the synchronization of the camera with the 

fabric transportation velocity. The exposure time of the camera 

is fixed regardless of the motion speed of the fabric as long as it 

is less than the period of the TTL line trigger signal. A Matrox 

Oasis chip is integrated in the frame grabber, which can speed 

up the data processing. The resolution of pick direction is set by 

the optics of the camera which can be adjusted by changing the 

distance between the camera and the fabric, and the resolution 

of the warp direction is set by the size of the roller and the 

resolution of the encoder which can be partially modified by a 

file called digitizer configuration file (DCF) in the host 

computer. 

The performance of the proposed detection scheme is 

evaluated online by using the developed prototype detection 

system. The system is adjusted to capture a frame with the size 

of   pixels in 8-bit grey level, and the image resolution is about 

7.8 pixels per mm in both of the directions. The fabric 

conveying speed is about 20 meters per minute. Since 

comparing to plain weaving fabrics twill weaving fabric is with 

a more complicated pattern and the sizes of some defects are 

only about one yarn width, it is much more difficult to be 

detected.  In the on-line test, a long piece of twill weaving fabric 

is used as the detection objective, and 276 frames of images are 

captured and analyzed, in which 17 images contains different 

defects, including oil spot, burl, knot with halos, and the rest are 

defect-free. Because it is very difficult to obtain a long piece of 

fabric with a variety of fabric defects, most of the defects in this 

test are deliberately made by hands. In this test of the proposed 

detection scheme, 2 fabric images are misdetected (MD), and an 

8.0% false alarm rate is achieved. It can be noticed that the 

achieved good detection results show the robustness of the 

proposed detection scheme. 

VI. CONCLUSION 

In this paper, a semi-supervised defect detection scheme for 

textile fabrics has been proposed, which is constructed based on 

optimal Gabor filters. Gabor wavelet network with only one 

wavelet in the hidden layer is utilized as the major technique to 

obtain the basic texture features of the studied textile images, 

and the obtained features serve as the priori knowledge to 

design those optimal Gabor filters.  

The performance of the scheme has been extensively 

evaluated by using an offline test database, which consists of a 

variety of fabric defects differing in defect type, size and shape, 

texture background, and image resolution. The test results 

obtained have shown that the scheme is simple, effective and 

robust. In addition, the proposed detection scheme is also 

evaluated by using a developed prototyped detection system. 

The obtained good detection results confirm the efficiency and 

robustness of the detection scheme.  
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